organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2706-o2707

N-[2-(4-Methyl­benzo­yl)eth­yl]propan-2-aminium chloride

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey, and dDepartment of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 31 July 2012; accepted 9 August 2012; online 15 August 2012)

In the title compound, C13H20NO+·Cl, the protonated amino N atom is hydrogen bonded to the chloride anion. N—H⋯Cl hydrogen bonds link the anions and cations into dimers, which are connected by C—H⋯O hydrogen bonds, forming supra­molecular chains extending along [100].

Related literature

For the details of the pharmacological effects of Mannich bases and for their synthesis, see: Dimmock & Kumar (1997[Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1-22.]); Gul et al. (2004[Gul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzneim. Forsch. 54, 359-364.]; 2005a[Gul, M., Atalay, M., Gul, H. I., Nakao, C., Lappalainen, J. & Hanninen, O. (2005a). Toxicol. Vitro, 19, 573-580.],b[Gul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005b). Arch. Pharm. 338, 335-338.]; 2009[Gul, H. I., Suleyman, H. & Gul, M. (2009). Pharm. Biol. 47, 968-972.]); Gul (2005[Gul, M. (2005). PhD thesis, Kuopio University, Finland.]); Mete et al. (2011a[Mete, E., Gul, H. I., Bilginer, S., Algul, O., Topaloglu, M. E., Gulluce, M. & Kazaz, C. (2011a). Molecules, 16, 4660-4671.],b[Mete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011b). Arch. Pharm. Chem. Life Sci. 344, 333-339.]); Kucukoglu et al. (2011[Kucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. Drug Res. 61, 366-371.]); Canturk et al. (2008[Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686-691.]); Chen et al. (1991[Chen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). YaoXueXueBao, 26, 183-192.]); Suleyman et al. (2007[Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63-67.]); Plastino et al. (1962[Plastino, E., Loprieno, N., Bugian, A. & Tenerini, J. (1962). Chem. Abstr. 60, 3025.], 1964[Plastino, E., Loprieno, N., Bugian, A. & Tenerini, J. (1964). Italian Patent 637371.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For some related structures, see: Abonia et al. (2011[Abonia, R., Schollmeyer, D. & Arteaga, D. (2011). Acta Cryst. E67, o2969.]); Tuzina et al. (2006[Tuzina, P., Fischer, A. & Somfai, P. (2006). Acta Cryst. E62, o2971-o2972.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20NO+·Cl

  • Mr = 241.75

  • Monoclinic, P 21 /c

  • a = 7.786 (5) Å

  • b = 7.511 (5) Å

  • c = 23.365 (5) Å

  • β = 95.362 (5)°

  • V = 1360.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 K

  • 0.17 × 0.11 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.966, Tmax = 0.974

  • 26900 measured reflections

  • 2800 independent reflections

  • 2007 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.151

  • S = 1.06

  • 2800 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H14A⋯Cl1 0.90 2.26 3.148 (3) 172
N1—H14B⋯Cl1i 0.90 2.25 3.145 (3) 173
C1—H1⋯O1ii 0.93 2.53 3.340 (4) 146
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Mannich bases are generally formed by the reaction between formaldehyde, a secondary amine and a compound containing reactive hydrogen atoms. On occasion, aldehydes other than formaldehyde may be employed and the secondary amine may be replaced by ammonia and primary amines. This process is known as the Mannich reaction (Dimmock & Kumar, 1997).

Mannich bases display varied biological activities such as antimicrobial (Gul et al., 2005; Mete et al., 2011a), cytotoxic (Gul et al., 2005; Mete et al., 2011b; Kucukoglu et al., 2011; Canturk et al., 2008), anticancer (Dimmock & Kumar, 1997; Chen et al., 1991; Gul, 2005), antiinflammatory (Suleyman et al., 2007; Gul et al., 2009), anticonvulsant (Gul et al., 2004) and DNA topoisomerase I inhibiting properties (Canturk et al., 2008).

In the title compound (I), (Fig. 1), bond lengths and bond angles are within the range of expected values for this type of compound (Allen et al., 1987; Abonia et al., 2011; Tuzina et al., 2006). The protonated N1 atom forms a hydrogen bond to Cl1 (Table 1).

Intra- and intermolecular N—H···Cl hydrogen-bonding interactions between the free chloride anion and the organic cation link the molecules into hydrogen-bond dimers, forming a R22(6) motif (Bernstein et al., 1995; Etter, 1990). The dimers are connected by C—H···O hydrogen bonds into chains extended along the a axis (Table 1, Fig. 2).

Related literature top

For the details of the pharmacological effects of Mannich bases and for their synthesis, see: Dimmock & Kumar (1997); Gul et al. (2004; 2005a,b; 2009); Gul (2005); Mete et al. (2011a,b); Kucukoglu et al. (2011); Canturk et al. (2008); Chen et al. (1991); Suleyman et al. (2007); Plastino et al. (1962, 1964). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For some related structures, see: Abonia et al. (2011); Tuzina et al. (2006).

Experimental top

A mixture of the appropriate ketone (50 mmol), paraformaldehyde (50 mmol), and isopropylamine hydrochloride (27 mmol) was heated in an oil bath at 403 K. The reaction vessel was then removed from the oil bath and when the temperature of the mixture dropped to 338 K, ethyl acetate (40–80 ml) was added. The mixture was stirred at room temperature for 24 h and the resultant precipitate was then collected and were recrystallized from ether/methanol. The melting point and yield of this compound was: 443–444 K (lit. Plastino et al., 1962, 1964; m.p. 444–445 K), 58% (Mete et al., 2011b).

1H-NMR δ 1.50 (d, J = 6.6 Hz, 6H, CH(CH3)2), 2.34 (s, 3H, ArCH3), 3.36–3.46 (m, 3H, CH(CH3)2 and 2 x H-2), 3.74 (t, J = 7.3 Hz, 2H, 2 x H-3), 7.14 (d, J = 8.1 Hz, 2H, H-3'/5'), 7.79 (d, J = 8.1 Hz, 2H, H-2'/6'), 9.54 (brs, 2H, NH2+); 13C-NMR δ 19.4 (CH(CH3)2), 21.9, 35.1, 40.5, 51.2, 128.5, 129.6, 133.6, 144.9, 196.6; MS (EI) m/z (%): 190.1 (M–CH3)+, 205.3 (M+). IR (KBr, cm-1): 2461 (NH2+), 1679 (CO). Calcd. for C13H20ClNO (241.76): C, 64.59: H, 8.34; N, 5.79. Found: C, 64.39; H, 8.45; N, 5.53.

Refinement top

H atoms were positioned geometrically, with N—H = 0.90 Å, C—H = 0.93(aromatic), 0.97(methylene) and 0.98 Å (methine), and refined as riding with Uiso(H) = 1.5Ueq(O) for methyl H and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
Fig.1. The title molecule with the atom numbering scheme. Displacement ellipsoids fornon-H atoms are drawn at the 30% probability level.

Fig.2. The packing and hydrogen bonding of the title compound viewed down the baxis. H atoms not involved in hydrogen bondings are omitted for clarity.
N-[2-(4-Methylbenzoyl)ethyl]propan-2-aminium chloride top
Crystal data top
C13H20NO+·ClF(000) = 520
Mr = 241.75Dx = 1.180 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4594 reflections
a = 7.786 (5) Åθ = 2.6–26.5°
b = 7.511 (5) ŵ = 0.26 mm1
c = 23.365 (5) ÅT = 294 K
β = 95.362 (5)°Block, white
V = 1360.4 (13) Å30.17 × 0.11 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2800 independent reflections
Radiation source: Sealed Tube2007 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.066
Detector resolution: 10.0000 pixels mm-1θmax = 26.4°, θmin = 2.6°
dtprofit.ref scansh = 99
Absorption correction: multi-scan
(Blessing, 1995)
k = 89
Tmin = 0.966, Tmax = 0.974l = 2929
26900 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.2172P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2800 reflectionsΔρmax = 0.21 e Å3
149 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (3)
Crystal data top
C13H20NO+·ClV = 1360.4 (13) Å3
Mr = 241.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.786 (5) ŵ = 0.26 mm1
b = 7.511 (5) ÅT = 294 K
c = 23.365 (5) Å0.17 × 0.11 × 0.10 mm
β = 95.362 (5)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2800 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2007 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.066
26900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
2800 reflectionsΔρmin = 0.18 e Å3
149 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7123 (2)0.2422 (3)0.57107 (8)0.0903 (8)
N10.7916 (2)0.0622 (2)0.74056 (7)0.0555 (6)
C11.2949 (3)0.1740 (3)0.53020 (10)0.0722 (9)
C21.2627 (3)0.2488 (3)0.47633 (10)0.0653 (8)
C31.0947 (3)0.2961 (3)0.45820 (9)0.0680 (9)
C40.9644 (3)0.2737 (3)0.49337 (9)0.0659 (8)
C50.9974 (3)0.2024 (3)0.54815 (9)0.0563 (7)
C61.1652 (3)0.1501 (3)0.56544 (10)0.0658 (8)
C70.8564 (3)0.1895 (3)0.58624 (9)0.0616 (8)
C80.8956 (3)0.1133 (3)0.64590 (9)0.0623 (8)
C90.7524 (3)0.1489 (3)0.68361 (9)0.0606 (8)
C100.6625 (3)0.0981 (3)0.78362 (9)0.0611 (8)
C110.6888 (4)0.2830 (4)0.80850 (12)0.0807 (10)
C120.6811 (4)0.0436 (4)0.82927 (12)0.0864 (10)
C131.4074 (4)0.2830 (5)0.43891 (12)0.0913 (11)
Cl11.17234 (7)0.15576 (7)0.78840 (2)0.0665 (2)
H11.406600.139100.542900.0870*
H31.069500.343700.421600.0820*
H40.852500.306900.480300.0790*
H61.190100.098100.601400.0790*
H8A0.912900.014200.643100.0750*
H8B1.001800.165200.663500.0750*
H9A0.739800.276200.688700.0730*
H9B0.644500.102900.665300.0730*
H100.546100.090700.763800.0730*
H11A0.596500.310800.831500.1210*
H11B0.689800.367900.777800.1210*
H11C0.796700.287800.831900.1210*
H12A0.668800.158800.811600.1290*
H12B0.593600.027900.855200.1290*
H12C0.792900.034400.850200.1290*
H13A1.438200.406700.440900.1370*
H13B1.370100.251800.399900.1370*
H13C1.505700.212100.452200.1370*
H14A0.896100.099200.755600.0670*
H14B0.797900.056200.735200.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0562 (10)0.1386 (17)0.0763 (11)0.0110 (11)0.0077 (8)0.0214 (11)
N10.0530 (10)0.0541 (10)0.0609 (10)0.0019 (8)0.0135 (8)0.0028 (8)
C10.0545 (13)0.0940 (19)0.0683 (15)0.0016 (12)0.0076 (11)0.0037 (13)
C20.0651 (14)0.0730 (15)0.0596 (13)0.0076 (12)0.0152 (10)0.0054 (11)
C30.0723 (16)0.0783 (16)0.0541 (13)0.0016 (12)0.0094 (10)0.0048 (11)
C40.0618 (14)0.0764 (15)0.0596 (13)0.0001 (12)0.0057 (10)0.0003 (11)
C50.0553 (12)0.0579 (12)0.0555 (12)0.0054 (10)0.0048 (9)0.0023 (9)
C60.0625 (14)0.0774 (16)0.0577 (12)0.0004 (11)0.0066 (10)0.0071 (11)
C70.0557 (13)0.0684 (14)0.0609 (13)0.0038 (11)0.0059 (10)0.0008 (10)
C80.0574 (13)0.0718 (14)0.0588 (13)0.0014 (11)0.0111 (10)0.0039 (11)
C90.0584 (13)0.0630 (14)0.0614 (13)0.0002 (10)0.0103 (10)0.0041 (10)
C100.0535 (12)0.0672 (14)0.0653 (13)0.0004 (10)0.0195 (10)0.0012 (10)
C110.0901 (19)0.0698 (16)0.0871 (18)0.0072 (13)0.0350 (14)0.0041 (13)
C120.108 (2)0.0767 (17)0.0808 (17)0.0039 (15)0.0418 (15)0.0138 (13)
C130.0797 (18)0.120 (2)0.0775 (18)0.0034 (17)0.0253 (14)0.0074 (16)
Cl10.0631 (4)0.0604 (4)0.0756 (4)0.0010 (3)0.0046 (3)0.0014 (3)
Geometric parameters (Å, º) top
O1—C71.211 (3)C3—H30.9300
N1—C91.487 (3)C4—H40.9300
N1—C101.511 (3)C6—H60.9300
N1—H14B0.9000C8—H8A0.9700
N1—H14A0.9000C8—H8B0.9700
C1—C61.373 (3)C9—H9A0.9700
C1—C21.380 (3)C9—H9B0.9700
C2—C31.383 (3)C10—H100.9800
C2—C131.511 (4)C11—H11A0.9600
C3—C41.374 (3)C11—H11B0.9600
C4—C51.389 (3)C11—H11C0.9600
C5—C71.480 (3)C12—H12A0.9600
C5—C61.388 (3)C12—H12B0.9600
C7—C81.511 (3)C12—H12C0.9600
C8—C91.508 (3)C13—H13A0.9600
C10—C121.504 (4)C13—H13B0.9600
C10—C111.512 (4)C13—H13C0.9600
C1—H10.9300
C9—N1—C10115.08 (16)C7—C8—H8A109.00
H14A—N1—H14B107.00C7—C8—H8B109.00
C9—N1—H14B109.00C9—C8—H8A109.00
C10—N1—H14A109.00C9—C8—H8B109.00
C9—N1—H14A108.00H8A—C8—H8B108.00
C10—N1—H14B108.00N1—C9—H9A110.00
C2—C1—C6121.3 (2)N1—C9—H9B110.00
C1—C2—C13121.0 (2)C8—C9—H9A110.00
C1—C2—C3118.0 (2)C8—C9—H9B110.00
C3—C2—C13120.9 (2)H9A—C9—H9B108.00
C2—C3—C4121.0 (2)N1—C10—H10109.00
C3—C4—C5121.0 (2)C11—C10—H10109.00
C6—C5—C7122.5 (2)C12—C10—H10109.00
C4—C5—C7119.7 (2)C10—C11—H11A109.00
C4—C5—C6117.7 (2)C10—C11—H11B109.00
C1—C6—C5120.9 (2)C10—C11—H11C109.00
O1—C7—C5121.5 (2)H11A—C11—H11B109.00
C5—C7—C8118.8 (2)H11A—C11—H11C110.00
O1—C7—C8119.7 (2)H11B—C11—H11C109.00
C7—C8—C9112.03 (19)C10—C12—H12A109.00
N1—C9—C8110.12 (18)C10—C12—H12B109.00
N1—C10—C12108.65 (19)C10—C12—H12C109.00
C11—C10—C12112.1 (2)H12A—C12—H12B110.00
N1—C10—C11110.19 (19)H12A—C12—H12C109.00
C2—C1—H1119.00H12B—C12—H12C109.00
C6—C1—H1119.00C2—C13—H13A109.00
C2—C3—H3119.00C2—C13—H13B109.00
C4—C3—H3119.00C2—C13—H13C109.00
C3—C4—H4119.00H13A—C13—H13B110.00
C5—C4—H4120.00H13A—C13—H13C109.00
C1—C6—H6120.00H13B—C13—H13C109.00
C5—C6—H6120.00
C9—N1—C10—C1176.7 (2)C3—C4—C5—C7176.5 (2)
C9—N1—C10—C12160.08 (19)C4—C5—C6—C12.2 (3)
C10—N1—C9—C8176.31 (17)C7—C5—C6—C1176.0 (2)
C6—C1—C2—C31.3 (3)C6—C5—C7—C81.2 (3)
C6—C1—C2—C13177.0 (2)C4—C5—C7—O11.1 (3)
C2—C1—C6—C50.7 (4)C4—C5—C7—C8179.4 (2)
C13—C2—C3—C4176.6 (2)C6—C5—C7—O1177.1 (2)
C1—C2—C3—C41.7 (3)O1—C7—C8—C911.9 (3)
C2—C3—C4—C50.2 (3)C5—C7—C8—C9166.46 (19)
C3—C4—C5—C61.8 (3)C7—C8—C9—N1176.54 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H14A···Cl10.902.263.148 (3)172
N1—H14B···Cl1i0.902.253.145 (3)173
C1—H1···O1ii0.932.533.340 (4)146
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H20NO+·Cl
Mr241.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.786 (5), 7.511 (5), 23.365 (5)
β (°) 95.362 (5)
V3)1360.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.17 × 0.11 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
26900, 2800, 2007
Rint0.066
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.06
No. of reflections2800
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H14A···Cl10.902.263.148 (3)172
N1—H14B···Cl1i0.902.253.145 (3)173
C1—H1···O1ii0.932.533.340 (4)146
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y, z.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAbonia, R., Schollmeyer, D. & Arteaga, D. (2011). Acta Cryst. E67, o2969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCanturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686–691.  CAS Google Scholar
First citationChen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). YaoXueXueBao, 26, 183–192.  CAS Google Scholar
First citationDimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1–22.  CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGul, M. (2005). PhD thesis, Kuopio University, Finland.  Google Scholar
First citationGul, M., Atalay, M., Gul, H. I., Nakao, C., Lappalainen, J. & Hanninen, O. (2005a). Toxicol. Vitro, 19, 573–580.  Web of Science CrossRef CAS Google Scholar
First citationGul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzneim. Forsch. 54, 359–364.  CAS Google Scholar
First citationGul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005b). Arch. Pharm. 338, 335–338.  Web of Science CrossRef CAS Google Scholar
First citationGul, H. I., Suleyman, H. & Gul, M. (2009). Pharm. Biol. 47, 968–972.  Web of Science CrossRef CAS Google Scholar
First citationKucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. Drug Res. 61, 366–371.  CAS Google Scholar
First citationMete, E., Gul, H. I., Bilginer, S., Algul, O., Topaloglu, M. E., Gulluce, M. & Kazaz, C. (2011a). Molecules, 16, 4660–4671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011b). Arch. Pharm. Chem. Life Sci. 344, 333–339.  CrossRef CAS Google Scholar
First citationPlastino, E., Loprieno, N., Bugian, A. & Tenerini, J. (1962). Chem. Abstr. 60, 3025.  Google Scholar
First citationPlastino, E., Loprieno, N., Bugian, A. & Tenerini, J. (1964). Italian Patent 637371.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63–67.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTuzina, P., Fischer, A. & Somfai, P. (2006). Acta Cryst. E62, o2971–o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2706-o2707
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds