metal-organic compounds
Dilithium 1,2,5-thiadiazolidine-3,4-dione 1,1-dioxide dihydrate
aIonic Liquids and Electrolytes for Energy Technologies (ILEET) Laboratory, Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA, and bX-ray Structural Facility, Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA
*Correspondence e-mail: whender@ncsu.edu
The title compound, poly[μ-aqua-aqua-μ6-(1,1-dioxo-1λ6,2,5-thiadiazolidine-3,4-diolato)-dilithium], [Li2(C2N2O4S)(H2O)2]n or (H2O)2:Li2TDD, forms an infinite three-dimensional structure containing five-coordinate (Li/5) and six-coordinate (Li/6) Li+ cations. Li/5 is coordinated by three water molecules, one carbonyl O atom and one sulfuryl O atom while Li/6 is coordinated by one water molecule, three carbonyl O atoms, and two sulfuryl O atoms. Each water molecule bridges two Li+ cations, while also hydrogen bonding to either one endocyclic N atom and one sulfuryl O atom or two endocyclic N atoms. While the endocyclic N atoms in the anion do not coordinate the Li+ cations, the carbonyl and sulfuryl groups each coordinate three Li+ cations, which gives rise to the infinite three-dimensional structure.
Related literature
For Na salt synthesis, see: Lee & Kohn (1990). For Na salt, K salt, and acid form synthesis, see: Wen et al. (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812036379/qm2080sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812036379/qm2080Isup2.hkl
Sulfamide (1.00 eq.) was dissolved in methanol and slowly added to a solution of LiMeO (2.10 eq.) at room temperature, resulting in a cloudy white solution. After addition of diethyl oxalate (1.05 eq.), the solution became clear. After gently refluxing for 20 h, the solvent was removed under vacuum and a clear viscous solution was obtained. Upon addition of deionized water, crystals suitable for characterization formed.
The structure was solved by
using the XS program. All non-hydrogen atoms were obtained from the i nitial solution. The hydrogen atoms were introduced at idealized positions and were allowed to refine isotropically. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for from the usual tabulation. The structure was refined using the XL program from SHELXTL, graphic plots were produced using the ORTEP-3 crystallographic program suite.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Asymmetric unit of the Li2TDD dihydrate crystal structure. Thermal ellipsoids are at 50% probability (Li-purple, O-red, S-yellow, N-blue). | |
Fig. 2. Packing diagram for the Li2TDD dihydrate crystal structure (Li-purple, O-red, S-yellow, N-blue). |
[Li2(C2N2O4S)(H2O2)] | F(000) = 400 |
Mr = 198.01 | Dx = 2.008 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.239 (3) Å | Cell parameters from 9851 reflections |
b = 11.185 (3) Å | θ = 3.1–42.4° |
c = 9.786 (4) Å | µ = 0.49 mm−1 |
β = 124.27 (2)° | T = 110 K |
V = 654.8 (4) Å3 | Prism, colourless |
Z = 4 | 0.41 × 0.24 × 0.24 mm |
Bruker–Nonius Kappa X8 APEXII diffractometer | 3899 independent reflections |
Radiation source: fine-focus sealed tube | 3575 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω and ϕ scans | θmax = 42.7°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −13→12 |
Tmin = 0.825, Tmax = 0.894 | k = −18→19 |
34710 measured reflections | l = −16→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1822P] where P = (Fo2 + 2Fc2)/3 |
3899 reflections | (Δ/σ)max = 0.001 |
134 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Li2(C2N2O4S)(H2O2)] | V = 654.8 (4) Å3 |
Mr = 198.01 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.239 (3) Å | µ = 0.49 mm−1 |
b = 11.185 (3) Å | T = 110 K |
c = 9.786 (4) Å | 0.41 × 0.24 × 0.24 mm |
β = 124.27 (2)° |
Bruker–Nonius Kappa X8 APEXII diffractometer | 3899 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3575 reflections with I > 2σ(I) |
Tmin = 0.825, Tmax = 0.894 | Rint = 0.022 |
34710 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.065 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.62 e Å−3 |
3899 reflections | Δρmin = −0.40 e Å−3 |
134 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Li1 | 0.7137 (2) | 0.01566 (12) | 0.50356 (15) | 0.0135 (2) | |
Li2 | 0.7135 (2) | 0.05125 (12) | 0.18236 (17) | 0.0149 (2) | |
S1 | 0.89112 (2) | 0.223295 (11) | 0.983764 (16) | 0.00633 (4) | |
O1 | 0.79819 (8) | 0.19195 (4) | 1.07658 (6) | 0.01045 (7) | |
O2 | 0.84435 (8) | 0.34610 (4) | 0.92528 (6) | 0.01025 (7) | |
N1 | 0.79993 (8) | 0.13338 (4) | 0.82836 (6) | 0.00815 (8) | |
N2 | 1.16044 (8) | 0.19981 (5) | 1.09118 (6) | 0.00814 (7) | |
C1 | 0.97800 (9) | 0.08981 (5) | 0.83782 (7) | 0.00681 (8) | |
C2 | 1.19895 (9) | 0.12853 (5) | 0.99882 (7) | 0.00704 (8) | |
O3 | 0.97919 (7) | 0.02518 (4) | 0.73492 (5) | 0.00883 (7) | |
O4 | 1.38036 (7) | 0.09387 (4) | 1.02912 (6) | 0.01080 (8) | |
O1W | 0.56092 (8) | −0.12147 (4) | 0.56167 (6) | 0.01060 (7) | |
H1WA | 0.642 (3) | −0.1436 (15) | 0.654 (2) | 0.038 (4)* | |
H1WB | 0.497 (3) | −0.1828 (15) | 0.504 (2) | 0.037 (4)* | |
O2W | 0.64205 (7) | −0.06718 (4) | 0.30255 (6) | 0.00860 (7) | |
H2WA | 0.702 (2) | −0.1334 (14) | 0.3304 (18) | 0.030 (3)* | |
H2WB | 0.512 (3) | −0.0804 (14) | 0.2543 (19) | 0.032 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Li1 | 0.0127 (5) | 0.0155 (5) | 0.0110 (5) | −0.0009 (4) | 0.0059 (4) | −0.0018 (4) |
Li2 | 0.0120 (5) | 0.0169 (5) | 0.0176 (5) | 0.0033 (4) | 0.0094 (5) | 0.0054 (4) |
S1 | 0.00648 (6) | 0.00602 (6) | 0.00737 (6) | 0.00044 (3) | 0.00444 (5) | −0.00002 (3) |
O1 | 0.01270 (18) | 0.01092 (17) | 0.01269 (18) | 0.00098 (14) | 0.01016 (16) | 0.00139 (13) |
O2 | 0.01357 (18) | 0.00648 (15) | 0.01303 (18) | 0.00244 (13) | 0.00890 (16) | 0.00195 (13) |
N1 | 0.00613 (17) | 0.00947 (17) | 0.00851 (17) | −0.00019 (13) | 0.00391 (15) | −0.00189 (14) |
N2 | 0.00659 (17) | 0.00924 (17) | 0.00772 (17) | −0.00007 (14) | 0.00350 (15) | −0.00125 (14) |
C1 | 0.00696 (19) | 0.00660 (18) | 0.00715 (18) | 0.00008 (14) | 0.00413 (16) | 0.00011 (14) |
C2 | 0.00620 (18) | 0.00760 (18) | 0.00714 (18) | 0.00043 (14) | 0.00365 (16) | 0.00069 (14) |
O3 | 0.00976 (17) | 0.00902 (16) | 0.00814 (16) | 0.00060 (13) | 0.00530 (14) | −0.00166 (12) |
O4 | 0.00685 (16) | 0.01436 (18) | 0.01147 (17) | 0.00300 (13) | 0.00532 (15) | 0.00209 (14) |
O1W | 0.01054 (17) | 0.01104 (17) | 0.00911 (17) | −0.00189 (13) | 0.00487 (15) | −0.00023 (13) |
O2W | 0.00740 (16) | 0.00840 (15) | 0.00953 (16) | 0.00014 (12) | 0.00449 (14) | 0.00025 (12) |
Li1—O2W | 1.9615 (15) | S1—N2 | 1.6331 (9) |
Li1—O3 | 1.9825 (16) | O1—Li2vii | 2.1539 (14) |
Li1—O1Wi | 2.0814 (16) | O2—Li1viii | 2.1650 (14) |
Li1—O1W | 2.1468 (15) | O2—Li2viii | 2.3088 (17) |
Li1—O2ii | 2.1650 (14) | N1—C1 | 1.3317 (9) |
Li1—Li1i | 3.076 (3) | N2—C2 | 1.3469 (8) |
Li1—Li2 | 3.167 (2) | C1—O3 | 1.2435 (7) |
Li1—H2WB | 2.286 (16) | C1—C2 | 1.5460 (10) |
Li2—O2W | 2.0226 (14) | C2—O4 | 1.2346 (8) |
Li2—O4iii | 2.0539 (17) | O3—Li2iv | 2.0755 (16) |
Li2—O3iv | 2.0755 (16) | O4—Li2ix | 2.0539 (17) |
Li2—O1v | 2.1539 (14) | O4—Li2iv | 2.4075 (17) |
Li2—O2ii | 2.3088 (17) | O1W—Li1i | 2.0814 (16) |
Li2—O4iv | 2.4075 (17) | O1W—H1WA | 0.792 (17) |
Li2—Li2vi | 3.344 (3) | O1W—H1WB | 0.840 (17) |
S1—O1 | 1.4453 (6) | O2W—H2WA | 0.824 (16) |
S1—O2 | 1.4529 (6) | O2W—H2WB | 0.794 (16) |
S1—N1 | 1.6216 (7) | ||
O2W—Li1—O3 | 135.20 (8) | O1v—Li2—Li1 | 136.68 (7) |
O2W—Li1—O1Wi | 107.07 (7) | O2ii—Li2—Li1 | 43.12 (4) |
O3—Li1—O1Wi | 117.64 (7) | O4iv—Li2—Li1 | 127.63 (6) |
O2W—Li1—O1W | 92.49 (6) | O2W—Li2—Li2vi | 90.62 (7) |
O3—Li1—O1W | 92.78 (6) | O4iii—Li2—Li2vi | 45.64 (4) |
O1Wi—Li1—O1W | 86.66 (6) | O3iv—Li2—Li2vi | 114.74 (8) |
O2W—Li1—O2ii | 84.50 (6) | O1v—Li2—Li2vi | 94.57 (7) |
O3—Li1—O2ii | 91.73 (6) | O2ii—Li2—Li2vi | 150.02 (7) |
O1Wi—Li1—O2ii | 91.01 (6) | O4iv—Li2—Li2vi | 37.58 (4) |
O1W—Li1—O2ii | 175.48 (7) | Li1—Li2—Li2vi | 119.99 (7) |
O2W—Li1—Li1i | 103.23 (7) | O1—S1—O2 | 112.91 (3) |
O3—Li1—Li1i | 110.35 (8) | O1—S1—N1 | 110.57 (4) |
O1Wi—Li1—Li1i | 44.16 (4) | O2—S1—N1 | 109.60 (4) |
O1W—Li1—Li1i | 42.49 (4) | O1—S1—N2 | 111.47 (4) |
O2ii—Li1—Li1i | 135.04 (8) | O2—S1—N2 | 109.54 (3) |
O2W—Li1—Li2 | 38.02 (4) | N1—S1—N2 | 102.23 (3) |
O3—Li1—Li2 | 125.81 (7) | S1—O1—Li2vii | 146.99 (5) |
O1Wi—Li1—Li2 | 99.07 (6) | S1—O2—Li1viii | 125.95 (5) |
O1W—Li1—Li2 | 129.81 (6) | S1—O2—Li2viii | 138.18 (4) |
O2ii—Li1—Li2 | 46.80 (4) | Li1viii—O2—Li2viii | 90.08 (5) |
Li1i—Li1—Li2 | 123.61 (7) | C1—N1—S1 | 107.15 (5) |
O2W—Li1—H2WB | 19.7 (4) | C2—N2—S1 | 106.65 (5) |
O3—Li1—H2WB | 150.4 (4) | O3—C1—N1 | 127.18 (6) |
O1Wi—Li1—H2WB | 90.8 (4) | O3—C1—C2 | 120.88 (5) |
O1W—Li1—H2WB | 80.3 (4) | N1—C1—C2 | 111.95 (5) |
O2ii—Li1—H2WB | 95.9 (4) | O4—C2—N2 | 128.23 (6) |
Li1i—Li1—H2WB | 83.8 (4) | O4—C2—C1 | 120.46 (6) |
Li2—Li1—H2WB | 50.0 (4) | N2—C2—C1 | 111.31 (5) |
O2W—Li2—O4iii | 89.83 (6) | C1—O3—Li1 | 120.78 (6) |
O2W—Li2—O3iv | 94.15 (6) | C1—O3—Li2iv | 114.73 (6) |
O4iii—Li2—O3iv | 160.11 (8) | Li1—O3—Li2iv | 124.06 (6) |
O2W—Li2—O1v | 173.35 (8) | C2—O4—Li2ix | 154.29 (6) |
O4iii—Li2—O1v | 90.83 (6) | C2—O4—Li2iv | 104.96 (5) |
O3iv—Li2—O1v | 87.46 (5) | Li2ix—O4—Li2iv | 96.78 (6) |
O2W—Li2—O2ii | 79.51 (6) | Li1i—O1W—Li1 | 93.34 (6) |
O4iii—Li2—O2ii | 105.58 (6) | Li1i—O1W—H1WA | 119.4 (12) |
O3iv—Li2—O2ii | 94.31 (6) | Li1—O1W—H1WA | 111.6 (12) |
O1v—Li2—O2ii | 93.94 (6) | Li1i—O1W—H1WB | 100.8 (11) |
O2W—Li2—O4iv | 91.01 (6) | Li1—O1W—H1WB | 125.3 (11) |
O4iii—Li2—O4iv | 83.22 (6) | H1WA—O1W—H1WB | 106.4 (16) |
O3iv—Li2—O4iv | 77.24 (5) | Li1—O2W—Li2 | 105.30 (7) |
O1v—Li2—O4iv | 95.64 (6) | Li1—O2W—H2WA | 107.5 (10) |
O2ii—Li2—O4iv | 166.89 (6) | Li2—O2W—H2WA | 121.4 (10) |
O2W—Li2—Li1 | 36.68 (4) | Li1—O2W—H2WB | 103.9 (11) |
O4iii—Li2—Li1 | 95.63 (6) | Li2—O2W—H2WB | 112.5 (11) |
O3iv—Li2—Li1 | 99.19 (6) | H2WA—O2W—H2WB | 104.9 (15) |
O3—Li1—Li2—O2W | 119.85 (9) | O2—S1—N1—C1 | 107.86 (4) |
O1Wi—Li1—Li2—O2W | −106.16 (7) | N2—S1—N1—C1 | −8.27 (4) |
O1W—Li1—Li2—O2W | −12.94 (6) | O1—S1—N2—C2 | 125.58 (5) |
O2ii—Li1—Li2—O2W | 171.05 (8) | O2—S1—N2—C2 | −108.72 (5) |
Li1i—Li1—Li2—O2W | −66.17 (8) | N1—S1—N2—C2 | 7.45 (4) |
O2W—Li1—Li2—O4iii | 82.11 (7) | S1—N1—C1—O3 | −173.88 (5) |
O3—Li1—Li2—O4iii | −158.04 (7) | S1—N1—C1—C2 | 6.29 (5) |
O1Wi—Li1—Li2—O4iii | −24.05 (6) | S1—N2—C2—O4 | 175.91 (5) |
O1W—Li1—Li2—O4iii | 69.17 (9) | S1—N2—C2—C1 | −4.32 (5) |
O2ii—Li1—Li2—O4iii | −106.84 (7) | O3—C1—C2—O4 | −1.36 (8) |
Li1i—Li1—Li2—O4iii | 15.94 (10) | N1—C1—C2—O4 | 178.47 (5) |
O2W—Li1—Li2—O3iv | −84.58 (7) | O3—C1—C2—N2 | 178.85 (5) |
O3—Li1—Li2—O3iv | 35.28 (9) | N1—C1—C2—N2 | −1.32 (6) |
O1Wi—Li1—Li2—O3iv | 169.26 (6) | N1—C1—O3—Li1 | 19.12 (9) |
O1W—Li1—Li2—O3iv | −97.52 (9) | C2—C1—O3—Li1 | −161.08 (6) |
O2ii—Li1—Li2—O3iv | 86.47 (6) | N1—C1—O3—Li2iv | −168.10 (6) |
Li1i—Li1—Li2—O3iv | −150.75 (8) | C2—C1—O3—Li2iv | 11.71 (7) |
O2W—Li1—Li2—O1v | 179.33 (11) | O2W—Li1—O3—C1 | 177.90 (8) |
O3—Li1—Li2—O1v | −60.82 (12) | O1Wi—Li1—O3—C1 | 1.93 (10) |
O1Wi—Li1—Li2—O1v | 73.17 (10) | O1W—Li1—O3—C1 | −85.75 (7) |
O1W—Li1—Li2—O1v | 166.39 (7) | O2ii—Li1—O3—C1 | 93.97 (6) |
O2ii—Li1—Li2—O1v | −9.62 (8) | Li1i—Li1—O3—C1 | −46.05 (10) |
Li1i—Li1—Li2—O1v | 113.16 (10) | Li2—Li1—O3—C1 | 128.60 (7) |
O2W—Li1—Li2—O2ii | −171.05 (8) | O2W—Li1—O3—Li2iv | 5.82 (13) |
O3—Li1—Li2—O2ii | −51.20 (7) | O1Wi—Li1—O3—Li2iv | −170.16 (6) |
O1Wi—Li1—Li2—O2ii | 82.79 (6) | O1W—Li1—O3—Li2iv | 102.16 (7) |
O1W—Li1—Li2—O2ii | 176.01 (9) | O2ii—Li1—O3—Li2iv | −78.11 (7) |
Li1i—Li1—Li2—O2ii | 122.78 (10) | Li1i—Li1—O3—Li2iv | 141.87 (7) |
O2W—Li1—Li2—O4iv | −3.65 (6) | Li2—Li1—O3—Li2iv | −43.48 (11) |
O3—Li1—Li2—O4iv | 116.20 (8) | N2—C2—O4—Li2ix | 25.13 (16) |
O1Wi—Li1—Li2—O4iv | −109.82 (7) | C1—C2—O4—Li2ix | −154.62 (11) |
O1W—Li1—Li2—O4iv | −16.60 (11) | N2—C2—O4—Li2iv | 171.92 (6) |
O2ii—Li1—Li2—O4iv | 167.39 (8) | C1—C2—O4—Li2iv | −7.83 (7) |
Li1i—Li1—Li2—O4iv | −69.83 (10) | O2W—Li1—O1W—Li1i | −106.96 (7) |
O2W—Li1—Li2—Li2vi | 41.08 (7) | O3—Li1—O1W—Li1i | 117.54 (7) |
O3—Li1—Li2—Li2vi | 160.93 (7) | O1Wi—Li1—O1W—Li1i | 0.0 |
O1Wi—Li1—Li2—Li2vi | −65.09 (9) | O2ii—Li1—O1W—Li1i | −58.9 (9) |
O1W—Li1—Li2—Li2vi | 28.13 (11) | Li2—Li1—O1W—Li1i | −99.03 (8) |
O2ii—Li1—Li2—Li2vi | −147.88 (9) | O3—Li1—O2W—Li2 | −93.45 (11) |
Li1i—Li1—Li2—Li2vi | −25.09 (12) | O1Wi—Li1—O2W—Li2 | 82.82 (7) |
O2—S1—O1—Li2vii | 166.26 (8) | O1W—Li1—O2W—Li2 | 170.08 (5) |
N1—S1—O1—Li2vii | 43.06 (9) | O2ii—Li1—O2W—Li2 | −6.54 (6) |
N2—S1—O1—Li2vii | −69.93 (9) | Li1i—Li1—O2W—Li2 | 128.50 (7) |
O1—S1—O2—Li1viii | 12.38 (6) | O4iii—Li2—O2W—Li1 | −99.68 (6) |
N1—S1—O2—Li1viii | 136.11 (6) | O3iv—Li2—O2W—Li1 | 99.83 (7) |
N2—S1—O2—Li1viii | −112.48 (6) | O1v—Li2—O2W—Li1 | −4.0 (6) |
O1—S1—O2—Li2viii | −132.04 (7) | O2ii—Li2—O2W—Li1 | 6.21 (6) |
N1—S1—O2—Li2viii | −8.31 (7) | O4iv—Li2—O2W—Li1 | 177.11 (5) |
N2—S1—O2—Li2viii | 103.09 (7) | Li2vi—Li2—O2W—Li1 | −145.31 (6) |
O1—S1—N1—C1 | −127.04 (4) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x−1, y, z−1; (iv) −x+2, −y, −z+1; (v) x, y, z−1; (vi) −x+1, −y, −z; (vii) x, y, z+1; (viii) x, −y+1/2, z+1/2; (ix) x+1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···N2x | 0.791 (16) | 2.155 (16) | 2.9428 (14) | 175 (2) |
O1W—H1WB···O1xi | 0.842 (17) | 2.29 (2) | 2.9971 (15) | 142 (2) |
O2W—H2WA···N2xii | 0.823 (16) | 2.049 (16) | 2.8712 (14) | 175.7 (16) |
O2W—H2WB···N1i | 0.79 (2) | 2.01 (2) | 2.7947 (14) | 168.7 (17) |
Symmetry codes: (i) −x+1, −y, −z+1; (x) −x+2, −y, −z+2; (xi) −x+1, y−1/2, −z+3/2; (xii) −x+2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Li2(C2N2O4S)(H2O2)] |
Mr | 198.01 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 110 |
a, b, c (Å) | 7.239 (3), 11.185 (3), 9.786 (4) |
β (°) | 124.27 (2) |
V (Å3) | 654.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.49 |
Crystal size (mm) | 0.41 × 0.24 × 0.24 |
Data collection | |
Diffractometer | Bruker–Nonius Kappa X8 APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.825, 0.894 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34710, 3899, 3575 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.955 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.065, 1.06 |
No. of reflections | 3899 |
No. of parameters | 134 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.62, −0.40 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···N2i | 0.791 (16) | 2.155 (16) | 2.9428 (14) | 175 (2) |
O1W—H1WB···O1ii | 0.842 (17) | 2.29 (2) | 2.9971 (15) | 142 (2) |
O2W—H2WA···N2iii | 0.823 (16) | 2.049 (16) | 2.8712 (14) | 175.7 (16) |
O2W—H2WB···N1iv | 0.79 (2) | 2.01 (2) | 2.7947 (14) | 168.7 (17) |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+1, −y, −z+1. |
Acknowledgements
This work is funded by the US DOE BATT Program (contract DE—AC02–05-CH11231). PDB would like to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the APEXII diffractometer.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lee, C.-H. & Kohn, H. (1990). J. Am. Chem. Soc. 55, 6098–6104. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wen, R., Komin, A., Street, R. & Carmack, M. (1975). J. Org. Chem. 40, 2743–2748. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dilithium 1,2,5-thiadiazolidine-3,4-dione 1,1-dioxide (Li2TDD) was synthesized following methods reported in the literature for the anion (Lee et al., Wen et al.). The salt forms a dihydrate in which the carbonyl and sulfuryl oxygen atoms each coordinate multiple Li+ cations forming a highly aggregated structure. In addition, each water molecule bridges two Li+ cations. The endocyclic nitrogen atoms, however, are not coordinated to the Li+ cations, indicating that the O atoms atoms exhibit the greatest Lewis basicity.