metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis{1-[(2-methyl­benzimidazol-1-yl-κN3)meth­yl]benzotriazole}zinc

aDepartment of Chemistry, Henan Institute of Education, Zhengzhou 450046, People's Republic of China, bIsotope Institute of Henan Acacemy of Sciences, Zhengzhou 450052, People's Republic of China, cHenan Engineering Research Center For Electron Beam Application, Zhengzhou 450052, People's Republic of China, dZhengzhou Huitong Advertisement Material Co., Ltd, Zhengzhou 50064, People's Republic of China, and eLight Industry Mechanical Institute of Henan Province, Luoyang 471099, People's Republic of China
*Correspondence e-mail: htlianqingsong@126.com

(Received 12 June 2012; accepted 9 August 2012; online 15 August 2012)

The title mononuclear ZnII complex, [ZnCl2(C15H13N5)2], is isotypic with the previously reported HgII complex. The ZnII atom is located on a twofold rotation axis and has a distorted tetra­hedral environment of two Cl atoms and two N atoms from two heterocyclic ligands. In the crystal, complex mol­ecules are extended by inter­molecular ππ inter­actions [centroid–centroid distance = 3.792 (2) Å] into a three-dimensional supra­molecular network.

Related literature

For background information on complexes constructed from N-heterocyclic ligands, see: Liu et al. (2012[Liu, W. T., Li, J. Y., Ni, Z. P., Bao, X., Ou, Y. C., Leng, J. D., Liu, J. L. & Tong, M. L. (2012). Cryst. Growth Des. 12, 1482-1488.]); Bondar et al. (2012[Bondar, O. A., Lukashuk, L. V., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernegac, A. N. & Domasevitch, K. V. (2012). CrystEngComm, 10, 1216-1226.]); Shao et al. (2008[Shao, K. Z., Zhao, Y. H., Xing, Y., Lan, Y. Q., Wang, X. L., Su, Z. M. & Wang, R. S. (2008). Cryst. Growth Des. 8, 2986-2989.]); Su et al. (2003[Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]). For the isotypic HgII complex, see: Wu et al. (2009[Wu, J., Yang, J. & Pan, F. (2009). Acta Cryst. E65, m829.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C15H13N5)2]

  • Mr = 662.90

  • Monoclinic, C 2/c

  • a = 15.721 (4) Å

  • b = 12.617 (4) Å

  • c = 14.728 (3) Å

  • β = 99.13 (3)°

  • V = 2884.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 295 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.797, Tmax = 0.813

  • 17560 measured reflections

  • 3423 independent reflections

  • 2977 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.137

  • S = 1.07

  • 3423 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate organic ligands have received extensive attention in supramolecular chemistry due to their abilities in constructing novel architectures with interesting properties (Liu et al., 2012; Bondar et al., 2012). Among them, the ligands bearing benzotriazole or benzimidazole groups are good candidates because of their various coordiantion modes and biological activities (Shao et al., 2008; Su et al., 2003). The 1-(2-methylbenzoimidazol-3-yl-methyl)-benzotriazole, simultaneously has the benzotriazole group and the benzoimidazole group, which can be an excellent ligand to form new structures. In this work, we selected this ligand as linker to self-assemble with ZnCl2 and obtained the title mononuclear complex, ZnCl2(C15H13N5)2, which is isostructural with the previously reported HgII complex (Wu et al., 2009). The Zn atom placed on twofold axis. As shown in Fig. 1, the ZnII is in a distorted tetrahedral geometry and coordinated by two Cl atoms and two N atoms from two 1-(2-methylbenzimidazol-1-yl-methyl)benzotriazole ligands. Because the 2-position substituent methyl of benzimidazole ring is an electrondonating group, the N atom of benzimidazole ring has higher electron density than others. Therefore, the N atom of benzimidazole ring is prior to coordinate with metal ions, which leads to the ligand adopting a monodentate fashion. In addition, intramolecular ππ interactions between the imidazole rings and phenyl rings of benzimidazole rings (centroid-to-centroid separation: 3.631 (19)Å), intermolecular ππ interactions between phenyl rings of benzotriazole rings (centroid-to-centroid separation: 3.792 (2)Å) consolidate the crystal packing, as depicted in Fig. 2.

Related literature top

For background information on complexes constructed from N-heterocyclic ligands, see: Liu et al. (2012); Bondar et al. (2012); Shao et al. (2008); Su et al. (2003). For the isotypic HgII complex, see: Wu et al. (2009).

Experimental top

Synthesis of ZnCl2(C15H13N5)2: a methanol solution (4 ml) of ligand 1-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole (26.3 mg, 0.1 mmol) was added dropwise to the methanol solution (5 ml) of ZnCl2 (13.6 mg, 0.1 mmol) to give a clear solution. After one week, colorless needle crystals were obtained by slow evaporation of the solvents at room temperature.

Refinement top

The H atoms were generated geometrically and refined as riding atoms, with C–H = 0.93Å for aromatic H, C–H = 0.97Å for methylene H and C–H = 0.96Å for methyl H. The Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom numbering scheme. Displacement ellipsolids are drawn at 30% probability level. Symmetry code: (i) -x, y, 1/2-z.
[Figure 2] Fig. 2. View of the crystal packing of the title complex, showing the three-dimensional supramolecular structure.
Dichloridobis{1-[(2-methylbenzimidazol-1-yl- κN3)methyl]benzotriazole}zinc top
Crystal data top
[ZnCl2(C15H13N5)2]F(000) = 1360
Mr = 662.90Dx = 1.527 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3926 reflections
a = 15.721 (4) Åθ = 2.1–27.9°
b = 12.617 (4) ŵ = 1.08 mm1
c = 14.728 (3) ÅT = 295 K
β = 99.13 (3)°Needle, colourless
V = 2884.3 (13) Å30.22 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
3423 independent reflections
Radiation source: fine-focus sealed tube2977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 2020
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1616
Tmin = 0.797, Tmax = 0.813l = 1919
17560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.7625P]
where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[ZnCl2(C15H13N5)2]V = 2884.3 (13) Å3
Mr = 662.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.721 (4) ŵ = 1.08 mm1
b = 12.617 (4) ÅT = 295 K
c = 14.728 (3) Å0.22 × 0.20 × 0.20 mm
β = 99.13 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3423 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
2977 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.813Rint = 0.041
17560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3423 reflectionsΔρmin = 0.30 e Å3
196 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.58999 (3)0.25000.04555 (17)
N10.02430 (13)0.48160 (16)0.15242 (14)0.0412 (5)
N20.08873 (13)0.35668 (17)0.08201 (15)0.0421 (5)
N30.14451 (15)0.18031 (19)0.08324 (15)0.0489 (5)
N40.14628 (19)0.1031 (2)0.01911 (17)0.0623 (7)
N50.13466 (19)0.0122 (2)0.05545 (18)0.0653 (7)
C10.03854 (16)0.42678 (18)0.09166 (16)0.0379 (5)
C20.12745 (17)0.4407 (2)0.07150 (18)0.0472 (6)
H20.15500.49340.10000.057*
C30.17295 (18)0.3735 (3)0.0079 (2)0.0525 (7)
H30.23250.38050.00620.063*
C40.13169 (19)0.2953 (2)0.0360 (2)0.0567 (7)
H40.16460.25150.07870.068*
C50.04384 (19)0.2807 (2)0.01797 (18)0.0493 (6)
H50.01630.22880.04750.059*
C60.00111 (16)0.34824 (19)0.04711 (16)0.0387 (5)
C70.09879 (16)0.4373 (2)0.14406 (17)0.0417 (6)
C80.18438 (18)0.4695 (3)0.1936 (2)0.0620 (8)
H8A0.17870.53400.22680.093*
H8B0.22300.48080.15020.093*
H8C0.20680.41470.23600.093*
C90.15636 (18)0.2894 (2)0.0572 (2)0.0509 (7)
H9A0.15600.29340.00860.061*
H9B0.21190.31460.08780.061*
C100.13101 (16)0.1366 (2)0.16454 (17)0.0454 (6)
C110.1241 (2)0.1776 (3)0.25161 (19)0.0562 (7)
H110.12920.24970.26440.067*
C120.1096 (2)0.1053 (3)0.3164 (2)0.0637 (9)
H120.10460.12930.37500.076*
C130.10205 (19)0.0044 (3)0.2980 (2)0.0668 (9)
H130.09230.05080.34440.080*
C140.1089 (2)0.0433 (3)0.2129 (2)0.0633 (8)
H140.10340.11540.20020.076*
C150.12426 (18)0.0289 (2)0.14573 (19)0.0512 (7)
Cl10.11365 (6)0.69095 (6)0.19298 (5)0.0643 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0627 (3)0.0303 (2)0.0417 (3)0.0000.0021 (2)0.000
N10.0454 (11)0.0342 (10)0.0424 (11)0.0021 (9)0.0020 (9)0.0038 (9)
N20.0410 (11)0.0413 (11)0.0447 (12)0.0035 (9)0.0089 (9)0.0003 (9)
N30.0578 (14)0.0496 (13)0.0404 (12)0.0149 (11)0.0118 (10)0.0014 (10)
N40.0825 (19)0.0610 (16)0.0442 (13)0.0202 (14)0.0125 (13)0.0077 (11)
N50.0884 (19)0.0519 (15)0.0553 (15)0.0168 (14)0.0102 (13)0.0051 (12)
C10.0421 (13)0.0353 (11)0.0356 (12)0.0016 (10)0.0043 (10)0.0002 (9)
C20.0445 (14)0.0487 (14)0.0481 (15)0.0018 (11)0.0065 (11)0.0033 (12)
C30.0403 (14)0.0606 (17)0.0552 (16)0.0069 (13)0.0038 (12)0.0026 (14)
C40.0582 (18)0.0581 (17)0.0518 (16)0.0180 (14)0.0024 (13)0.0129 (13)
C50.0578 (17)0.0447 (14)0.0461 (14)0.0049 (12)0.0108 (12)0.0100 (11)
C60.0444 (13)0.0355 (12)0.0367 (12)0.0022 (10)0.0078 (10)0.0021 (9)
C70.0410 (13)0.0404 (13)0.0427 (13)0.0014 (10)0.0039 (10)0.0008 (11)
C80.0474 (16)0.070 (2)0.0648 (19)0.0058 (14)0.0036 (14)0.0091 (16)
C90.0498 (15)0.0562 (16)0.0497 (15)0.0084 (13)0.0172 (12)0.0017 (13)
C100.0432 (13)0.0531 (15)0.0397 (13)0.0127 (12)0.0062 (11)0.0013 (11)
C110.0612 (18)0.0644 (18)0.0431 (15)0.0068 (14)0.0089 (13)0.0028 (13)
C120.0542 (17)0.098 (3)0.0389 (15)0.0078 (17)0.0077 (13)0.0052 (16)
C130.0517 (17)0.084 (2)0.063 (2)0.0022 (16)0.0031 (14)0.0250 (18)
C140.0589 (18)0.0569 (18)0.071 (2)0.0042 (15)0.0001 (15)0.0115 (16)
C150.0485 (15)0.0522 (16)0.0514 (15)0.0120 (12)0.0033 (12)0.0016 (13)
Cl10.0925 (6)0.0456 (4)0.0524 (4)0.0254 (4)0.0040 (4)0.0033 (3)
Geometric parameters (Å, º) top
Zn1—N1i2.063 (2)C4—C51.377 (4)
Zn1—N12.063 (2)C4—H40.9300
Zn1—Cl1i2.2458 (9)C5—C61.389 (3)
Zn1—Cl12.2458 (9)C5—H50.9300
N1—C71.321 (3)C7—C81.482 (4)
N1—C11.405 (3)C8—H8A0.9600
N2—C71.359 (3)C8—H8B0.9600
N2—C61.396 (3)C8—H8C0.9600
N2—C91.451 (3)C9—H9A0.9700
N3—N41.360 (3)C9—H9B0.9700
N3—C101.365 (3)C10—C151.388 (4)
N3—C91.449 (3)C10—C111.403 (4)
N4—N51.290 (4)C11—C121.366 (4)
N5—C151.381 (4)C11—H110.9300
C1—C61.390 (3)C12—C131.412 (5)
C1—C21.393 (4)C12—H120.9300
C2—C31.376 (4)C13—C141.366 (5)
C2—H20.9300C13—H130.9300
C3—C41.395 (4)C14—C151.395 (4)
C3—H30.9300C14—H140.9300
N1i—Zn1—N196.95 (12)C1—C6—N2105.2 (2)
N1i—Zn1—Cl1i109.86 (6)N1—C7—N2111.7 (2)
N1—Zn1—Cl1i114.34 (6)N1—C7—C8125.9 (2)
N1i—Zn1—Cl1114.34 (6)N2—C7—C8122.4 (2)
N1—Zn1—Cl1109.86 (6)C7—C8—H8A109.5
Cl1i—Zn1—Cl1110.89 (5)C7—C8—H8B109.5
C7—N1—C1106.0 (2)H8A—C8—H8B109.5
C7—N1—Zn1127.62 (17)C7—C8—H8C109.5
C1—N1—Zn1125.50 (16)H8A—C8—H8C109.5
C7—N2—C6107.9 (2)H8B—C8—H8C109.5
C7—N2—C9126.5 (2)N3—C9—N2111.0 (2)
C6—N2—C9125.6 (2)N3—C9—H9A109.4
N4—N3—C10110.1 (2)N2—C9—H9A109.4
N4—N3—C9118.6 (2)N3—C9—H9B109.4
C10—N3—C9131.3 (2)N2—C9—H9B109.4
N5—N4—N3109.2 (2)H9A—C9—H9B108.0
N4—N5—C15108.1 (2)N3—C10—C15103.8 (2)
C6—C1—C2119.9 (2)N3—C10—C11134.3 (3)
C6—C1—N1109.2 (2)C15—C10—C11121.9 (3)
C2—C1—N1130.8 (2)C12—C11—C10116.0 (3)
C3—C2—C1117.6 (3)C12—C11—H11122.0
C3—C2—H2121.2C10—C11—H11122.0
C1—C2—H2121.2C11—C12—C13122.7 (3)
C2—C3—C4121.4 (3)C11—C12—H12118.7
C2—C3—H3119.3C13—C12—H12118.7
C4—C3—H3119.3C14—C13—C12120.7 (3)
C5—C4—C3122.1 (3)C14—C13—H13119.6
C5—C4—H4119.0C12—C13—H13119.6
C3—C4—H4119.0C13—C14—C15117.7 (3)
C4—C5—C6115.8 (3)C13—C14—H14121.2
C4—C5—H5122.1C15—C14—H14121.2
C6—C5—H5122.1N5—C15—C10108.9 (2)
C5—C6—C1123.1 (2)N5—C15—C14130.1 (3)
C5—C6—N2131.7 (2)C10—C15—C14121.0 (3)
N1i—Zn1—N1—C788.2 (2)Zn1—N1—C7—N2169.67 (16)
Cl1i—Zn1—N1—C727.3 (2)C1—N1—C7—C8178.9 (3)
Cl1—Zn1—N1—C7152.8 (2)Zn1—N1—C7—C811.2 (4)
N1i—Zn1—N1—C179.87 (19)C6—N2—C7—N10.2 (3)
Cl1i—Zn1—N1—C1164.61 (17)C9—N2—C7—N1178.6 (2)
Cl1—Zn1—N1—C139.2 (2)C6—N2—C7—C8179.0 (3)
C10—N3—N4—N50.1 (3)C9—N2—C7—C82.2 (4)
C9—N3—N4—N5180.0 (3)N4—N3—C9—N2129.2 (3)
N3—N4—N5—C150.4 (4)C10—N3—C9—N250.8 (4)
C7—N1—C1—C60.1 (3)C7—N2—C9—N3115.7 (3)
Zn1—N1—C1—C6170.04 (15)C6—N2—C9—N362.9 (3)
C7—N1—C1—C2179.1 (3)N4—N3—C10—C150.3 (3)
Zn1—N1—C1—C210.7 (4)C9—N3—C10—C15179.7 (3)
C6—C1—C2—C30.9 (4)N4—N3—C10—C11179.5 (3)
N1—C1—C2—C3179.9 (3)C9—N3—C10—C110.6 (5)
C1—C2—C3—C40.9 (4)N3—C10—C11—C12179.7 (3)
C2—C3—C4—C50.2 (5)C15—C10—C11—C120.6 (4)
C3—C4—C5—C60.5 (4)C10—C11—C12—C130.1 (4)
C4—C5—C6—C10.5 (4)C11—C12—C13—C140.2 (5)
C4—C5—C6—N2179.9 (3)C12—C13—C14—C150.6 (4)
C2—C1—C6—C50.2 (4)N4—N5—C15—C100.6 (3)
N1—C1—C6—C5179.5 (2)N4—N5—C15—C14179.0 (3)
C2—C1—C6—N2179.4 (2)N3—C10—C15—N50.6 (3)
N1—C1—C6—N20.0 (3)C11—C10—C15—N5179.3 (3)
C7—N2—C6—C5179.3 (3)N3—C10—C15—C14179.1 (3)
C9—N2—C6—C51.8 (4)C11—C10—C15—C141.1 (4)
C7—N2—C6—C10.1 (3)C13—C14—C15—N5179.4 (3)
C9—N2—C6—C1178.7 (2)C13—C14—C15—C101.0 (4)
C1—N1—C7—N20.2 (3)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C15H13N5)2]
Mr662.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.721 (4), 12.617 (4), 14.728 (3)
β (°) 99.13 (3)
V3)2884.3 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.797, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
17560, 3423, 2977
Rint0.041
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.07
No. of reflections3423
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by Henan Institute of Education.

References

First citationBondar, O. A., Lukashuk, L. V., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernegac, A. N. & Domasevitch, K. V. (2012). CrystEngComm, 10, 1216–1226.  Web of Science CSD CrossRef Google Scholar
First citationLiu, W. T., Li, J. Y., Ni, Z. P., Bao, X., Ou, Y. C., Leng, J. D., Liu, J. L. & Tong, M. L. (2012). Cryst. Growth Des. 12, 1482–1488.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShao, K. Z., Zhao, Y. H., Xing, Y., Lan, Y. Q., Wang, X. L., Su, Z. M. & Wang, R. S. (2008). Cryst. Growth Des. 8, 2986–2989.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, J., Yang, J. & Pan, F. (2009). Acta Cryst. E65, m829.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds