organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2753-o2754

2-{[2,2-Bis(di­ethyl­amino)­ethan-2-ylium­thio­yl]sulfan­yl}-1,1-bis­­(di­ethyl­amino)­ethyl­ium bis­­(perchlorate)

aDepartment of Chemistry, Graduate School of Science and Engineering , Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

(Received 5 July 2012; accepted 10 August 2012; online 23 August 2012)

The title salt, C20H42N4S22+·2ClO4, was obtained from the reaction of bis­(diethyl­amino)­carbeniumdithio­carboxyl­ate, (Et2N)2C2S2, with Fe(ClO4)2·6H2O in CH2Cl2. The title compound, in which one of the S atoms of (Et2N)2C2S2 is bound to a 1,1-bis­(diethyl­amino)­ethane moiety, has two carbenium C atoms, and the charge compensation is provided by two perchlorate anions. The N2C—CS2 bond length is 1.512 (4) Å, corresponding to a C—C single bond, and the dihedral angle between N2C– and –CS2 planes [72.0 (2)°] is smaller than that of (Et2N)2C2S2 [82.0 (1)°]. The crystal structure features C—H⋯S hydrogen bonds.

Related literature

For general background to bis­(N,N-disubstituted amino)­carbeniumdithio­carboxyl­ates, see: Winberg & Coffman (1965[Winberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 45, 2776-2777.]); Nagasawa et al. (1995[Nagasawa, A., Akiyama, I., Mashima, S. & Nakayama, J. (1995). Heteroat. Chem. 6, 45-49.]); Nakayama & Akiyama (1992[Nakayama, J. & Akiyama, I. (1992). J. Chem. Soc. Chem. Commun. p. 1522.]); Nakayama et al. (1997[Nakayama, J., Otani, T., Sugihara, Y. & Ishii, A. (1997). Tetrahedron Lett. 38, 5013-5016.], 2000[Nakayama, J., Kitahara, T., Sugihara, Y., Sakamoto, A. & Ishii, A. (2000). J. Am. Chem. Soc. 122, 9120-9126.]); Nakayama (2000[Nakayama, J. (2000). CACS Forum, 20, 7-20.], 2002[Nakayama, J. (2002). J. Synth. Org. Chem. Jpn, 60, 106-114.]); Miller et al. (2000[Miller, G. P., Jeon, I., Faix, A. N., Jainski, J. P., Arhans, A. J. & Tetreau, M. C. (2000). J. Chem. Soc., Perkin Trans. 2, pp. 1777-1780.]); Fujihara et al. (2002[Fujihara, T., Ohba, T., Nagasawa, A., Nakayama, J. & Yoza, K. (2002). Acta Cryst. C58, o558-o559.]); Siemeling et al. (2012[Siemeling, U., Memczak, H., Bruhn, C., Vogel, F., Träger, F., Baiod, E. J. & Weidner, T. (2012). Dalton Trans. 41, 2986-2994.]). For transition metal complexes, see: Miyashita et al. (1998[Miyashita, I., Matsumoto, K., Kobayashi, M., Nagasawa, A. & Nakayama, J. (1998). Inorg. Chim. Acta, 283, 256-259.]); Banerjee et al. (2002[Banerjee, S. R., Nagasawa, A. & Zubieta, J. (2002). Inorg. Chim. Acta, 340, 155-162.]); Fujihara et al. (2004[Fujihara, T., Sugaya, T., Nagasawa, A. & Nakayama, J. (2004). Acta Cryst. E60, m282-m284.]); Sugaya et al. (2009[Sugaya, T., Fujihara, T., Nagasawa, A. & Unoura, K. (2009). Inorg. Chim. Acta, 362, 4813-4822.]). For the cationic dimer of bis­(N,N-disubstituted amino)­carbeniumdithio­carboxyl­ates, see: Otani et al. (1998[Otani, T., Sugihara, Y., Ishii, A. & Nakayama, J. (1998). Heteroat. Chem. 9, 703-707.]); Banerjee & Zubieta (2004[Banerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208-m209.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H42N4S22+·2ClO4

  • Mr = 601.62

  • Orthorhombic, P 21 21 21

  • a = 8.4158 (7) Å

  • b = 16.1889 (13) Å

  • c = 21.7213 (18) Å

  • V = 2959.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 150 K

  • 0.32 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.881, Tmax = 0.923

  • 21803 measured reflections

  • 7058 independent reflections

  • 5641 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.140

  • S = 1.02

  • 7058 reflections

  • 333 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3081 Friedel pairs

  • Flack parameter: 0.00 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯S1i 0.98 2.91 3.893 (4) 177
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Bis(N,N-disubsituted amino)carbeniumdithiocarboxylates [(R2N)2C2S2], which have a zwitterionic (inner-salt) form and a neutral form as canonical structures (Nagasawa et al., 1995; Fujihara et al., 2002), are structurally and reactively interesting (Winberg & Coffman, 1965; Otani et al., 1998; Nakayama & Akiyama, 1992; Nakayama et al., 2000; Nakayama, 2000, 2002; Banerjee & Zubieta, 2004; Siemeling et al., 2012). We have reported the syntheses, structures, and properties of the various transition metal complexes using (R2N)2C2S2 as ligands (Miyashita et al., 1998; Banerjee et al., 2002; Fujihara et al., 2004; Sugaya et al., 2009), and the ligands act as neutral monodentate, bridging, and chelating ligands maintaining the characteristic zwitterionic form.

In the process of a preparation of iron(II) complex with bis(N,N-diethylamino)carbeniumdithiocarboxylate [(Et2N)2C2S2] (II) (Fig 1), we obtained the unexpectedly bis(diethylamino)-methylium bis(diethylamino)-2-ethyliumcarbodithioate perchlorate [(C10H20N2S2)(C10H20N2)](ClO4)2 (I) and report here its molecular structure. We suppose that I was formed through an oxidation of II, which has taken place under gentle conditions for several months in solution. The molecular structure of I is shown in Fig. 2. The C11–S1 bond length is 1.794 (3) Å, which corresponds to the C–S single bond [1.79 (1)–1.82 (1)Å; Miller et al., 2000; 1.78 (4)Å; Nakayama et al., 1997]. The N–C(CS2) bond lengths in the range of 1.316 (4)–1.333 (4) Å are slightly shorter than the normal C(sp3)–N(sp3) bond length (1.36Å; Allen et al., 1987) suggesting that the C2 and C12 atoms are carbenium carbons. The bond lengths of C1–S2 [1.615 (3) Å] and C1–S1 [1.729 (3) Å] are close to those of the CS terminal and the –C–S– bridging bonds of methylated species of I, respectively [1.608 (14)Å and 1.714 (13)Å, respectively; Nakayama et al., 1997], indicating localization of electron on S–C–S moiety. The C1–C2 bond length [1.512 (4) Å] and dihedral angle between N2C– and –CS2 planes [71.99 (22)°] are slightly longer and smaller, respectively, than those of II [1.477Å–1.506 (2)Å and 82.0 (1)°, respectively; Nagasawa et al., 1995], and these change mean that decrease of interaction between the unfilled p orbital of carbenium carbon (C2) and electrons on S–C–S moiety. The C11–C12 bond length 1.523 (4)Å is slightly longer than that of C1–C2. The S1–C1–S2, N1–C2–N2, and N3–C12–N4 bond angles are similar values for those of II [S–C–S: 129.4 (8)° and N–C–N: 122 (1)°; Nagasawa et al., 1995]. Two ClO4- per one I exist as counter ions in the crystal. The crystal structure consists of a chain structure through intermolecular weak C—H···S hydrogen bonding [H14B···S1': 2.9138 Å, C14–H14B···S1': 176.69°] (Fig. 3 and Hydrogen-bond geometry).

Related literature top

For general background to bis(N,N-disubstituted amino)carbeniumdithiocarboxylates, see: Winberg & Coffman (1965); Nagasawa et al. (1995); Nakayama & Akiyama (1992); Nakayama et al. (1997, 2000); Nakayama (2000, 2002); Miller et al. (2000); Fujihara et al. (2002); Siemeling et al. (2012). For transition metal complexes, see: Miyashita et al. (1998); Banerjee et al. (2002); Fujihara et al. (2004); Sugaya et al. (2009). For the cationic dimer of bis(N,N-disubstituted amino)carbeniumdithiocarboxylates, see: Otani et al. (1998); Banerjee & Zubieta (2004). For reference bond-length data, see: Allen et al. (1987).

Experimental top

All the processes were carried out under an argon atmosphere using standard Schlenk techniques. Fe(ClO4)2.6H2O (0.076 g, 0.21 mmol) was dissolved in CH3CN (15 cm3). After stirring for 1 h at room temperature, the solvent was removed by evaporation under reduced pressure. The resulting powder (white) and II (0.141 g, 0.60 mmol) were dissolved in CH2Cl2 (30 cm3) and stirred for 1 h at room temperature. The insoluble salt was then filtered off, and the solvent of the filtrate was removed by evaporation under reduced pressure. The resulting powder was dissolved in CH2Cl2, layered with Et2O, and set aside for several months at room temperature. The red-purple crystals were obtained and dried in vacuo. Yield 0.011 g. (6.2% based on the II). 1H NMR, CD3CN δ 4.62 (s, 2H, -S–CH2-), 3.55 (dq, 16H, CH3–CH2-) 1.27 (q, 24H, CH3-). 13C NMR, CD3CN δ 213.3 (S-C-S), 167.0 (N–C–N), 163.6 (N–C–N), 49.1 (CH3CH2-), 48.7 (CH3CH2-), 36.9 (S-CH2-), 13.7 (CH3). Analysis found: C 39.72, H 7.04, N 9.16%; calculated for C20H42Cl2N4O8S2: C 39.93, H 7.04, N 9.31%.

Refinement top

All the non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C–H = 0.99Å, Uiso(H) = 1.2Ueq(C) for methylene atoms and C–H = 0.98Å, Uiso(H) = 1.5Ueq(C) for methyl atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The chemical structure of (II).

Fig. 2. The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 3. A view of the crystal packing, showing the hydrogen bonding (dashed lines). All counter ions (ClO4-) have been omitted for clarity.
2-{[2,2-Bis(diethylamino)ethan-2-yliumthioyl]sulfanyl}-1,1- bis(diethylamino)ethylium bis(perchlorate) top
Crystal data top
C20H42N4S22+·2ClO4F(000) = 1280
Mr = 601.62Dx = 1.350 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3791 reflections
a = 8.4158 (7) Åθ = 2.3–25.2°
b = 16.1889 (13) ŵ = 0.41 mm1
c = 21.7213 (18) ÅT = 150 K
V = 2959.4 (4) Å3Block, red
Z = 40.32 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7058 independent reflections
Radiation source: fine-focus sealed tube5641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.366 pixels mm-1θmax = 27.9°, θmin = 1.6°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2021
Tmin = 0.881, Tmax = 0.923l = 1828
21803 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0814P)2P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
7058 reflectionsΔρmax = 0.70 e Å3
333 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 3081 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C20H42N4S22+·2ClO4V = 2959.4 (4) Å3
Mr = 601.62Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4158 (7) ŵ = 0.41 mm1
b = 16.1889 (13) ÅT = 150 K
c = 21.7213 (18) Å0.32 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7058 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5641 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.923Rint = 0.046
21803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.70 e Å3
S = 1.02Δρmin = 0.26 e Å3
7058 reflectionsAbsolute structure: Flack (1983), 3081 Friedel pairs
333 parametersAbsolute structure parameter: 0.00 (7)
0 restraints
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.5375 (0.0177) x + 3.5865 (0.0590) y + 12.8042 (0.0841) z = 5.1962 (0.0328)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C2 * 0.0000 (0.0000) N2

Rms deviation of fitted atoms = 0.0000

6.1258 (0.0105) x + 10.6803 (0.0361) y + 4.0595 (0.0680) z = 11.1638 (0.0232)

Angle to previous plane (with approximate e.s.d.) = 71.99 (0.22)

* 0.0000 (0.0000) S1 * 0.0000 (0.0000) C1 * 0.0000 (0.0000) S2

Rms deviation of fitted atoms = 0.0000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0803 (3)0.92906 (17)0.18456 (13)0.0266 (6)
C20.1428 (3)0.87247 (17)0.23435 (13)0.0275 (6)
C30.0518 (4)0.7694 (2)0.20201 (15)0.0402 (8)
H3A0.03280.71930.17690.048*
H3B0.08640.81420.17410.048*
C40.1802 (6)0.7523 (4)0.2484 (2)0.0905 (19)
H4A0.14280.71080.27790.136*
H4B0.27500.73150.22720.136*
H4C0.20660.80330.27030.136*
C50.1951 (5)0.7249 (2)0.25762 (18)0.0510 (9)
H5A0.13890.67200.25060.061*
H5B0.20930.73190.30260.061*
C60.3555 (7)0.7219 (3)0.2270 (2)0.0891 (19)
H6A0.34180.71340.18260.134*
H6B0.41760.67620.24430.134*
H6C0.41160.77410.23410.134*
C70.2630 (4)0.8720 (2)0.33875 (14)0.0381 (8)
H7A0.33310.91000.36190.046*
H7B0.31570.81740.33690.046*
C80.1063 (5)0.8636 (2)0.37214 (16)0.0456 (8)
H8A0.04820.91600.36980.068*
H8B0.12600.84960.41540.068*
H8C0.04320.81980.35290.068*
C90.3319 (4)0.98111 (19)0.26184 (16)0.0378 (7)
H9A0.31471.02170.29530.045*
H9B0.29301.00580.22300.045*
C100.5082 (5)0.9627 (3)0.2561 (2)0.0628 (11)
H10A0.54880.94300.29580.094*
H10B0.56491.01310.24420.094*
H10C0.52470.92010.22480.094*
C110.1161 (3)0.98670 (17)0.06450 (13)0.0274 (6)
H11A0.15001.03910.08410.033*
H11B0.17940.98030.02640.033*
C120.0572 (3)0.99655 (17)0.04567 (12)0.0258 (6)
C130.3217 (4)0.9369 (2)0.04633 (17)0.0427 (8)
H13A0.37860.93350.00650.051*
H13B0.34640.99110.06520.051*
C140.3781 (5)0.8689 (3)0.0880 (2)0.0585 (11)
H14A0.36070.81540.06800.088*
H14B0.49170.87610.09640.088*
H14C0.31870.87080.12680.088*
C150.0855 (4)0.85068 (19)0.01460 (15)0.0334 (7)
H15A0.10610.80830.04650.040*
H15B0.03090.85510.00900.040*
C160.1614 (5)0.8243 (2)0.04533 (17)0.0479 (9)
H16A0.27540.81540.03900.072*
H16B0.11230.77280.05950.072*
H16C0.14570.86750.07630.072*
C170.2247 (5)1.0945 (3)0.01183 (18)0.0527 (10)
H17A0.23481.15540.01400.063*
H17B0.32971.07190.00010.063*
C180.1813 (5)1.0624 (3)0.07407 (18)0.0593 (11)
H18A0.06801.07200.08160.089*
H18B0.24401.09120.10550.089*
H18C0.20351.00310.07600.089*
C190.0413 (5)1.1461 (2)0.06844 (18)0.0482 (9)
H19A0.01341.12780.10640.058*
H19B0.12961.18300.08070.058*
C200.0738 (6)1.1938 (2)0.0293 (2)0.0675 (13)
H20A0.16091.15740.01660.101*
H20B0.11651.24020.05300.101*
H20C0.01881.21480.00730.101*
N10.0976 (3)0.79387 (15)0.23329 (12)0.0338 (6)
N20.2405 (3)0.90405 (16)0.27537 (11)0.0304 (5)
N30.1489 (3)0.93085 (14)0.03540 (12)0.0282 (5)
N40.1076 (3)1.07317 (15)0.03665 (13)0.0372 (7)
O10.6764 (4)0.61374 (17)0.34864 (12)0.0564 (7)
O20.4000 (4)0.6153 (3)0.35918 (17)0.0945 (12)
O30.5508 (5)0.73360 (19)0.37979 (16)0.0918 (12)
O40.5645 (4)0.6189 (2)0.44602 (13)0.0710 (9)
O50.6992 (4)0.53757 (17)0.07763 (13)0.0663 (9)
O60.9442 (4)0.58632 (19)0.11349 (17)0.0749 (9)
O70.7235 (4)0.6719 (2)0.11376 (18)0.0878 (11)
O80.8378 (4)0.6359 (2)0.02204 (14)0.0705 (9)
Cl10.54701 (11)0.64601 (6)0.38326 (4)0.0490 (2)
Cl20.80215 (10)0.60677 (5)0.08213 (4)0.0389 (2)
S10.16983 (8)0.90400 (4)0.11539 (3)0.02782 (16)
S20.05125 (11)0.99911 (6)0.19878 (4)0.0407 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (15)0.0247 (14)0.0283 (14)0.0014 (11)0.0026 (12)0.0001 (12)
C20.0311 (15)0.0273 (14)0.0242 (14)0.0008 (12)0.0004 (12)0.0014 (12)
C30.0454 (19)0.0397 (17)0.0354 (17)0.0164 (16)0.0078 (15)0.0043 (15)
C40.072 (3)0.147 (5)0.053 (3)0.055 (4)0.005 (3)0.008 (3)
C50.078 (3)0.0277 (16)0.047 (2)0.0047 (18)0.012 (2)0.0011 (15)
C60.121 (5)0.085 (3)0.061 (3)0.061 (3)0.021 (3)0.016 (3)
C70.0467 (19)0.0410 (18)0.0266 (15)0.0019 (15)0.0076 (14)0.0004 (14)
C80.060 (2)0.0443 (19)0.0328 (18)0.0042 (17)0.0051 (16)0.0030 (16)
C90.0430 (18)0.0341 (16)0.0362 (17)0.0109 (15)0.0032 (15)0.0036 (14)
C100.046 (2)0.083 (3)0.059 (3)0.014 (2)0.0002 (19)0.000 (2)
C110.0263 (14)0.0280 (14)0.0279 (15)0.0055 (11)0.0043 (11)0.0046 (12)
C120.0285 (14)0.0261 (13)0.0228 (13)0.0040 (12)0.0070 (12)0.0036 (12)
C130.0271 (16)0.052 (2)0.049 (2)0.0059 (15)0.0021 (15)0.0039 (17)
C140.0356 (19)0.075 (3)0.065 (3)0.0094 (19)0.0131 (19)0.005 (2)
C150.0310 (16)0.0314 (16)0.0377 (16)0.0018 (13)0.0020 (13)0.0010 (13)
C160.050 (2)0.048 (2)0.046 (2)0.0013 (18)0.0098 (18)0.0121 (17)
C170.048 (2)0.052 (2)0.058 (2)0.0180 (19)0.0010 (18)0.0167 (19)
C180.047 (2)0.083 (3)0.047 (2)0.017 (2)0.0052 (19)0.021 (2)
C190.065 (2)0.0273 (16)0.052 (2)0.0037 (17)0.012 (2)0.0016 (16)
C200.097 (4)0.036 (2)0.069 (3)0.011 (2)0.008 (3)0.0147 (19)
N10.0466 (16)0.0240 (12)0.0306 (14)0.0041 (11)0.0069 (12)0.0060 (11)
N20.0334 (13)0.0315 (13)0.0263 (12)0.0000 (11)0.0033 (10)0.0040 (11)
N30.0217 (12)0.0288 (12)0.0342 (13)0.0015 (10)0.0012 (10)0.0016 (11)
N40.0410 (15)0.0299 (13)0.0407 (16)0.0100 (12)0.0044 (13)0.0078 (12)
O10.0625 (17)0.0525 (15)0.0543 (16)0.0216 (14)0.0191 (14)0.0003 (13)
O20.0563 (19)0.143 (3)0.084 (2)0.002 (2)0.0089 (17)0.042 (2)
O30.143 (3)0.0545 (17)0.078 (2)0.049 (2)0.012 (3)0.0031 (17)
O40.0634 (19)0.102 (2)0.0473 (16)0.0145 (18)0.0108 (14)0.0237 (17)
O50.093 (2)0.0591 (16)0.0472 (15)0.0381 (17)0.0234 (16)0.0195 (13)
O60.0643 (19)0.0660 (17)0.094 (2)0.0070 (16)0.0421 (19)0.0015 (18)
O70.066 (2)0.096 (2)0.102 (3)0.0200 (18)0.016 (2)0.057 (2)
O80.071 (2)0.086 (2)0.0544 (16)0.0347 (18)0.0061 (15)0.0210 (16)
Cl10.0517 (5)0.0519 (5)0.0434 (5)0.0224 (4)0.0125 (4)0.0125 (4)
Cl20.0420 (4)0.0345 (4)0.0402 (4)0.0056 (3)0.0080 (3)0.0004 (3)
S10.0269 (3)0.0302 (3)0.0263 (3)0.0038 (3)0.0007 (3)0.0006 (3)
S20.0430 (5)0.0411 (4)0.0380 (4)0.0119 (4)0.0069 (4)0.0016 (4)
Geometric parameters (Å, º) top
C1—C21.512 (4)C12—N31.333 (4)
C1—S21.615 (3)C13—N31.476 (4)
C1—S11.729 (3)C13—C141.503 (5)
C2—N21.316 (4)C13—H13A0.9900
C2—N11.328 (4)C13—H13B0.9900
C3—N11.483 (4)C14—H14A0.9800
C3—C41.504 (6)C14—H14B0.9800
C3—H3A0.9900C14—H14C0.9800
C3—H3B0.9900C15—N31.474 (4)
C4—H4A0.9800C15—C161.512 (5)
C4—H4B0.9800C15—H15A0.9900
C4—H4C0.9800C15—H15B0.9900
C5—N11.483 (4)C16—H16A0.9800
C5—C61.506 (7)C16—H16B0.9800
C5—H5A0.9900C16—H16C0.9800
C5—H5B0.9900C17—N41.483 (5)
C6—H6A0.9800C17—C181.494 (5)
C6—H6B0.9800C17—H17A0.9900
C6—H6C0.9800C17—H17B0.9900
C7—N21.483 (4)C18—H18A0.9800
C7—C81.511 (5)C18—H18B0.9800
C7—H7A0.9900C18—H18C0.9800
C7—H7B0.9900C19—N41.477 (4)
C8—H8A0.9800C19—C201.503 (5)
C8—H8B0.9800C19—H19A0.9900
C8—H8C0.9800C19—H19B0.9900
C9—N21.495 (4)C20—H20A0.9800
C9—C101.518 (5)C20—H20B0.9800
C9—H9A0.9900C20—H20C0.9800
C9—H9B0.9900Cl1—O31.420 (3)
C10—H10A0.9800Cl1—O11.423 (3)
C10—H10B0.9800Cl1—O21.432 (4)
C10—H10C0.9800Cl1—O41.439 (3)
C11—C121.523 (4)Cl2—O61.415 (3)
C11—S11.794 (3)Cl2—O51.420 (3)
C11—H11A0.9900Cl2—O81.420 (3)
C11—H11B0.9900Cl2—O71.422 (3)
C12—N41.326 (4)
C2—C1—S2121.8 (2)H13A—C13—H13B108.0
C2—C1—S1109.1 (2)C13—C14—H14A109.5
S2—C1—S1129.03 (18)C13—C14—H14B109.5
N2—C2—N1124.3 (3)H14A—C14—H14B109.5
N2—C2—C1117.8 (2)C13—C14—H14C109.5
N1—C2—C1117.9 (3)H14A—C14—H14C109.5
N1—C3—C4110.6 (3)H14B—C14—H14C109.5
N1—C3—H3A109.5N3—C15—C16111.1 (3)
C4—C3—H3A109.5N3—C15—H15A109.4
N1—C3—H3B109.5C16—C15—H15A109.4
C4—C3—H3B109.5N3—C15—H15B109.4
H3A—C3—H3B108.1C16—C15—H15B109.4
C3—C4—H4A109.5H15A—C15—H15B108.0
C3—C4—H4B109.5C15—C16—H16A109.5
H4A—C4—H4B109.5C15—C16—H16B109.5
C3—C4—H4C109.5H16A—C16—H16B109.5
H4A—C4—H4C109.5C15—C16—H16C109.5
H4B—C4—H4C109.5H16A—C16—H16C109.5
N1—C5—C6111.3 (3)H16B—C16—H16C109.5
N1—C5—H5A109.4N4—C17—C18113.5 (3)
C6—C5—H5A109.4N4—C17—H17A108.9
N1—C5—H5B109.4C18—C17—H17A108.9
C6—C5—H5B109.4N4—C17—H17B108.9
H5A—C5—H5B108.0C18—C17—H17B108.9
C5—C6—H6A109.5H17A—C17—H17B107.7
C5—C6—H6B109.5C17—C18—H18A109.5
H6A—C6—H6B109.5C17—C18—H18B109.5
C5—C6—H6C109.5H18A—C18—H18B109.5
H6A—C6—H6C109.5C17—C18—H18C109.5
H6B—C6—H6C109.5H18A—C18—H18C109.5
N2—C7—C8111.4 (3)H18B—C18—H18C109.5
N2—C7—H7A109.3N4—C19—C20112.9 (3)
C8—C7—H7A109.3N4—C19—H19A109.0
N2—C7—H7B109.3C20—C19—H19A109.0
C8—C7—H7B109.3N4—C19—H19B109.0
H7A—C7—H7B108.0C20—C19—H19B109.0
C7—C8—H8A109.5H19A—C19—H19B107.8
C7—C8—H8B109.5C19—C20—H20A109.5
H8A—C8—H8B109.5C19—C20—H20B109.5
C7—C8—H8C109.5H20A—C20—H20B109.5
H8A—C8—H8C109.5C19—C20—H20C109.5
H8B—C8—H8C109.5H20A—C20—H20C109.5
N2—C9—C10110.8 (3)H20B—C20—H20C109.5
N2—C9—H9A109.5O3—Cl1—O1108.8 (2)
C10—C9—H9A109.5O3—Cl1—O2110.2 (3)
N2—C9—H9B109.5O1—Cl1—O2109.9 (2)
C10—C9—H9B109.5O3—Cl1—O4110.6 (2)
H9A—C9—H9B108.1O1—Cl1—O4108.10 (18)
C9—C10—H10A109.5O2—Cl1—O4109.2 (2)
C9—C10—H10B109.5O6—Cl2—O5111.35 (18)
H10A—C10—H10B109.5O6—Cl2—O8110.0 (2)
C9—C10—H10C109.5O5—Cl2—O8109.14 (17)
H10A—C10—H10C109.5O6—Cl2—O7109.5 (2)
H10B—C10—H10C109.5O5—Cl2—O7109.5 (2)
C12—C11—S1119.01 (19)O8—Cl2—O7107.2 (2)
C12—C11—H11A107.6C2—N1—C5123.8 (3)
S1—C11—H11A107.6C2—N1—C3120.5 (3)
C12—C11—H11B107.6C5—N1—C3115.5 (3)
S1—C11—H11B107.6C2—N2—C7124.9 (3)
H11A—C11—H11B107.0C2—N2—C9120.8 (3)
N4—C12—N3122.4 (3)C7—N2—C9114.1 (3)
N4—C12—C11116.4 (3)C12—N3—C15122.9 (2)
N3—C12—C11121.1 (2)C12—N3—C13119.4 (3)
N3—C13—C14111.1 (3)C15—N3—C13117.7 (2)
N3—C13—H13A109.4C12—N4—C19123.9 (3)
C14—C13—H13A109.4C12—N4—C17122.4 (3)
N3—C13—H13B109.4C19—N4—C17113.4 (3)
C14—C13—H13B109.4C1—S1—C11104.50 (14)
S2—C1—C2—N273.0 (3)C10—C9—N2—C772.0 (4)
S1—C1—C2—N2107.7 (3)N4—C12—N3—C15148.3 (3)
S2—C1—C2—N1108.1 (3)C11—C12—N3—C1527.5 (4)
S1—C1—C2—N171.2 (3)N4—C12—N3—C1333.0 (4)
S1—C11—C12—N4146.7 (2)C11—C12—N3—C13151.1 (3)
S1—C11—C12—N337.2 (4)C16—C15—N3—C12122.3 (3)
N2—C2—N1—C527.7 (5)C16—C15—N3—C1359.0 (4)
C1—C2—N1—C5151.2 (3)C14—C13—N3—C12127.1 (3)
N2—C2—N1—C3157.5 (3)C14—C13—N3—C1551.6 (4)
C1—C2—N1—C323.6 (4)N3—C12—N4—C19155.1 (3)
C6—C5—N1—C257.2 (5)C11—C12—N4—C1928.8 (4)
C6—C5—N1—C3117.8 (4)N3—C12—N4—C1731.9 (4)
C4—C3—N1—C2103.8 (4)C11—C12—N4—C17144.2 (3)
C4—C3—N1—C581.1 (5)C20—C19—N4—C12100.6 (4)
N1—C2—N2—C726.8 (5)C20—C19—N4—C1772.9 (4)
C1—C2—N2—C7154.3 (3)C18—C17—N4—C1251.3 (5)
N1—C2—N2—C9157.3 (3)C18—C17—N4—C19122.4 (4)
C1—C2—N2—C921.6 (4)C2—C1—S1—C11169.24 (19)
C8—C7—N2—C252.6 (4)S2—C1—S1—C1111.5 (3)
C8—C7—N2—C9123.5 (3)C12—C11—S1—C167.1 (3)
C10—C9—N2—C2111.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···S1i0.982.913.893 (4)177
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H42N4S22+·2ClO4
Mr601.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.4158 (7), 16.1889 (13), 21.7213 (18)
V3)2959.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.32 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.881, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
21803, 7058, 5641
Rint0.046
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.140, 1.02
No. of reflections7058
No. of parameters333
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.26
Absolute structureFlack (1983), 3081 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···S1i0.982.91383.8925 (38)176.69
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research(C) (11005897 to TF) from the Japan Society for the Promotion of Science (JSPS).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–19.  Google Scholar
First citationBanerjee, S. R., Nagasawa, A. & Zubieta, J. (2002). Inorg. Chim. Acta, 340, 155–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationBanerjee, S. R. & Zubieta, J. (2004). Acta Cryst. C60, m208–m209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujihara, T., Ohba, T., Nagasawa, A., Nakayama, J. & Yoza, K. (2002). Acta Cryst. C58, o558–o559.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFujihara, T., Sugaya, T., Nagasawa, A. & Nakayama, J. (2004). Acta Cryst. E60, m282–m284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiller, G. P., Jeon, I., Faix, A. N., Jainski, J. P., Arhans, A. J. & Tetreau, M. C. (2000). J. Chem. Soc., Perkin Trans. 2, pp. 1777–1780.  Google Scholar
First citationMiyashita, I., Matsumoto, K., Kobayashi, M., Nagasawa, A. & Nakayama, J. (1998). Inorg. Chim. Acta, 283, 256–259.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagasawa, A., Akiyama, I., Mashima, S. & Nakayama, J. (1995). Heteroat. Chem. 6, 45–49.  CSD CrossRef CAS Web of Science Google Scholar
First citationNakayama, J. (2000). CACS Forum, 20, 7–20.  CAS Google Scholar
First citationNakayama, J. (2002). J. Synth. Org. Chem. Jpn, 60, 106–114.  CrossRef CAS Google Scholar
First citationNakayama, J. & Akiyama, I. (1992). J. Chem. Soc. Chem. Commun. p. 1522.  CrossRef Google Scholar
First citationNakayama, J., Kitahara, T., Sugihara, Y., Sakamoto, A. & Ishii, A. (2000). J. Am. Chem. Soc. 122, 9120–9126.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakayama, J., Otani, T., Sugihara, Y. & Ishii, A. (1997). Tetrahedron Lett. 38, 5013–5016.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtani, T., Sugihara, Y., Ishii, A. & Nakayama, J. (1998). Heteroat. Chem. 9, 703–707.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemeling, U., Memczak, H., Bruhn, C., Vogel, F., Träger, F., Baiod, E. J. & Weidner, T. (2012). Dalton Trans. 41, 2986–2994.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSugaya, T., Fujihara, T., Nagasawa, A. & Unoura, K. (2009). Inorg. Chim. Acta, 362, 4813–4822.  Web of Science CSD CrossRef CAS Google Scholar
First citationWinberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 45, 2776–2777.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2753-o2754
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds