organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2803-o2804

N-(2-Bromo­benz­yl)cinchoninium bromide

aFaculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, bIndustrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw, Poland, and cFaculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: skorska@chemia.uj.edu.pl

(Received 13 July 2012; accepted 21 August 2012; online 31 August 2012)

The title compound {systematic name: 1-(2-bromo­benz­yl)-5-ethenyl-2-[hy­droxy(quinolin-4-yl)meth­yl]-1-aza­bicyclo­[2.2.2]octan-1-ium bromide}, C26H28BrN2O+·Br, is a chiral quater­nary ammonium salt of one of the Cinchona alkaloids. The planes of the quinoline and of the bromo­benzyl substituent are inclined to one another by 9.11 (9)°. A weak intra­molecular C—H⋯O hydrogen bond occurs. The crystal structure features strong O—H⋯Br hydrogen bonds and weak C—H⋯Br inter­actions.

Related literature

For the structure of cinchonine base and its derivatives, see: Oleksyn et al. (1979[Oleksyn, B., Lebioda, Ł. & Ciechanowicz-Rutkowska, M. (1979). Acta Cryst. B35, 440-444.]); Dolling et al. (1984[Dolling, U.-H., Davis, P. & Grabowski, E. J. (1984). J. Am. Chem. Soc. 106, 446-447.]). For crystal structures of other selected Cinchona alkaloid derivatives with bulky substituents at the quinuclidine nitro­gen atom, see: Song et al. (2005[Song, Y.-M., Ye, Q., Tang, Y.-Z., Wu, Q. & Xiong, R.-G. (2005). Cryst. Growth Des. 5, 1603-1608.]); Kawai et al. (2009[Kawai, H., Kusuda, A., Nakamura, S., Shiro, M. & Shibata, N. (2009). Angew. Chem. Int. Ed. 48, 6324-6327.]); Jew et al. (2002[Jew, S.-S., Lee, Y.-J., Lee, J., Kang, M. J., Jeong, B.-S., Lee, J.-H., Yoo, M.-S., Kim, M.-J., Choi, S.-H., Ku, J.-M. & Park, H.-G. (2002). Org. Lett. 4, 4245-4248.]); Matoba et al. (2010[Matoba, K., Kawai, H., Furukawa, T., Kusuda, A., Tokunaga, E., Nakamura, S., Shiro, M. & Shibata, N. (2010). Angew. Chem. Int. Ed. 49, 5762-5766.]). For the effect of the substituent on the activity of the title catalyst, see: Jezierska-Zięba et al. (2010[Jezierska-Zięba, M., Rode, J. E., Fedoryński, M., Cybulski, J. & Dobrowolski, J. Cz. (2010). J. Mol. Struct. (THEOCHEM), 947, 101-106.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28BrN2O+·Br

  • Mr = 544.30

  • Orthorhombic, P 21 21 21

  • a = 7.2313 (1) Å

  • b = 16.2545 (1) Å

  • c = 20.2466 (2) Å

  • V = 2379.81 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 295 K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.547, Tmax = 0.726

  • 64183 measured reflections

  • 5437 independent reflections

  • 4879 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.071

  • S = 1.06

  • 5437 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2320 Friedel pairs

  • Flack parameter: 0.020 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯Br1i 0.81 (4) 2.38 (4) 3.179 (2) 173 (3)
C2—H2B⋯O12 0.97 2.32 2.997 (4) 126
C6—H6A⋯Br1 0.97 2.88 3.797 (3) 159
C18—H18⋯Br1 0.93 2.96 3.758 (4) 145
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK; data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The Cinchona alkaloids with bulky substituents at quinuclidine nitrogen atom (N1), as the potential catalysts, have been studied crystallographically in the last three decades: Dolling et al. (1984); Song et al. (2005); Kawai et al. (2009); Jew et al.(2002); Matoba et al. (2010). The asymmetric unit of the title compound is composed of N–(2–bromobenzyl)cinchoninium cation and bromide anion (Fig. 1). The title cinchonine derivative was used as a catalyst in the asymmetric Darzens condensation between benzaldehyde and alkylchloroacetates: Jezierska-Zięba et al. (2010).

The conformational features of the title compound are similar to those of the related parent structure of cinchonine base (Oleksyn et al., 1979), with exception of the orientation of the vinyl group towards the quinuclidine moiety. The packing is dominated by the strong hydrogen bonding O12—H···Br1 (Fig. 2). The pairs cation–anion interact with each other via short contacts C—H···Br1, forming chains parallel to [1 0 0]. The chains are strengthened by short C—H···Br2 contacts. The oxygen atom (O12), is an acceptor in weak intramolecular hydrogen bonds. The hydrogen bond geometry is given in Table 1.

The disorder of the vinyl groups occurs in almost every molecular structure of Cinchona alkaloids, we have determined. The vinyl group (i.e. C10 and C11 atoms) is present on the periphery of the whole molecule, so it has ability to move. The conformation of the vinyl moiety, which we present here, is close to the potential energy minimum and is frequently observed in the structures of erythro Cinchona alkaloids.

Related literature top

For the structure of cinchonine base and its derivatives, see: Oleksyn et al. (1979); Dolling et al. (1984). For crystal structures of other selected Cinchona alkaloid derivatives with bulky substituents at the quinuclidine nitrogen atom, see: Song et al. (2005); Kawai et al. (2009); Jew et al. (2002); Matoba et al. (2010). For the effect of the substituent on the activity of the title catalyst, see: Jezierska-Zięba et al. (2010).

Experimental top

A mixture of cinchonine (2.95 g, 0.01 mol) and 2–bromobenzylbromide (2.5 g, 0.01 mol) in toluene (40 ml) was stirred and heated at 353 K for 4 h. After cooling to room temperature, hexane (100 ml) was added and the mixture was stirred for 10 h. The precipitated crystals were collected by suction filtration, washed with acetonitrile and dried to give N–(2–bromobenzyl)cinchoninium bromide (5.25 g, 97%, m.p. 430 K). Single crystals suitable for X–ray diffraction study were obtained from ethanol by slow evaporation at room temperature.

Refinement top

All hydrogen atoms were found on a difference Fourier maps and refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene groups and C—H = 0.98Å and Uiso(H) = 1.2Ueq(C) for methine groups. The O based atom H12 was refined with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radii. The C—H···Br hydrogen bonds are in dashed lines.

Fig. 2. The packing viewed along a axis with strong hydrogen bonds shown by dashed lines.

Enhanced figure.
1-(2-Bromobenzyl)-5-ethenyl-2-[hydroxy(quinolin-4-yl)methyl]- 1-azabicyclo[2.2.2]octan-1-ium bromide top
Crystal data top
C26H28BrN2O+·BrDx = 1.519 Mg m3
Mr = 544.30Melting point: 430 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3135 reflections
a = 7.2313 (1) Åθ = 1.0–27.5°
b = 16.2545 (1) ŵ = 3.43 mm1
c = 20.2466 (2) ÅT = 295 K
V = 2379.81 (4) Å3Prism, colourless
Z = 40.2 × 0.15 × 0.1 mm
F(000) = 1104
Data collection top
Nonius KappaCCD
diffractometer
5437 independent reflections
Radiation source: fine–focus sealed tube4879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD rotation images, thick slices scansh = 99
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor 1997)
k = 2021
Tmin = 0.547, Tmax = 0.726l = 2626
64183 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.023P)2 + 1.5842P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5437 reflectionsΔρmax = 0.40 e Å3
283 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 2320 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (8)
Crystal data top
C26H28BrN2O+·BrV = 2379.81 (4) Å3
Mr = 544.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2313 (1) ŵ = 3.43 mm1
b = 16.2545 (1) ÅT = 295 K
c = 20.2466 (2) Å0.2 × 0.15 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
5437 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor 1997)
4879 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.726Rint = 0.039
64183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.40 e Å3
S = 1.06Δρmin = 0.42 e Å3
5437 reflectionsAbsolute structure: Flack (1983), 2320 Friedel pairs
283 parametersAbsolute structure parameter: 0.020 (8)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1B0.1042 (4)0.78679 (16)0.82411 (13)0.0396 (6)
H1BA0.02470.77130.81940.048*
H1BB0.17760.73740.81820.048*
C2B0.1337 (4)0.81793 (16)0.89340 (13)0.0393 (6)
C3B0.0039 (4)0.85398 (19)0.93115 (14)0.0508 (7)
C4B0.0243 (5)0.8774 (2)0.99629 (16)0.0647 (9)
H4BA0.07050.90171.02040.078*
C5B0.1937 (5)0.8641 (3)1.02470 (16)0.0701 (11)
H5BA0.21480.88041.06810.084*
C6B0.3319 (5)0.8269 (2)0.98952 (16)0.0643 (9)
H6BA0.44610.81741.00920.077*
C7B0.3019 (4)0.8036 (2)0.92451 (15)0.0497 (7)
H7BA0.39640.77770.90120.06*
C20.0284 (4)0.92222 (15)0.77020 (13)0.0426 (6)
H2A0.02580.94480.81460.051*
H2B0.09670.90640.75840.051*
C30.0976 (5)0.98821 (17)0.72183 (15)0.0514 (8)
H30.1671.02920.74720.062*
C40.2313 (5)0.94693 (18)0.67445 (15)0.0528 (7)
H40.26260.98440.63820.063*
C50.4058 (4)0.92317 (19)0.71277 (18)0.0577 (8)
H5A0.47490.97230.72430.069*
H5B0.4840.88860.68550.069*
C60.3508 (4)0.87670 (18)0.77580 (14)0.0453 (7)
H6A0.43270.83020.78240.054*
H6B0.36130.91280.81380.054*
C70.1435 (5)0.86819 (19)0.64724 (13)0.0534 (8)
H7A0.21320.84890.60930.064*
H7B0.01780.87930.63310.064*
C80.1433 (4)0.80217 (16)0.70143 (13)0.0395 (6)
H80.25810.77060.69670.047*
C90.0178 (4)0.74086 (17)0.69529 (13)0.0427 (6)
H90.00010.6960.7270.051*
C100.0719 (7)1.0313 (2)0.6916 (2)0.0775 (11)
H100.17671.0330.71820.093*
C110.0879 (8)1.0640 (3)0.6368 (2)0.1018 (16)
H11A0.01161.06450.60770.122*
H11B0.19951.08810.62470.122*
C140.1798 (7)0.6905 (3)0.52105 (18)0.0800 (13)
H140.28470.70150.4960.096*
C150.1729 (6)0.7227 (2)0.58609 (17)0.0644 (9)
H150.26840.75570.60180.077*
C160.0262 (5)0.70516 (17)0.62510 (14)0.0487 (7)
C170.1183 (5)0.65446 (18)0.59904 (14)0.0508 (7)
C180.2769 (5)0.62946 (19)0.63382 (17)0.0600 (9)
H180.28820.6430.67830.072*
C190.4150 (6)0.5857 (2)0.6038 (2)0.0775 (11)
H190.52040.57120.62740.093*
C200.3970 (7)0.5627 (3)0.5368 (2)0.0876 (14)
H200.49140.53350.51630.105*
C210.2452 (8)0.5826 (2)0.50268 (19)0.0803 (12)
H210.23510.56640.45880.096*
C220.1005 (6)0.6277 (2)0.53171 (16)0.0637 (10)
Br20.24868 (5)0.86541 (3)0.898389 (19)0.07787 (13)
N10.1527 (3)0.84692 (14)0.76881 (10)0.0357 (5)
N130.0494 (6)0.6463 (2)0.49364 (14)0.0778 (9)
O120.1842 (3)0.78260 (13)0.71029 (12)0.0520 (5)
H120.255 (6)0.750 (2)0.7269 (17)0.062*
Br10.55118 (5)0.661427 (19)0.789365 (17)0.05560 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1B0.0480 (16)0.0380 (14)0.0328 (13)0.0005 (11)0.0036 (11)0.0000 (11)
C2B0.0437 (14)0.0398 (15)0.0344 (13)0.0034 (11)0.0035 (12)0.0023 (11)
C3B0.0480 (16)0.0590 (19)0.0454 (15)0.0050 (13)0.0062 (12)0.0073 (13)
C4B0.068 (2)0.082 (2)0.0445 (16)0.0092 (19)0.0197 (16)0.0180 (16)
C5B0.083 (3)0.090 (3)0.0379 (16)0.018 (2)0.0009 (16)0.0157 (17)
C6B0.059 (2)0.086 (3)0.0477 (17)0.008 (2)0.0115 (16)0.0009 (18)
C7B0.0453 (17)0.0621 (18)0.0418 (15)0.0010 (14)0.0006 (12)0.0023 (14)
C20.0485 (15)0.0354 (13)0.0441 (15)0.0065 (12)0.0015 (12)0.0036 (10)
C30.065 (2)0.0362 (13)0.0526 (18)0.0020 (13)0.0017 (15)0.0007 (12)
C40.069 (2)0.0422 (15)0.0477 (16)0.0098 (16)0.0070 (16)0.0069 (13)
C50.0567 (19)0.0487 (16)0.068 (2)0.0120 (13)0.0198 (17)0.0014 (16)
C60.0425 (14)0.0407 (14)0.0527 (17)0.0032 (12)0.0038 (13)0.0053 (13)
C70.080 (2)0.0486 (16)0.0316 (13)0.0104 (17)0.0094 (14)0.0025 (12)
C80.0498 (15)0.0366 (13)0.0320 (13)0.0022 (11)0.0054 (12)0.0038 (11)
C90.0507 (16)0.0405 (13)0.0369 (14)0.0038 (12)0.0004 (12)0.0043 (11)
C100.105 (3)0.055 (2)0.072 (2)0.013 (2)0.007 (2)0.0189 (17)
C110.101 (4)0.117 (4)0.088 (3)0.040 (3)0.004 (3)0.014 (3)
C140.109 (3)0.082 (3)0.049 (2)0.001 (2)0.027 (2)0.0106 (19)
C150.077 (2)0.069 (2)0.0479 (18)0.0013 (19)0.0131 (17)0.0070 (16)
C160.067 (2)0.0406 (14)0.0389 (14)0.0069 (14)0.0031 (14)0.0022 (11)
C170.075 (2)0.0375 (14)0.0400 (14)0.0082 (14)0.0042 (14)0.0044 (13)
C180.081 (3)0.0424 (16)0.0566 (18)0.0025 (18)0.0016 (17)0.0104 (14)
C190.085 (3)0.059 (2)0.089 (3)0.011 (2)0.005 (2)0.014 (2)
C200.113 (4)0.068 (2)0.082 (3)0.015 (3)0.031 (3)0.017 (2)
C210.122 (4)0.063 (2)0.056 (2)0.006 (3)0.015 (3)0.0161 (18)
C220.100 (3)0.0491 (17)0.0424 (16)0.0123 (19)0.0058 (17)0.0077 (14)
Br20.04306 (16)0.1171 (3)0.0734 (2)0.0077 (2)0.01098 (18)0.0085 (2)
N10.0380 (11)0.0334 (11)0.0357 (11)0.0020 (10)0.0027 (9)0.0019 (9)
N130.115 (3)0.073 (2)0.0450 (14)0.002 (2)0.0107 (18)0.0150 (14)
O120.0477 (11)0.0548 (12)0.0536 (12)0.0049 (9)0.0028 (11)0.0070 (11)
Br10.05621 (17)0.04800 (15)0.06259 (17)0.00830 (15)0.00511 (16)0.00209 (15)
Geometric parameters (Å, º) top
C1B—C2B1.507 (4)C7—C81.535 (4)
C1B—N11.527 (3)C7—H7A0.97
C1B—H1BA0.97C7—H7B0.97
C1B—H1BB0.97C8—C91.538 (4)
C2B—C3B1.385 (4)C8—N11.548 (3)
C2B—C7B1.390 (4)C8—H80.98
C3B—C4B1.388 (4)C9—O121.414 (4)
C3B—Br21.899 (3)C9—C161.536 (4)
C4B—C5B1.370 (5)C9—H90.98
C4B—H4BA0.93C10—C111.235 (6)
C5B—C6B1.368 (5)C10—H100.93
C5B—H5BA0.93C11—H11A0.93
C6B—C7B1.387 (4)C11—H11B0.93
C6B—H6BA0.93C14—N131.309 (5)
C7B—H7BA0.93C14—C151.418 (5)
C2—N11.519 (3)C14—H140.93
C2—C31.536 (4)C15—C161.353 (5)
C2—H2A0.97C15—H150.93
C2—H2B0.97C16—C171.432 (5)
C3—C41.518 (4)C17—C181.406 (5)
C3—C101.539 (5)C17—C221.437 (4)
C3—H30.98C18—C191.369 (5)
C4—C51.531 (5)C18—H180.93
C4—C71.531 (4)C19—C201.413 (6)
C4—H40.98C19—H190.93
C5—C61.535 (4)C20—C211.336 (7)
C5—H5A0.97C20—H200.93
C5—H5B0.97C21—C221.405 (6)
C6—N11.519 (3)C21—H210.93
C6—H6A0.97C22—N131.364 (5)
C6—H6B0.97O12—H120.81 (4)
C2B—C1B—N1115.8 (2)C4—C7—H7B109.9
C2B—C1B—H1BA108.3C8—C7—H7B109.9
N1—C1B—H1BA108.3H7A—C7—H7B108.3
C2B—C1B—H1BB108.3C7—C8—C9113.3 (3)
N1—C1B—H1BB108.3C7—C8—N1107.6 (2)
H1BA—C1B—H1BB107.4C9—C8—N1114.1 (2)
C3B—C2B—C7B116.8 (3)C7—C8—H8107.1
C3B—C2B—C1B123.7 (3)C9—C8—H8107.1
C7B—C2B—C1B119.3 (3)N1—C8—H8107.1
C2B—C3B—C4B122.3 (3)O12—C9—C16110.3 (2)
C2B—C3B—Br2121.2 (2)O12—C9—C8108.4 (2)
C4B—C3B—Br2116.3 (2)C16—C9—C8110.5 (2)
C5B—C4B—C3B119.2 (3)O12—C9—H9109.2
C5B—C4B—H4BA120.4C16—C9—H9109.2
C3B—C4B—H4BA120.4C8—C9—H9109.2
C4B—C5B—C6B120.3 (3)C11—C10—C3128.9 (5)
C4B—C5B—H5BA119.9C11—C10—H10115.6
C6B—C5B—H5BA119.9C3—C10—H10115.6
C5B—C6B—C7B120.0 (3)C10—C11—H11A120
C5B—C6B—H6BA120C10—C11—H11B120
C7B—C6B—H6BA120H11A—C11—H11B120
C6B—C7B—C2B121.4 (3)N13—C14—C15124.8 (4)
C6B—C7B—H7BA119.3N13—C14—H14117.6
C2B—C7B—H7BA119.3C15—C14—H14117.6
N1—C2—C3111.0 (2)C16—C15—C14119.4 (4)
N1—C2—H2A109.4C16—C15—H15120.3
C3—C2—H2A109.4C14—C15—H15120.3
N1—C2—H2B109.4C15—C16—C17118.6 (3)
C3—C2—H2B109.4C15—C16—C9119.4 (3)
H2A—C2—H2B108C17—C16—C9122.0 (3)
C4—C3—C2107.6 (2)C18—C17—C16125.3 (3)
C4—C3—C10117.2 (3)C18—C17—C22117.4 (3)
C2—C3—C10108.2 (3)C16—C17—C22117.3 (3)
C4—C3—H3107.9C19—C18—C17121.5 (3)
C2—C3—H3107.9C19—C18—H18119.2
C10—C3—H3107.9C17—C18—H18119.2
C3—C4—C5108.4 (3)C18—C19—C20119.8 (4)
C3—C4—C7109.4 (3)C18—C19—H19120.1
C5—C4—C7108.3 (3)C20—C19—H19120.1
C3—C4—H4110.2C21—C20—C19120.5 (4)
C5—C4—H4110.2C21—C20—H20119.7
C7—C4—H4110.2C19—C20—H20119.7
C4—C5—C6109.4 (2)C20—C21—C22121.4 (4)
C4—C5—H5A109.8C20—C21—H21119.3
C6—C5—H5A109.8C22—C21—H21119.3
C4—C5—H5B109.8N13—C22—C21118.1 (3)
C6—C5—H5B109.8N13—C22—C17122.7 (3)
H5A—C5—H5B108.2C21—C22—C17119.2 (4)
N1—C6—C5108.9 (2)C2—N1—C6107.4 (2)
N1—C6—H6A109.9C2—N1—C1B111.48 (19)
C5—C6—H6A109.9C6—N1—C1B110.6 (2)
N1—C6—H6B109.9C2—N1—C8111.7 (2)
C5—C6—H6B109.9C6—N1—C8105.9 (2)
H6A—C6—H6B108.3C1B—N1—C8109.60 (19)
C4—C7—C8109.1 (2)C14—N13—C22117.1 (3)
C4—C7—H7A109.9C9—O12—H12108 (3)
C8—C7—H7A109.9
N1—C1B—C2B—C3B94.4 (3)O12—C9—C16—C17175.1 (3)
N1—C1B—C2B—C7B91.9 (3)C8—C9—C16—C1765.0 (3)
C7B—C2B—C3B—C4B2.0 (5)C15—C16—C17—C18178.6 (3)
C1B—C2B—C3B—C4B175.8 (3)C9—C16—C17—C182.3 (5)
C7B—C2B—C3B—Br2172.6 (2)C15—C16—C17—C222.1 (4)
C1B—C2B—C3B—Br21.3 (4)C9—C16—C17—C22177.0 (3)
C2B—C3B—C4B—C5B0.4 (5)C16—C17—C18—C19175.3 (3)
Br2—C3B—C4B—C5B174.4 (3)C22—C17—C18—C194.1 (5)
C3B—C4B—C5B—C6B1.1 (6)C17—C18—C19—C201.9 (6)
C4B—C5B—C6B—C7B0.9 (6)C18—C19—C20—C210.6 (7)
C5B—C6B—C7B—C2B0.8 (6)C19—C20—C21—C220.8 (7)
C3B—C2B—C7B—C6B2.2 (5)C20—C21—C22—N13179.5 (4)
C1B—C2B—C7B—C6B176.3 (3)C20—C21—C22—C171.5 (6)
N1—C2—C3—C416.7 (3)C18—C17—C22—N13178.3 (3)
N1—C2—C3—C10144.2 (3)C16—C17—C22—N132.3 (5)
C2—C3—C4—C568.9 (3)C18—C17—C22—C213.8 (5)
C10—C3—C4—C5169.1 (3)C16—C17—C22—C21175.6 (3)
C2—C3—C4—C749.0 (3)C3—C2—N1—C649.6 (3)
C10—C3—C4—C773.0 (3)C3—C2—N1—C1B170.9 (2)
C3—C4—C5—C649.8 (3)C3—C2—N1—C866.1 (3)
C7—C4—C5—C668.8 (3)C5—C6—N1—C268.9 (3)
C4—C5—C6—N117.4 (3)C5—C6—N1—C1B169.2 (2)
C3—C4—C7—C873.6 (3)C5—C6—N1—C850.5 (3)
C5—C4—C7—C844.4 (3)C2B—C1B—N1—C264.3 (3)
C4—C7—C8—C9150.5 (3)C2B—C1B—N1—C655.2 (3)
C4—C7—C8—N123.3 (3)C2B—C1B—N1—C8171.6 (2)
C7—C8—C9—O1269.4 (3)C7—C8—N1—C241.8 (3)
N1—C8—C9—O1254.2 (3)C9—C8—N1—C284.9 (3)
C7—C8—C9—C1651.5 (3)C7—C8—N1—C674.9 (3)
N1—C8—C9—C16175.1 (2)C9—C8—N1—C6158.5 (2)
C4—C3—C10—C1129.2 (6)C7—C8—N1—C1B165.8 (2)
C2—C3—C10—C11150.9 (5)C9—C8—N1—C1B39.1 (3)
N13—C14—C15—C162.8 (7)C15—C14—N13—C222.6 (6)
C14—C15—C16—C170.2 (5)C21—C22—N13—C14177.9 (4)
C14—C15—C16—C9179.4 (3)C17—C22—N13—C140.0 (6)
O12—C9—C16—C155.8 (4)H12—O12—C9—C8149 (3)
C8—C9—C16—C15114.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···Br1i0.81 (4)2.38 (4)3.179 (2)173 (3)
C2—H2A···Br20.972.913.406 (3)113
C2—H2B···O120.972.322.997 (4)126
C6—H6A···Br10.972.883.797 (3)159
C7—H7B···O120.972.653.030 (4)103
C15—H15···O120.932.322.697 (4)104
C18—H18···Br10.932.963.758 (4)145
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H28BrN2O+·Br
Mr544.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)7.2313 (1), 16.2545 (1), 20.2466 (2)
V3)2379.81 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor 1997)
Tmin, Tmax0.547, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
64183, 5437, 4879
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.071, 1.06
No. of reflections5437
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.42
Absolute structureFlack (1983), 2320 Friedel pairs
Absolute structure parameter0.020 (8)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···Br1i0.81 (4)2.38 (4)3.179 (2)173 (3)
C2—H2A···Br20.972.913.406 (3)112.7
C2—H2B···O120.972.322.997 (4)126
C6—H6A···Br10.972.883.797 (3)158.7
C18—H18···Br10.932.963.758 (4)144.7
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the X-ray Diffraction Laboratory, Faculty of Chemistry, Jagiellonian University, for making the Nonius KappaCCD diffractometer available.

References

First citationDolling, U.-H., Davis, P. & Grabowski, E. J. (1984). J. Am. Chem. Soc. 106, 446–447.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJew, S.-S., Lee, Y.-J., Lee, J., Kang, M. J., Jeong, B.-S., Lee, J.-H., Yoo, M.-S., Kim, M.-J., Choi, S.-H., Ku, J.-M. & Park, H.-G. (2002). Org. Lett. 4, 4245–4248.  CrossRef PubMed CAS Google Scholar
First citationJezierska-Zięba, M., Rode, J. E., Fedoryński, M., Cybulski, J. & Dobrowolski, J. Cz. (2010). J. Mol. Struct. (THEOCHEM), 947, 101–106.  Google Scholar
First citationKawai, H., Kusuda, A., Nakamura, S., Shiro, M. & Shibata, N. (2009). Angew. Chem. Int. Ed. 48, 6324–6327.  CrossRef CAS Google Scholar
First citationMatoba, K., Kawai, H., Furukawa, T., Kusuda, A., Tokunaga, E., Nakamura, S., Shiro, M. & Shibata, N. (2010). Angew. Chem. Int. Ed. 49, 5762–5766.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOleksyn, B., Lebioda, Ł. & Ciechanowicz-Rutkowska, M. (1979). Acta Cryst. B35, 440–444.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y.-M., Ye, Q., Tang, Y.-Z., Wu, Q. & Xiong, R.-G. (2005). Cryst. Growth Des. 5, 1603–1608.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2803-o2804
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds