metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1191-m1192

[5,15-Bis(2-methyl­prop­yl)porphyrinato]nickel(II)

aSchool of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland
*Correspondence e-mail: sengem@tcd.ie

(Received 1 August 2012; accepted 14 August 2012; online 23 August 2012)

The title compound, [Ni(C28H28N4)], crystallizes with two independent mol­ecules in the unit cell, one of which is located on an inversion center. Both macrocycles exhibit a planar conformation with average deviation from the least-squares-plane of the 24 macrocycle atoms of Δ24 = 0.043 Å for the first mol­ecule and 0.026 Å for the mol­ecule located on an inversion center. The average Ni—N bond lengths are 1.955 (2) and 1.956 (2) Å in the two mol­ecules. The mol­ecules form ππ dimers of inter­mediary strength with a mean plane separation of 3.36 (2) Å.

Related literature

For the conformation of porphyrins, see: Senge (2006[Senge, M. O. (2006). Chem. Commun., pp. 243-256.]). For the structural analysis of π-aggregates, see: Scheidt & Lee (1987[Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. 64, 1-70.]). For Ni(II) porphyrin structures, see: Song et al. (1996[Song, X.-Z., Jentzen, W., Jia, S.-L., Jaquinod, L., Nurco, D. J., Medforth, C. J., Smith, K. M. & Shelnutt, J. A. (1996). J. Am. Chem. Soc. 118, 12975-12988.], 1998[Song, X.-Z., Jaquinod, L., Jentzen, W., Nurco, D. J., Jia, S.-L., Khoury, R. G., Ma, J.-G., Medforth, C. J., Smith, K. M. & Shelonutt, J. A. (1998). Inorg. Chem. 37, 2009-2019.]); Davis et al. (2010[Davis, M., Senge, M. O. & Locos, O. B. (2010). Z. Naturforsch. Teil B, 65, 1472-1484.]); Jentzen et al. (1996[Jentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559-3567.]); Senge & Davis (2010[Senge, M. O. & Davis, M. (2010). Acta Cryst. E66, m790.]); Senge et al. (2000[Senge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381-385.], 2010[Senge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. pp. 237-258.]);. For the preparation, see: Wiehe et al. (2005[Wiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). Tetrahedron, 61, 5535-5564.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C28H28N4)]

  • Mr = 479.25

  • Triclinic, [P \overline 1]

  • a = 9.951 (2) Å

  • b = 13.197 (3) Å

  • c = 13.700 (3) Å

  • α = 73.03 (3)°

  • β = 75.27 (3)°

  • γ = 73.39 (3)°

  • V = 1620.1 (7) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 90 K

  • 0.20 × 0.15 × 0.01 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.995

  • 21454 measured reflections

  • 7431 independent reflections

  • 5881 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.04

  • 7431 reflections

  • 454 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N24 1.9497 (16)
Ni1—N22 1.9508 (16)
Ni1—N23 1.9595 (15)
Ni1—N21 1.9623 (15)
Ni2—N28 1.9537 (16)
Ni2—N25 1.9580 (15)

Table 2
Comparison of NiII 5,15-dialkyl­porphyrins (Å, °)

Δ is the deviation from the least-squares-plane of the 24 macrocycle atoms and N—Ni—Nadj is the angle between neighboring pyrrole units.

Alkyl residue tert-But­yl Isoprop­yl iso-But­yl none
Ni—N 1.897 (2) 1.930 (2) 1.955 (2) 1.951 (2)
Δ 0.4 0.26 0.04 0.02
N—Ni—Nadj 92.3, 87.7 91.8, 88.2 91.6, 88.4 90, 90
Reference Song et al. (1996[Song, X.-Z., Jentzen, W., Jia, S.-L., Jaquinod, L., Nurco, D. J., Medforth, C. J., Smith, K. M. & Shelnutt, J. A. (1996). J. Am. Chem. Soc. 118, 12975-12988.]) Song et al. (1998[Song, X.-Z., Jaquinod, L., Jentzen, W., Nurco, D. J., Jia, S.-L., Khoury, R. G., Ma, J.-G., Medforth, C. J., Smith, K. M. & Shelonutt, J. A. (1998). Inorg. Chem. 37, 2009-2019.]) This work Jentzen et al. (1996[Jentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559-3567.])

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

meso-Alkylporphyrins are increasingly used in porphyrin chemistry, but their structural chemistry is less well established (Senge et al., 2010). The compound is another example for the expanding body of Ni(II) porphyrins with a planar macrocycle (Davis et al., 2010; Jentzen et al., 1996; Senge & Davis (2010). In the crystal this allows the formation of π-aggregates which are characterized by a mean plane separation of 3.36 (2) Å, a center-to-center distance of 4.88 (2) Å, a slip angle of 133.5 (1) ° which, according to the classification given by Scheidt & Lee (1987), results in a lateral shift of the metal centers of 3.54 (2) Å. Thus, the π-π-stacks are of intermediary strength. The compound forms part of a series of Ni(II) 5,15-dialkylporphyrins with different steric demand of the meso residue. The respective tert-butyl derivative (Song et al., 1996) is clearly the most nonplanar one with the shortest Ni—N bond length and largest deviation from planarity (Table 2). The iso-propyl derivative (Song et al., 1998) shows still significant out-of-plane deformations, while Ni(II)porphyrin without any non-hydrogen residues is planar (Jentzen et al., 1996). The title compound has the sterically least demanding alkyl residue and exhibits an almost planar macrocycle. However, as indicated by the different N—Ni—N adj bond angles, the compound still exhibits some degree of in-plane distortion, which becomes more pronounced with larger meso alkyl residues.

Related literature top

For the conformation of porphyrins, see: Senge (2006). For the structural analysis of π-aggregates, see: Scheidt & Lee (1987). For Ni(II) porphyrin structures, see: Song et al. (1996, 1998); Davis et al. (2010); Jentzen et al. (1996); Senge & Davis (2010); Senge et al. (2000, 2010);. For the preparation, see: Wiehe et al. (2005).

Experimental top

The compound was prepared as described by Wiehe et al. (2005) and crystallized from CH2Cl2/CH3OH.

Refinement top

All nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were refined with a standard riding model (C—H distance 0.96 Å, Uiso = 0.05).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of molecule 1 of the title compound. Thermal ellipsoids are drawn at 50% probability level; hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. : View of the π-aggregates formed by the title compound in the crystal.
[5,15-Bis(2-methylpropylporphyrinato]nickel(II) top
Crystal data top
[Ni(C28H28N4)]Z = 3
Mr = 479.25F(000) = 756
Triclinic, P1Dx = 1.474 Mg m3
Dm = n/d Mg m3
Dm measured by not measured
Hall symbol: -P 1Melting point: n/d K
a = 9.951 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.197 (3) ÅCell parameters from 7215 reflections
c = 13.700 (3) Åθ = 4.8–62.9°
α = 73.03 (3)°µ = 0.92 mm1
β = 75.27 (3)°T = 90 K
γ = 73.39 (3)°Plate, red
V = 1620.1 (7) Å30.20 × 0.15 × 0.01 mm
Data collection top
Bruker SMART APEXII
diffractometer
7431 independent reflections
Radiation source: fine-focus sealed tube5881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3 pixels mm-1θmax = 27.6°, θmin = 2.0°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1717
Tmin = 0.837, Tmax = 0.995l = 1717
21454 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.238P]
where P = (Fo2 + 2Fc2)/3
7431 reflections(Δ/σ)max = 0.001
454 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C28H28N4)]γ = 73.39 (3)°
Mr = 479.25V = 1620.1 (7) Å3
Triclinic, P1Z = 3
a = 9.951 (2) ÅMo Kα radiation
b = 13.197 (3) ŵ = 0.92 mm1
c = 13.700 (3) ÅT = 90 K
α = 73.03 (3)°0.20 × 0.15 × 0.01 mm
β = 75.27 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
7431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5881 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.995Rint = 0.033
21454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
7431 reflectionsΔρmin = 0.38 e Å3
454 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.01600 (2)0.178583 (17)0.287430 (16)0.01052 (7)
N210.09964 (15)0.13788 (11)0.41252 (11)0.0120 (3)
N220.17178 (15)0.18586 (11)0.37693 (11)0.0119 (3)
N230.06732 (15)0.21932 (11)0.16241 (11)0.0123 (3)
N240.20411 (15)0.16763 (11)0.19834 (11)0.0117 (3)
C10.24215 (19)0.11741 (14)0.41507 (13)0.0133 (3)
C20.26587 (19)0.08745 (14)0.51990 (13)0.0151 (4)
H2A0.35490.07090.54120.018*
C30.13722 (19)0.08738 (14)0.58197 (14)0.0152 (4)
H3A0.11860.06960.65580.018*
C40.03290 (19)0.11912 (13)0.51629 (13)0.0132 (3)
C50.11240 (19)0.12848 (13)0.55287 (13)0.0135 (3)
C60.20684 (18)0.16178 (13)0.48477 (13)0.0134 (3)
C70.35888 (19)0.17765 (14)0.51781 (14)0.0156 (4)
H7A0.40910.16560.58760.019*
C80.41722 (19)0.21270 (14)0.43196 (14)0.0152 (4)
H8A0.51600.23130.42940.018*
C90.30068 (19)0.21646 (14)0.34503 (14)0.0137 (3)
C100.32030 (19)0.24546 (14)0.24399 (13)0.0143 (3)
H10A0.41540.26670.23180.017*
C110.21063 (19)0.24565 (13)0.15931 (13)0.0133 (3)
C120.23387 (19)0.27354 (14)0.05493 (13)0.0152 (4)
H12A0.32340.29460.03340.018*
C130.10439 (19)0.26420 (14)0.00671 (14)0.0154 (4)
H13A0.08530.27750.08030.019*
C140.00007 (19)0.23047 (13)0.05900 (13)0.0126 (3)
C150.14609 (19)0.21209 (13)0.02340 (13)0.0128 (3)
C160.24007 (18)0.18209 (13)0.09133 (13)0.0134 (3)
C170.39244 (19)0.16363 (14)0.05829 (14)0.0153 (4)
H17A0.44330.16830.01110.018*
C180.44959 (19)0.13858 (14)0.14356 (13)0.0150 (4)
H18A0.54820.12230.14620.018*
C190.33268 (18)0.14126 (13)0.22971 (13)0.0132 (3)
C200.35183 (19)0.11896 (14)0.33050 (14)0.0144 (3)
H20A0.44640.10380.34230.017*
C510.17085 (19)0.10162 (14)0.66844 (13)0.0144 (3)
H51A0.09210.05450.70420.017*
H51B0.24320.05880.68130.017*
C520.23936 (19)0.19972 (14)0.71841 (13)0.0163 (4)
H52A0.32040.24640.68340.020*
C530.2991 (2)0.15754 (17)0.83269 (14)0.0247 (4)
H53A0.34810.21920.86440.037*
H53B0.22080.11250.86850.037*
H53C0.36680.11380.83870.037*
C540.1336 (2)0.26873 (14)0.70584 (14)0.0192 (4)
H54A0.18230.33180.73560.029*
H54B0.09560.29380.63190.029*
H54C0.05510.22490.74190.029*
C1510.20745 (19)0.22250 (14)0.09139 (13)0.0144 (4)
H15A0.28400.26280.11080.017*
H15B0.13150.26640.13130.017*
C1520.26898 (19)0.11315 (14)0.12369 (13)0.0156 (4)
H15C0.34500.06920.08260.019*
C1530.1561 (2)0.04767 (15)0.10150 (15)0.0211 (4)
H15D0.19990.02090.12290.032*
H15E0.07980.08970.14030.032*
H15F0.11620.03220.02700.032*
C1540.3382 (2)0.13526 (15)0.23833 (14)0.0215 (4)
H15G0.38700.06610.25750.032*
H15H0.40740.17970.25080.032*
H15I0.26450.17420.28040.032*
Ni20.00000.50000.00000.01010 (8)
N250.07725 (16)0.46002 (11)0.12751 (11)0.0121 (3)
N280.19117 (15)0.48543 (11)0.08547 (11)0.0119 (3)
C210.21889 (19)0.43651 (13)0.13368 (13)0.0132 (3)
C220.2379 (2)0.41090 (14)0.23900 (14)0.0160 (4)
H22A0.32580.39360.26220.019*
C230.10709 (19)0.41616 (14)0.29854 (14)0.0158 (4)
H23A0.08520.40200.37220.019*
C240.00630 (19)0.44711 (13)0.23025 (13)0.0130 (3)
C250.14021 (19)0.46298 (13)0.26333 (13)0.0127 (3)
C360.23108 (18)0.50284 (13)0.19230 (13)0.0126 (3)
C370.38420 (19)0.48051 (14)0.22192 (14)0.0155 (4)
H37A0.43760.48630.29070.019*
C380.43770 (19)0.44991 (14)0.13422 (14)0.0155 (4)
H38A0.53570.42930.12900.019*
C390.31770 (18)0.45454 (13)0.05027 (13)0.0132 (3)
C400.33182 (19)0.43296 (14)0.05146 (14)0.0144 (3)
H40A0.42550.41440.06590.017*
C2510.20483 (19)0.44345 (14)0.37852 (13)0.0143 (4)
H25B0.13040.39490.41780.017*
H25C0.28180.40470.39180.017*
C2520.26687 (19)0.54652 (14)0.42135 (13)0.0147 (4)
H25D0.34370.59470.38270.018*
C2530.3340 (2)0.51309 (15)0.53581 (14)0.0217 (4)
H25E0.38830.57820.56080.033*
H25F0.25870.47370.57630.033*
H25G0.39820.46590.54370.033*
C2540.1548 (2)0.61033 (15)0.40823 (15)0.0197 (4)
H25H0.19940.67500.43620.029*
H25I0.11450.63270.33430.029*
H25J0.07870.56430.44570.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01265 (12)0.01100 (12)0.00933 (12)0.00463 (9)0.00089 (8)0.00364 (8)
N210.0146 (7)0.0121 (7)0.0108 (7)0.0055 (6)0.0006 (6)0.0039 (6)
N220.0159 (7)0.0116 (7)0.0100 (7)0.0059 (6)0.0018 (6)0.0032 (5)
N230.0152 (7)0.0104 (7)0.0124 (7)0.0041 (6)0.0014 (6)0.0042 (6)
N240.0146 (7)0.0104 (7)0.0116 (7)0.0049 (6)0.0025 (6)0.0031 (5)
C10.0176 (9)0.0119 (8)0.0127 (8)0.0053 (7)0.0038 (7)0.0035 (7)
C20.0181 (9)0.0150 (8)0.0144 (9)0.0036 (7)0.0061 (7)0.0045 (7)
C30.0202 (9)0.0156 (8)0.0126 (8)0.0060 (7)0.0034 (7)0.0053 (7)
C40.0193 (9)0.0106 (8)0.0113 (8)0.0051 (7)0.0022 (7)0.0036 (6)
C50.0214 (9)0.0102 (8)0.0111 (8)0.0062 (7)0.0008 (7)0.0050 (6)
C60.0162 (9)0.0109 (8)0.0144 (8)0.0068 (7)0.0017 (7)0.0054 (7)
C70.0168 (9)0.0170 (9)0.0151 (9)0.0081 (7)0.0030 (7)0.0080 (7)
C80.0151 (9)0.0149 (8)0.0178 (9)0.0061 (7)0.0002 (7)0.0069 (7)
C90.0153 (9)0.0118 (8)0.0165 (9)0.0066 (7)0.0002 (7)0.0065 (7)
C100.0126 (8)0.0147 (8)0.0180 (9)0.0036 (7)0.0044 (7)0.0058 (7)
C110.0167 (9)0.0100 (8)0.0148 (9)0.0039 (7)0.0034 (7)0.0040 (7)
C120.0185 (9)0.0140 (8)0.0151 (9)0.0035 (7)0.0058 (7)0.0041 (7)
C130.0207 (9)0.0143 (8)0.0125 (8)0.0040 (7)0.0040 (7)0.0042 (7)
C140.0197 (9)0.0087 (8)0.0111 (8)0.0038 (7)0.0043 (7)0.0033 (6)
C150.0197 (9)0.0095 (8)0.0098 (8)0.0056 (7)0.0003 (7)0.0029 (6)
C160.0164 (9)0.0114 (8)0.0132 (8)0.0058 (7)0.0012 (7)0.0049 (7)
C170.0164 (9)0.0157 (8)0.0142 (9)0.0058 (7)0.0012 (7)0.0056 (7)
C180.0147 (9)0.0149 (8)0.0163 (9)0.0058 (7)0.0002 (7)0.0048 (7)
C190.0153 (9)0.0107 (8)0.0153 (9)0.0056 (7)0.0010 (7)0.0047 (7)
C200.0147 (9)0.0135 (8)0.0175 (9)0.0045 (7)0.0047 (7)0.0048 (7)
C510.0168 (9)0.0146 (8)0.0126 (8)0.0073 (7)0.0005 (7)0.0029 (7)
C520.0180 (9)0.0174 (9)0.0140 (9)0.0051 (7)0.0007 (7)0.0057 (7)
C530.0296 (11)0.0291 (11)0.0170 (10)0.0108 (9)0.0026 (8)0.0098 (8)
C540.0256 (10)0.0170 (9)0.0193 (9)0.0083 (8)0.0046 (8)0.0069 (7)
C1510.0166 (9)0.0166 (9)0.0101 (8)0.0046 (7)0.0009 (7)0.0040 (7)
C1520.0194 (9)0.0153 (8)0.0123 (8)0.0030 (7)0.0044 (7)0.0036 (7)
C1530.0242 (10)0.0162 (9)0.0254 (10)0.0048 (8)0.0051 (8)0.0080 (8)
C1540.0283 (10)0.0212 (10)0.0138 (9)0.0027 (8)0.0012 (8)0.0074 (7)
Ni20.01232 (16)0.01096 (15)0.00837 (15)0.00425 (12)0.00116 (11)0.00341 (11)
N250.0144 (7)0.0115 (7)0.0115 (7)0.0048 (6)0.0012 (6)0.0038 (6)
N280.0149 (7)0.0113 (7)0.0115 (7)0.0049 (6)0.0021 (6)0.0041 (6)
C210.0177 (9)0.0100 (8)0.0138 (8)0.0040 (7)0.0048 (7)0.0032 (7)
C220.0183 (9)0.0166 (9)0.0151 (9)0.0029 (7)0.0053 (7)0.0062 (7)
C230.0198 (9)0.0159 (9)0.0126 (8)0.0035 (7)0.0036 (7)0.0047 (7)
C240.0199 (9)0.0090 (8)0.0116 (8)0.0048 (7)0.0027 (7)0.0035 (6)
C250.0204 (9)0.0095 (8)0.0102 (8)0.0062 (7)0.0007 (7)0.0042 (6)
C360.0160 (9)0.0111 (8)0.0120 (8)0.0063 (7)0.0015 (7)0.0048 (6)
C370.0175 (9)0.0174 (9)0.0135 (8)0.0078 (7)0.0013 (7)0.0066 (7)
C380.0141 (9)0.0161 (9)0.0173 (9)0.0054 (7)0.0005 (7)0.0065 (7)
C390.0148 (8)0.0110 (8)0.0148 (9)0.0052 (7)0.0004 (7)0.0045 (7)
C400.0129 (8)0.0140 (8)0.0182 (9)0.0033 (7)0.0048 (7)0.0047 (7)
C2510.0198 (9)0.0132 (8)0.0108 (8)0.0067 (7)0.0005 (7)0.0035 (7)
C2520.0188 (9)0.0133 (8)0.0120 (8)0.0029 (7)0.0024 (7)0.0041 (7)
C2530.0278 (10)0.0216 (10)0.0141 (9)0.0044 (8)0.0004 (8)0.0068 (7)
C2540.0254 (10)0.0163 (9)0.0207 (9)0.0064 (8)0.0054 (8)0.0070 (7)
Geometric parameters (Å, º) top
Ni1—N241.9497 (16)C54—H54A0.9800
Ni1—N221.9508 (16)C54—H54B0.9800
Ni1—N231.9595 (15)C54—H54C0.9800
Ni1—N211.9623 (15)C151—C1521.544 (2)
N21—C11.373 (2)C151—H15A0.9900
N21—C41.390 (2)C151—H15B0.9900
N22—C91.373 (2)C152—C1541.524 (2)
N22—C61.390 (2)C152—C1531.526 (3)
N23—C111.377 (2)C152—H15C1.0000
N23—C141.389 (2)C153—H15D0.9800
N24—C191.371 (2)C153—H15E0.9800
N24—C161.387 (2)C153—H15F0.9800
C1—C201.375 (2)C154—H15G0.9800
C1—C21.436 (2)C154—H15H0.9800
C2—C31.345 (3)C154—H15I0.9800
C2—H2A0.9500Ni2—N28i1.9537 (16)
C3—C41.438 (2)Ni2—N281.9537 (16)
C3—H3A0.9500Ni2—N25i1.9580 (15)
C4—C51.387 (3)Ni2—N251.9580 (15)
C5—C61.385 (2)N25—C211.373 (2)
C5—C511.514 (2)N25—C241.390 (2)
C6—C71.437 (2)N28—C391.373 (2)
C7—C81.346 (3)N28—C361.383 (2)
C7—H7A0.9500C21—C401.375 (3)
C8—C91.436 (2)C21—C221.432 (2)
C8—H8A0.9500C22—C231.344 (3)
C9—C101.373 (2)C22—H22A0.9500
C10—C111.376 (2)C23—C241.438 (2)
C10—H10A0.9500C23—H23A0.9500
C11—C121.430 (2)C24—C251.385 (3)
C12—C131.344 (3)C25—C36i1.388 (2)
C12—H12A0.9500C25—C2511.521 (2)
C13—C141.436 (2)C36—C25i1.388 (2)
C13—H13A0.9500C36—C371.439 (2)
C14—C151.385 (2)C37—C381.345 (3)
C15—C161.383 (3)C37—H37A0.9500
C15—C1511.516 (2)C38—C391.433 (2)
C16—C171.438 (2)C38—H38A0.9500
C17—C181.343 (3)C39—C401.374 (2)
C17—H17A0.9500C40—H40A0.9500
C18—C191.432 (2)C251—C2521.542 (2)
C18—H18A0.9500C251—H25B0.9900
C19—C201.376 (2)C251—H25C0.9900
C20—H20A0.9500C252—C2531.527 (2)
C51—C521.544 (2)C252—C2541.527 (2)
C51—H51A0.9900C252—H25D1.0000
C51—H51B0.9900C253—H25E0.9800
C52—C531.524 (3)C253—H25F0.9800
C52—C541.526 (2)C253—H25G0.9800
C52—H52A1.0000C254—H25H0.9800
C53—H53A0.9800C254—H25I0.9800
C53—H53B0.9800C254—H25J0.9800
C53—H53C0.9800
N24—Ni1—N22178.64 (6)C52—C54—H54A109.5
N24—Ni1—N2388.41 (6)C52—C54—H54B109.5
N22—Ni1—N2391.64 (6)H54A—C54—H54B109.5
N24—Ni1—N2191.53 (6)C52—C54—H54C109.5
N22—Ni1—N2188.42 (6)H54A—C54—H54C109.5
N23—Ni1—N21179.93 (7)H54B—C54—H54C109.5
C1—N21—C4104.64 (14)C15—C151—C152114.61 (14)
C1—N21—Ni1126.10 (12)C15—C151—H15A108.6
C4—N21—Ni1129.22 (12)C152—C151—H15A108.6
C9—N22—C6104.52 (14)C15—C151—H15B108.6
C9—N22—Ni1126.38 (12)C152—C151—H15B108.6
C6—N22—Ni1129.09 (12)H15A—C151—H15B107.6
C11—N23—C14104.41 (14)C154—C152—C153111.25 (15)
C11—N23—Ni1126.11 (12)C154—C152—C151108.95 (14)
C14—N23—Ni1129.47 (12)C153—C152—C151112.31 (15)
C19—N24—C16104.29 (14)C154—C152—H15C108.1
C19—N24—Ni1126.62 (12)C153—C152—H15C108.1
C16—N24—Ni1129.08 (12)C151—C152—H15C108.1
N21—C1—C20125.99 (16)C152—C153—H15D109.5
N21—C1—C2111.28 (16)C152—C153—H15E109.5
C20—C1—C2122.66 (16)H15D—C153—H15E109.5
C3—C2—C1106.52 (16)C152—C153—H15F109.5
C3—C2—H2A126.7H15D—C153—H15F109.5
C1—C2—H2A126.7H15E—C153—H15F109.5
C2—C3—C4107.54 (15)C152—C154—H15G109.5
C2—C3—H3A126.2C152—C154—H15H109.5
C4—C3—H3A126.2H15G—C154—H15H109.5
C5—C4—N21125.86 (16)C152—C154—H15I109.5
C5—C4—C3124.13 (16)H15G—C154—H15I109.5
N21—C4—C3110.01 (15)H15H—C154—H15I109.5
C6—C5—C4120.85 (16)N28i—Ni2—N28180.0
C6—C5—C51118.64 (16)N28i—Ni2—N25i91.69 (6)
C4—C5—C51120.51 (16)N28—Ni2—N25i88.31 (6)
C5—C6—N22126.42 (16)N28i—Ni2—N2588.31 (6)
C5—C6—C7123.47 (16)N28—Ni2—N2591.69 (6)
N22—C6—C7110.11 (15)N25i—Ni2—N25180.0
C8—C7—C6107.54 (16)C21—N25—C24104.31 (15)
C8—C7—H7A126.2C21—N25—Ni2126.14 (12)
C6—C7—H7A126.2C24—N25—Ni2129.55 (12)
C7—C8—C9106.44 (16)C39—N28—C36104.53 (14)
C7—C8—H8A126.8C39—N28—Ni2126.32 (12)
C9—C8—H8A126.8C36—N28—Ni2129.15 (12)
N22—C9—C10125.99 (16)N25—C21—C40125.86 (16)
N22—C9—C8111.37 (15)N25—C21—C22111.58 (16)
C10—C9—C8122.63 (17)C40—C21—C22122.52 (17)
C9—C10—C11123.98 (17)C23—C22—C21106.51 (16)
C9—C10—H10A118.0C23—C22—H22A126.7
C11—C10—H10A118.0C21—C22—H22A126.7
C10—C11—N23125.79 (16)C22—C23—C24107.43 (16)
C10—C11—C12122.87 (16)C22—C23—H23A126.3
N23—C11—C12111.34 (15)C24—C23—H23A126.3
C13—C12—C11106.63 (16)C25—C24—N25125.59 (16)
C13—C12—H12A126.7C25—C24—C23124.25 (16)
C11—C12—H12A126.7N25—C24—C23110.15 (15)
C12—C13—C14107.52 (15)C24—C25—C36i120.86 (16)
C12—C13—H13A126.2C24—C25—C251120.56 (16)
C14—C13—H13A126.2C36i—C25—C251118.58 (16)
C15—C14—N23125.46 (16)N28—C36—C25i126.47 (16)
C15—C14—C13124.44 (16)N28—C36—C37110.24 (16)
N23—C14—C13110.10 (15)C25i—C36—C37123.29 (16)
C16—C15—C14121.16 (16)C38—C37—C36107.33 (16)
C16—C15—C151118.16 (16)C38—C37—H37A126.3
C14—C15—C151120.67 (16)C36—C37—H37A126.3
C15—C16—N24126.37 (16)C37—C38—C39106.44 (16)
C15—C16—C17123.36 (16)C37—C38—H38A126.8
N24—C16—C17110.26 (15)C39—C38—H38A126.8
C18—C17—C16107.38 (16)N28—C39—C40125.81 (16)
C18—C17—H17A126.3N28—C39—C38111.44 (15)
C16—C17—H17A126.3C40—C39—C38122.73 (17)
C17—C18—C19106.45 (16)C39—C40—C21124.11 (17)
C17—C18—H18A126.8C39—C40—H40A117.9
C19—C18—H18A126.8C21—C40—H40A117.9
N24—C19—C20125.87 (16)C25—C251—C252115.43 (14)
N24—C19—C18111.62 (15)C25—C251—H25B108.4
C20—C19—C18122.51 (17)C252—C251—H25B108.4
C1—C20—C19123.85 (17)C25—C251—H25C108.4
C1—C20—H20A118.1C252—C251—H25C108.4
C19—C20—H20A118.1H25B—C251—H25C107.5
C5—C51—C52116.05 (14)C253—C252—C254110.50 (15)
C5—C51—H51A108.3C253—C252—C251108.62 (14)
C52—C51—H51A108.3C254—C252—C251112.58 (15)
C5—C51—H51B108.3C253—C252—H25D108.3
C52—C51—H51B108.3C254—C252—H25D108.3
H51A—C51—H51B107.4C251—C252—H25D108.3
C53—C52—C54111.04 (15)C252—C253—H25E109.5
C53—C52—C51108.59 (15)C252—C253—H25F109.5
C54—C52—C51112.07 (15)H25E—C253—H25F109.5
C53—C52—H52A108.3C252—C253—H25G109.5
C54—C52—H52A108.3H25E—C253—H25G109.5
C51—C52—H52A108.3H25F—C253—H25G109.5
C52—C53—H53A109.5C252—C254—H25H109.5
C52—C53—H53B109.5C252—C254—H25I109.5
H53A—C53—H53B109.5H25H—C254—H25I109.5
C52—C53—H53C109.5C252—C254—H25J109.5
H53A—C53—H53C109.5H25H—C254—H25J109.5
H53B—C53—H53C109.5H25I—C254—H25J109.5
N24—Ni1—N21—C12.07 (14)C14—C15—C16—C17179.05 (15)
N22—Ni1—N21—C1179.29 (14)C151—C15—C16—C172.0 (2)
N24—Ni1—N21—C4175.14 (14)C19—N24—C16—C15178.49 (16)
N22—Ni1—N21—C43.50 (14)Ni1—N24—C16—C152.6 (3)
N23—Ni1—N22—C92.96 (14)C19—N24—C16—C170.25 (18)
N21—Ni1—N22—C9177.00 (14)Ni1—N24—C16—C17178.67 (11)
N23—Ni1—N22—C6176.73 (14)C15—C16—C17—C18178.55 (16)
N21—Ni1—N22—C63.31 (14)N24—C16—C17—C180.2 (2)
N24—Ni1—N23—C11178.31 (14)C16—C17—C18—C190.11 (19)
N22—Ni1—N23—C113.05 (14)C16—N24—C19—C20179.83 (16)
N24—Ni1—N23—C140.39 (14)Ni1—N24—C19—C200.9 (2)
N22—Ni1—N23—C14178.25 (14)C16—N24—C19—C180.18 (18)
N23—Ni1—N24—C19179.15 (14)Ni1—N24—C19—C18178.77 (11)
N21—Ni1—N24—C190.81 (14)C17—C18—C19—N240.0 (2)
N23—Ni1—N24—C162.16 (14)C17—C18—C19—C20179.71 (16)
N21—Ni1—N24—C16177.88 (14)N21—C1—C20—C190.4 (3)
C4—N21—C1—C20175.90 (16)C2—C1—C20—C19176.13 (16)
Ni1—N21—C1—C201.9 (2)N24—C19—C20—C11.8 (3)
C4—N21—C1—C20.93 (18)C18—C19—C20—C1177.79 (16)
Ni1—N21—C1—C2178.70 (11)C6—C5—C51—C5279.0 (2)
N21—C1—C2—C31.3 (2)C4—C5—C51—C52101.41 (19)
C20—C1—C2—C3175.68 (16)C5—C51—C52—C53176.87 (15)
C1—C2—C3—C41.03 (19)C5—C51—C52—C5460.1 (2)
C1—N21—C4—C5179.38 (16)C16—C15—C151—C15276.6 (2)
Ni1—N21—C4—C51.7 (2)C14—C15—C151—C152102.33 (19)
C1—N21—C4—C30.27 (18)C15—C151—C152—C154175.11 (15)
Ni1—N21—C4—C3177.95 (11)C15—C151—C152—C15361.2 (2)
C2—C3—C4—C5179.83 (16)N28i—Ni2—N25—C21178.71 (14)
C2—C3—C4—N210.51 (19)N28—Ni2—N25—C211.29 (14)
N21—C4—C5—C61.8 (3)N28i—Ni2—N25—C242.36 (14)
C3—C4—C5—C6178.60 (16)N28—Ni2—N25—C24177.64 (14)
N21—C4—C5—C51177.76 (15)N25i—Ni2—N28—C39178.68 (14)
C3—C4—C5—C511.8 (3)N25—Ni2—N28—C391.32 (14)
C4—C5—C6—N222.0 (3)N25i—Ni2—N28—C361.21 (14)
C51—C5—C6—N22177.56 (15)N25—Ni2—N28—C36178.79 (14)
C4—C5—C6—C7177.16 (16)C24—N25—C21—C40176.54 (16)
C51—C5—C6—C73.3 (2)Ni2—N25—C21—C402.6 (3)
C9—N22—C6—C5178.95 (16)C24—N25—C21—C221.09 (19)
Ni1—N22—C6—C51.3 (2)Ni2—N25—C21—C22179.76 (11)
C9—N22—C6—C70.32 (18)N25—C21—C22—C231.4 (2)
Ni1—N22—C6—C7179.43 (11)C40—C21—C22—C23176.30 (16)
C5—C6—C7—C8178.30 (16)C21—C22—C23—C241.10 (19)
N22—C6—C7—C80.99 (19)C21—N25—C24—C25179.50 (16)
C6—C7—C8—C91.20 (19)Ni2—N25—C24—C251.4 (2)
C6—N22—C9—C10178.37 (16)C21—N25—C24—C230.38 (18)
Ni1—N22—C9—C101.4 (2)Ni2—N25—C24—C23179.49 (11)
C6—N22—C9—C80.44 (18)C22—C23—C24—C25178.65 (16)
Ni1—N22—C9—C8179.81 (11)C22—C23—C24—N250.5 (2)
C7—C8—C9—N221.1 (2)N25—C24—C25—C36i1.6 (3)
C7—C8—C9—C10177.79 (16)C23—C24—C25—C36i177.35 (16)
N22—C9—C10—C111.4 (3)N25—C24—C25—C251178.48 (15)
C8—C9—C10—C11177.30 (16)C23—C24—C25—C2512.5 (3)
C9—C10—C11—N231.3 (3)C39—N28—C36—C25i179.01 (16)
C9—C10—C11—C12178.34 (16)Ni2—N28—C36—C25i1.1 (3)
C14—N23—C11—C10179.45 (16)C39—N28—C36—C370.88 (18)
Ni1—N23—C11—C101.6 (2)Ni2—N28—C36—C37179.03 (11)
C14—N23—C11—C120.20 (18)N28—C36—C37—C380.1 (2)
Ni1—N23—C11—C12178.77 (11)C25i—C36—C37—C38179.78 (16)
C10—C11—C12—C13179.53 (16)C36—C37—C38—C390.68 (19)
N23—C11—C12—C130.1 (2)C36—N28—C39—C40177.03 (16)
C11—C12—C13—C140.00 (19)Ni2—N28—C39—C403.1 (2)
C11—N23—C14—C15179.85 (16)C36—N28—C39—C381.32 (19)
Ni1—N23—C14—C151.2 (2)Ni2—N28—C39—C38178.59 (11)
C11—N23—C14—C130.20 (18)C37—C38—C39—N281.3 (2)
Ni1—N23—C14—C13178.72 (11)C37—C38—C39—C40177.12 (16)
C12—C13—C14—C15179.92 (16)N28—C39—C40—C212.0 (3)
C12—C13—C14—N230.13 (19)C38—C39—C40—C21179.87 (16)
N23—C14—C15—C161.5 (3)N25—C21—C40—C391.0 (3)
C13—C14—C15—C16178.50 (16)C22—C21—C40—C39178.43 (16)
N23—C14—C15—C151177.48 (15)C24—C25—C251—C252100.67 (19)
C13—C14—C15—C1512.6 (3)C36i—C25—C251—C25279.2 (2)
C14—C15—C16—N240.5 (3)C25—C251—C252—C253177.00 (15)
C151—C15—C16—N24179.42 (15)C25—C251—C252—C25460.3 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C28H28N4)]
Mr479.25
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.951 (2), 13.197 (3), 13.700 (3)
α, β, γ (°)73.03 (3), 75.27 (3), 73.39 (3)
V3)1620.1 (7)
Z3
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.20 × 0.15 × 0.01
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.837, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
21454, 7431, 5881
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.04
No. of reflections7431
No. of parameters454
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N241.9497 (16)Ni1—N211.9623 (15)
Ni1—N221.9508 (16)Ni2—N281.9537 (16)
Ni1—N231.9595 (15)Ni2—N251.9580 (15)
Comparison of NiII 5,15-dialkylporphyrins (Å, °). top
Δ is the deviation from the least-squares-plane of the 24 macrocycle atoms and N—Ni—Nadj is the angle between neighboring pyrrole units.
Alkyl residuetert-ButylIsopropyliso-Butylnone
Ni—N1.897 (2)1.930 (2)1.955 (2)1.951 (2)
Δ0.40.260.040.02
N—Ni—N adj92.3, 87.791.8, 88.291.6, 88.490, 90
ReferenceSong et al. (1996)Song et al. (1998)This workJentzen et al. (1996)
 

Acknowledgements

This work was supported by a grant from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, M., Senge, M. O. & Locos, O. B. (2010). Z. Naturforsch. Teil B, 65, 1472–1484.  CAS Google Scholar
First citationJentzen, W., Turowska-Tyrk, I., Scheidt, W. R. & Shelnutt, J. A. (1996). Inorg. Chem. 35, 3559–3567.  CSD CrossRef CAS Web of Science Google Scholar
First citationScheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. 64, 1–70.  CrossRef CAS Google Scholar
First citationSenge, M. O. (2006). Chem. Commun., pp. 243–256.  Google Scholar
First citationSenge, M. O. & Davis, M. (2010). Acta Cryst. E66, m790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSenge, M. O., Renner, M. W., Kalisch, W. W. & Fajer, J. (2000). J. Chem. Soc. Dalton Trans. pp. 381–385.  Web of Science CSD CrossRef Google Scholar
First citationSenge, M. O., Shaker, Y. M., Pintea, M., Ryppa, C., Hatscher, S. S., Ryan, A. & Sergeeva, Y. (2010). Eur. J. Org. Chem. pp. 237–258.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-Z., Jaquinod, L., Jentzen, W., Nurco, D. J., Jia, S.-L., Khoury, R. G., Ma, J.-G., Medforth, C. J., Smith, K. M. & Shelonutt, J. A. (1998). Inorg. Chem. 37, 2009–2019.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, X.-Z., Jentzen, W., Jia, S.-L., Jaquinod, L., Nurco, D. J., Medforth, C. J., Smith, K. M. & Shelnutt, J. A. (1996). J. Am. Chem. Soc. 118, 12975–12988.  CSD CrossRef CAS Web of Science Google Scholar
First citationWiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). Tetrahedron, 61, 5535–5564.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1191-m1192
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds