organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,6-Dimeth­­oxy­naphthalen-2-yl)(naphthalen-2-yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 23 July 2012; accepted 1 August 2012; online 8 August 2012)

In the title compound, C23H18O3, the dihedral angle between the two naphthalene ring systems is 78.02 (3)°. The bridging carbonyl C—C(=O)—C plane makes a dihedral angle of 70.56 (5)° with the naphthalene ring system in the 2,7-dimeth­oxy­naphthalene moiety and a dihedral angle of 11.53 (5)° with the naphthalene ring system in the naphthoyl group. In the crystal, adjacent mol­ecules are linked via C—H⋯π inter­actions, forming chains along [010].

Related literature

For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.], 2011[Kato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.], 2012[Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.]); Watanabe et al. (2010[Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18O3

  • Mr = 342.37

  • Monoclinic, P 21 /c

  • a = 13.4683 (9) Å

  • b = 8.9062 (5) Å

  • c = 14.7110 (8) Å

  • β = 105.646 (2)°

  • V = 1699.23 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.60 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.941, Tmax = 0.983

  • 26536 measured reflections

  • 3863 independent reflections

  • 3436 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.06

  • 3863 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22ACg4i 0.98 2.80 3.5470 (12) 133
Symmetry code: (i) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our studies on selective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). We have reported the structures of 1,8-dibenzoylnaphthalene analogues such as 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). The benzoyl groups at the 1,8-positions of the naphthalene rings in these compounds are bonded in a nearly perpendicular manner and orient in opposite directions. The 1-monobenzoylnaphthalene analogues, such as (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), were also revealed to have essentially the same non-coplanar structure as observed for 1,8-dibenzoylated naphthalene analogues. The corresponding β-isomers of 3-monobenzoylated naphthalene analogues such as (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (Kato, et al., 2011) and (4-fluorophenyl)(3,6-dimethoxy-2-naphthyl)methanone (Watanabe et al., 2010). In the 3-monobenzoylated naphthalene analogues, which are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the aroyl groups are connected to the naphthalene rings in a moderately twisted fashion.

Recently, a series of the corresponding naphthoylated naphthalene homologues to the benzoylated naphthalenes have been reported, such as [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011) and 1-(2-naphthoyl)-2,7-dimethoxynaphthalene (Tsumuki et al., 2012). As a part of our ongoing studies on the synthesis and structure of these homologous molecules, the crystal structure analysis of the title compound, a 2,7-dimethoxynaphthalene substituted at the 3-position by a 2-naphthoyl group, is reported on herein.

The molecular structure of the title molecule is illustrated in Fig. 1. The interplanar angle between the two naphthalene rings (C1—C10 and C12—C21) is 78.02 (3)°. The dihedral angle between the bridging carbonyl plane (O1—C3—C11—C12) and the naphthalene ring of the 2,7-demethoxynaphthalene moiety (C1—C10) is larger than that between the bridging carbonyl plane (O1—C3—C11—C12) and naphthalene ring of the naphthoyl group (C12—C21) [70.56 (5)° versus. 11.53 (5)°; torsion angle C2—C3—C11—O1 = -110.65 (13)° versus. torsion angle O1—C11—C12—C13 = -167.08 (11)°]

In the crystal, neighbouring molecules are linked by C—H···π interactions along the b axis (Table 1 and Fig. 2).

Related literature top

For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010, 2011); Nakaema et al. (2008); Tsumuki et al. (2011, 2012); Watanabe et al. (2010).

Experimental top

The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (188 mg, 1 mmol) and 2-naphthoic acid (189 mg, 1.1 mmol) with phosphorus pentoxide—methanesulfonic acid mixture (P2O5—MsOH [1/10 w/w] 2.2 ml). After the reaction mixture had been stirred at 333 K for 6 h, the mixture was poured into ice-cold water and extracted with CHCl3 (3 × 10 ml). The combined extracts were washed with 2 M aqueous NaOH (3 × 15 ml) followed by washing with brine ( 3 × 15 ml). The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 349 mg, quant.). The crude product was purified by flush silica gel chromatography (eluent: toluene; isolated yield 28%). Colourless platelet single crystals suitable for X-ray diffraction were obtained by crystallization from chloroform. Spectroscopic data for the title compound are given in the archived CIF.

Refinement top

All the H atoms could be located in a difference Fourier map. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C—H = 0.95 (aromatic) and 0.98 (methyl) Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound, showing the C—H···π interaction as dashed lines (see Table for details).
(3,6-Dimethoxynaphthalen-2-yl)(naphthalen-2-yl)methanone top
Crystal data top
C23H18O3F(000) = 720
Mr = 342.37Dx = 1.338 Mg m3
Monoclinic, P21/cMelting point = 444.0–445.0 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71075 Å
a = 13.4683 (9) ÅCell parameters from 20190 reflections
b = 8.9062 (5) Åθ = 3.1–27.4°
c = 14.7110 (8) ŵ = 0.09 mm1
β = 105.646 (2)°T = 193 K
V = 1699.23 (17) Å3Block, colourless
Z = 40.60 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3863 independent reflections
Radiation source: rotating anode3436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1111
Tmin = 0.941, Tmax = 0.983l = 1918
26536 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.3821P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3863 reflectionsΔρmax = 0.31 e Å3
238 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0154 (19)
Crystal data top
C23H18O3V = 1699.23 (17) Å3
Mr = 342.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4683 (9) ŵ = 0.09 mm1
b = 8.9062 (5) ÅT = 193 K
c = 14.7110 (8) Å0.60 × 0.30 × 0.20 mm
β = 105.646 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3863 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3436 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.983Rint = 0.017
26536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
3863 reflectionsΔρmin = 0.18 e Å3
238 parameters
Special details top

Experimental. Spectroscopic data for the title compound:

1H NMR δ (300 MHz, CDCl3): 3.83 (3H, s), 3.96 (3H, s), 7.07 (1H, dd, J = 2.4, 9.0 Hz), 7.14 (1H, d, J = 2.4 Hz), 7.18 (1H, s), 7.51 (1H, dt, J = 1.2, 7.5 Hz), 7.60 (1H, dt, J = 1.2, 7.5 Hz), 7.71 (1H, d, J = 9.0 Hz), 7.84–7.92 (4H, m), 8.02 (1H, dd, J = 1.2, 9.0 Hz), 8.26 (1H,d, J = 1.2 Hz) p.p.m. 13C NMR δ (125 MHz, CDCl3): 195.97, 159.32, 155.89, 137.11, 135.55, 135.46, 132.39, 132.19, 130.03, 130.01, 129.59, 128.35, 128.05, 128.02, 127.73, 126.52, 125.17, 123.17, 117.02, 105.43, 105.04, 55.56, 55.32 p.p.m. IR (KBr, cm-1): 1666, 1630, 1459, 1226, 1191 HRMS (m/z): [M+H]+ calcd. for C23H19O3, 343.1334, found, 343.1344.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31909 (7)0.44270 (11)0.02517 (6)0.0449 (2)
O20.21312 (6)0.25562 (9)0.18816 (5)0.03164 (19)
O30.66735 (6)0.30077 (10)0.59573 (6)0.0396 (2)
C10.35816 (8)0.26610 (11)0.32895 (7)0.0256 (2)
H10.32840.19310.36060.031*
C20.30615 (7)0.31204 (11)0.23965 (7)0.0248 (2)
C30.34880 (8)0.42318 (11)0.19167 (7)0.0252 (2)
C40.44353 (8)0.48307 (12)0.23457 (7)0.0282 (2)
H40.47200.55670.20220.034*
C50.50006 (8)0.43750 (11)0.32631 (7)0.0270 (2)
C60.59859 (9)0.49671 (14)0.37265 (8)0.0363 (3)
H60.62830.57130.34200.044*
C70.65131 (9)0.44839 (15)0.46046 (9)0.0390 (3)
H70.71750.48860.49000.047*
C80.60763 (8)0.33873 (13)0.50744 (7)0.0311 (2)
C90.51225 (8)0.27940 (12)0.46576 (7)0.0278 (2)
H90.48340.20620.49810.033*
C100.45652 (7)0.32767 (11)0.37402 (7)0.0244 (2)
C110.28960 (8)0.47414 (12)0.09415 (7)0.0279 (2)
C120.19693 (8)0.56988 (11)0.08637 (7)0.0263 (2)
C130.17608 (7)0.62890 (11)0.16571 (6)0.0236 (2)
H130.21980.60490.22620.028*
C140.09043 (7)0.72487 (11)0.15864 (7)0.0233 (2)
C150.06908 (8)0.78952 (11)0.23953 (7)0.0260 (2)
H150.11310.76860.30040.031*
C160.01430 (8)0.88170 (12)0.23057 (7)0.0300 (2)
H160.02720.92550.28510.036*
C170.08113 (9)0.91196 (14)0.14072 (8)0.0358 (3)
H170.13930.97510.13520.043*
C180.06276 (9)0.85107 (15)0.06142 (8)0.0408 (3)
H180.10860.87190.00130.049*
C190.02400 (9)0.75705 (13)0.06789 (7)0.0318 (2)
C200.04710 (10)0.69372 (16)0.01265 (8)0.0444 (3)
H200.00310.71440.07360.053*
C210.13096 (10)0.60409 (15)0.00430 (7)0.0390 (3)
H210.14550.56420.05920.047*
C220.17610 (8)0.12457 (12)0.22435 (8)0.0334 (2)
H22A0.11080.09290.18080.040*
H22B0.16520.14710.28610.040*
H22C0.22690.04370.23100.040*
C230.62408 (10)0.19186 (14)0.64517 (9)0.0407 (3)
H23A0.67070.17640.70830.049*
H23B0.61470.09680.61030.049*
H23C0.55720.22760.65080.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0548 (5)0.0553 (5)0.0303 (4)0.0209 (4)0.0210 (4)0.0045 (4)
O20.0279 (4)0.0306 (4)0.0328 (4)0.0027 (3)0.0019 (3)0.0078 (3)
O30.0329 (4)0.0456 (5)0.0342 (4)0.0046 (4)0.0015 (3)0.0070 (4)
C10.0263 (5)0.0232 (4)0.0286 (5)0.0005 (4)0.0095 (4)0.0039 (4)
C20.0232 (5)0.0233 (5)0.0286 (5)0.0027 (4)0.0082 (4)0.0008 (4)
C30.0278 (5)0.0241 (5)0.0262 (5)0.0057 (4)0.0114 (4)0.0029 (4)
C40.0308 (5)0.0265 (5)0.0310 (5)0.0010 (4)0.0146 (4)0.0051 (4)
C50.0264 (5)0.0268 (5)0.0302 (5)0.0006 (4)0.0117 (4)0.0014 (4)
C60.0312 (5)0.0400 (6)0.0391 (6)0.0085 (5)0.0120 (5)0.0065 (5)
C70.0279 (5)0.0464 (7)0.0404 (6)0.0097 (5)0.0051 (5)0.0026 (5)
C80.0284 (5)0.0337 (5)0.0297 (5)0.0013 (4)0.0054 (4)0.0017 (4)
C90.0282 (5)0.0264 (5)0.0289 (5)0.0010 (4)0.0082 (4)0.0033 (4)
C100.0246 (5)0.0226 (4)0.0273 (5)0.0029 (4)0.0093 (4)0.0007 (4)
C110.0337 (5)0.0268 (5)0.0256 (5)0.0034 (4)0.0121 (4)0.0025 (4)
C120.0311 (5)0.0266 (5)0.0222 (5)0.0033 (4)0.0086 (4)0.0031 (4)
C130.0263 (5)0.0241 (5)0.0199 (4)0.0001 (4)0.0053 (3)0.0024 (3)
C140.0260 (5)0.0235 (4)0.0203 (4)0.0009 (4)0.0061 (4)0.0013 (3)
C150.0300 (5)0.0269 (5)0.0215 (4)0.0002 (4)0.0075 (4)0.0010 (4)
C160.0343 (5)0.0304 (5)0.0280 (5)0.0021 (4)0.0131 (4)0.0007 (4)
C170.0318 (5)0.0402 (6)0.0354 (6)0.0113 (5)0.0091 (4)0.0022 (5)
C180.0384 (6)0.0526 (7)0.0273 (5)0.0175 (5)0.0019 (4)0.0023 (5)
C190.0339 (6)0.0377 (6)0.0221 (5)0.0085 (4)0.0045 (4)0.0017 (4)
C200.0511 (7)0.0594 (8)0.0182 (5)0.0231 (6)0.0018 (5)0.0016 (5)
C210.0497 (7)0.0483 (7)0.0191 (5)0.0172 (6)0.0092 (5)0.0007 (4)
C220.0270 (5)0.0302 (5)0.0404 (6)0.0029 (4)0.0049 (4)0.0066 (4)
C230.0456 (7)0.0363 (6)0.0335 (6)0.0015 (5)0.0009 (5)0.0082 (5)
Geometric parameters (Å, º) top
O1—C111.2179 (13)C12—C211.4221 (14)
O2—C21.3726 (12)C13—C141.4168 (14)
O2—C221.4274 (13)C13—H130.9500
O3—C81.3729 (13)C14—C151.4195 (13)
O3—C231.4276 (15)C14—C191.4215 (14)
C1—C21.3739 (14)C15—C161.3684 (14)
C1—C101.4219 (14)C15—H150.9500
C1—H10.9500C16—C171.4101 (15)
C2—C31.4235 (14)C16—H160.9500
C3—C41.3698 (15)C17—C181.3683 (16)
C3—C111.5109 (14)C17—H170.9500
C4—C51.4183 (15)C18—C191.4198 (15)
C4—H40.9500C18—H180.9500
C5—C101.4195 (14)C19—C201.4204 (15)
C5—C61.4198 (15)C20—C211.3613 (17)
C6—C71.3651 (17)C20—H200.9500
C6—H60.9500C21—H210.9500
C7—C81.4131 (16)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—C91.3713 (15)C22—H22C0.9800
C9—C101.4223 (14)C23—H23A0.9800
C9—H90.9500C23—H23B0.9800
C11—C121.4903 (14)C23—H23C0.9800
C12—C131.3762 (13)
C2—O2—C22116.88 (8)C12—C13—H13119.5
C8—O3—C23115.71 (9)C14—C13—H13119.5
C2—C1—C10120.12 (9)C13—C14—C15121.89 (9)
C2—C1—H1119.9C13—C14—C19118.97 (9)
C10—C1—H1119.9C15—C14—C19119.15 (9)
O2—C2—C1124.94 (9)C16—C15—C14120.61 (9)
O2—C2—C3114.29 (9)C16—C15—H15119.7
C1—C2—C3120.75 (9)C14—C15—H15119.7
C4—C3—C2119.51 (9)C15—C16—C17120.32 (10)
C4—C3—C11120.52 (9)C15—C16—H16119.8
C2—C3—C11119.97 (9)C17—C16—H16119.8
C3—C4—C5121.41 (9)C18—C17—C16120.46 (10)
C3—C4—H4119.3C18—C17—H17119.8
C5—C4—H4119.3C16—C17—H17119.8
C4—C5—C10118.71 (9)C17—C18—C19120.75 (10)
C4—C5—C6122.88 (10)C17—C18—H18119.6
C10—C5—C6118.41 (9)C19—C18—H18119.6
C7—C6—C5121.17 (10)C18—C19—C20122.66 (10)
C7—C6—H6119.4C18—C19—C14118.69 (10)
C5—C6—H6119.4C20—C19—C14118.65 (10)
C6—C7—C8120.11 (10)C21—C20—C19121.38 (10)
C6—C7—H7119.9C21—C20—H20119.3
C8—C7—H7119.9C19—C20—H20119.3
C9—C8—O3124.56 (10)C20—C21—C12120.23 (10)
C9—C8—C7120.73 (10)C20—C21—H21119.9
O3—C8—C7114.70 (10)C12—C21—H21119.9
C8—C9—C10119.91 (9)O2—C22—H22A109.5
C8—C9—H9120.0O2—C22—H22B109.5
C10—C9—H9120.0H22A—C22—H22B109.5
C5—C10—C1119.49 (9)O2—C22—H22C109.5
C5—C10—C9119.65 (9)H22A—C22—H22C109.5
C1—C10—C9120.85 (9)H22B—C22—H22C109.5
O1—C11—C12121.47 (9)O3—C23—H23A109.5
O1—C11—C3121.00 (10)O3—C23—H23B109.5
C12—C11—C3117.47 (8)H23A—C23—H23B109.5
C13—C12—C21119.66 (9)O3—C23—H23C109.5
C13—C12—C11120.77 (9)H23A—C23—H23C109.5
C21—C12—C11119.54 (9)H23B—C23—H23C109.5
C12—C13—C14121.10 (9)
C22—O2—C2—C110.08 (15)C4—C3—C11—O169.33 (15)
C22—O2—C2—C3168.17 (9)C2—C3—C11—O1110.65 (12)
C10—C1—C2—O2177.09 (9)C4—C3—C11—C12107.91 (11)
C10—C1—C2—C31.05 (15)C2—C3—C11—C1272.11 (12)
O2—C2—C3—C4177.28 (9)O1—C11—C12—C13167.09 (11)
C1—C2—C3—C41.06 (15)C3—C11—C12—C1310.14 (15)
O2—C2—C3—C112.70 (13)O1—C11—C12—C2111.11 (17)
C1—C2—C3—C11178.96 (9)C3—C11—C12—C21171.67 (10)
C2—C3—C4—C50.43 (15)C21—C12—C13—C140.74 (16)
C11—C3—C4—C5179.59 (9)C11—C12—C13—C14177.45 (9)
C3—C4—C5—C100.18 (15)C12—C13—C14—C15178.53 (9)
C3—C4—C5—C6179.70 (10)C12—C13—C14—C191.56 (15)
C4—C5—C6—C7179.03 (11)C13—C14—C15—C16179.92 (9)
C10—C5—C6—C70.85 (18)C19—C14—C15—C160.01 (15)
C5—C6—C7—C80.7 (2)C14—C15—C16—C170.94 (16)
C23—O3—C8—C90.16 (16)C15—C16—C17—C180.79 (18)
C23—O3—C8—C7179.06 (11)C16—C17—C18—C190.3 (2)
C6—C7—C8—C90.08 (19)C17—C18—C19—C20178.80 (13)
C6—C7—C8—O3179.18 (11)C17—C18—C19—C141.23 (19)
O3—C8—C9—C10179.53 (10)C13—C14—C19—C18178.85 (10)
C7—C8—C9—C100.36 (17)C15—C14—C19—C181.07 (16)
C4—C5—C10—C10.18 (14)C13—C14—C19—C201.11 (16)
C6—C5—C10—C1179.70 (10)C15—C14—C19—C20178.97 (11)
C4—C5—C10—C9179.48 (9)C18—C19—C20—C21179.91 (14)
C6—C5—C10—C90.40 (15)C14—C19—C20—C210.1 (2)
C2—C1—C10—C50.43 (15)C19—C20—C21—C121.0 (2)
C2—C1—C10—C9178.86 (9)C13—C12—C21—C200.54 (19)
C8—C9—C10—C50.18 (15)C11—C12—C21—C20178.75 (12)
C8—C9—C10—C1179.10 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C22—H22A···Cg4i0.982.803.5470 (12)133
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H18O3
Mr342.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)13.4683 (9), 8.9062 (5), 14.7110 (8)
β (°) 105.646 (2)
V3)1699.23 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.941, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
26536, 3863, 3436
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.06
No. of reflections3863
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C22—H22A···Cg4i0.982.803.5470 (12)133
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.  CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds