organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro-1-[(tri­methyl­sil­yl)ethyn­yl]benzene: low-temperature polymorph at 100 K

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 27 July 2012; accepted 30 July 2012; online 8 August 2012)

The title compound, C11H13NO2Si, is a low-temperature form of the previously reported room-temperature structure [Garcia et al. (1998[Garcia, J. G., Asfaw, B., Rodriguez, A. & Fronczek, F. R. (1998). Acta Cryst. C54, 489-491.]). Acta Cryst. C54, 489–491]. At 298 K, the material crystallizes in the space group Pnma and occupies a crystallographic mirror plane, but at 100 K the space group changes to P212121, the volume decreases by 5% and the mol­ecule distorts. The greatest mol­ecular distortions from Cs symmetry are rotations of the trimethyl­silyl and nitro groups by 10.56 (8) and 11.47 (9)°, respectively, to the benzene mean plane. At low temperature, the crystal also becomes an inversion twin, the refined ratio of the twin components being 0.35 (15):0.65 (15).

Related literature

For the synthesis of the title compound, see: Takahashi et al. (1980[Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, 8, 627-630.]). For the crystal structure of the room temperature form of the title compound, see: Garcia et al. (1998[Garcia, J. G., Asfaw, B., Rodriguez, A. & Fronczek, F. R. (1998). Acta Cryst. C54, 489-491.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For Hooft analysis of Bijvoet pairs, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO2Si

  • Mr = 219.31

  • Orthorhombic, P 21 21 21

  • a = 10.222 (2) Å

  • b = 7.128 (2) Å

  • c = 16.537 (4) Å

  • V = 1204.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.966, Tmax = 0.979

  • 17805 measured reflections

  • 4690 independent reflections

  • 3538 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.123

  • S = 1.02

  • 4690 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1953 Bijvoet pairs

  • Flack parameter: 0.35 (15)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

At 298 K title molecule has Cs symmetry (Garcia et al., 1998; CSD refcode NILWIO; Allen, 2002), with all but two methyl groups lying in the mirror plane. When the temperature is reduced to 100 K, the inversion center vanishes and the space group changes from Pnma to P212121, the unit cell volume is reduced from 1261.8 (3) to 1204.9 (5) Å3, and the molecular symmetry is reduced to C1. The mean plane of the six benzene C atoms, (mean deviation δr.m.s. = 0.004 Å), is normal to the b axis at 298 K but inclines +4.51 (8)° from normal at 100 K, while the C1—Si1—C9 plane is rotated off-normal by -6.05 (8)° and the NO2 group is rotated off-normal by +15.78 (9)°.

Other geometrical parameters in the two polymorphs are similar, for example [those at 298 K are in parentheses] : C1C2 = 1.209 (2) [1.199 (4)] Å, Si1—C1 = 1.845 (2) [1.839 (3)] Å, Si1—C9 = 1.856 (2) [1.831 (4)] Å, Si1—C10 = 1.853 (2) [1.838 (3)] Å, Si1—C10B = 1.856 (2)[1.838 (3)] Å, N1—O1 = 1.219 (2) [1.201 (4)] Å, N1—O2 = 1.221 (2) [1.175 (4)] Å, Si1—C1C2 = 176.1 (2) [177.9 (3)]°, C1C2—C3 = 175.9 (2) [178.0 (3)]°, O1—N1—O2 = 123.5 (2) [122.9 (3)]°.

Related literature top

For the synthesis of the title compound, see: Takahashi et al. (1980). For the crystal structure of the room temperature form of the title compound, see: Garcia et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002). For Hooft analysis of Bijvoet pairs, see: Hooft et al. (2008).

Experimental top

The compound was prepared by palladium(II) coupling of trimethylsilylacetylene with 4-nitroiodobenzene as described by (Takahashi et al., 1980).

Refinement top

Analysis of 1953 Bijvoet pairs yields a Hooft (Hooft et al., 2008) parameter y = 0.42 (6) and P3(rac-twin) = 1.000. The model was therefore refined as an inversion twin (SHELXL commands TWIN and BASF) giving the refined ratio 0.35 (15):0.65 (15) for the twin components. The C-bound H atoms were placed in calculated positions, guided by difference maps, and treated as riding atoms: C—H = 0.95 and 0.98 Å for CH(aromatic) and CH3 H atoms, respectively, with Uiso = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms. A torsional parameter was refined for each methyl group.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
4-Nitro-1-[(trimethylsilyl)ethynyl]benzene top
Crystal data top
C11H13NO2SiF(000) = 464
Mr = 219.31Dx = 1.209 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2709 reflections
a = 10.222 (2) Åθ = 2.5–34.3°
b = 7.128 (2) ŵ = 0.18 mm1
c = 16.537 (4) ÅT = 100 K
V = 1204.9 (5) Å3Needle fragment, yellow
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
4690 independent reflections
Radiation source: sealed tube3538 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 33.8°, θmin = 3.1°
ω and ϕ scansh = 1515
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.966, Tmax = 0.979l = 2525
17805 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.046P)2 + 0.4973P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4690 reflectionsΔρmax = 0.36 e Å3
139 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 1953 Bijvoet pairs
0 constraintsAbsolute structure parameter: 0.35 (15)
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H13NO2SiV = 1204.9 (5) Å3
Mr = 219.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.222 (2) ŵ = 0.18 mm1
b = 7.128 (2) ÅT = 100 K
c = 16.537 (4) Å0.20 × 0.15 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
4690 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3538 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.032
17805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.36 e Å3
S = 1.02Δρmin = 0.32 e Å3
4690 reflectionsAbsolute structure: Flack (1983), 1953 Bijvoet pairs
139 parametersAbsolute structure parameter: 0.35 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67962 (16)0.2773 (3)0.66604 (9)0.0270 (3)
C20.77829 (16)0.2789 (3)0.70632 (9)0.0252 (3)
C30.89002 (14)0.2769 (3)0.75911 (9)0.0218 (3)
C41.01780 (16)0.2851 (3)0.72849 (9)0.0262 (3)
H41.03160.29560.67190.031*
C51.12430 (15)0.2779 (3)0.78050 (10)0.0265 (3)
H51.21110.28420.76020.032*
C61.10107 (14)0.2614 (3)0.86239 (9)0.0234 (3)
C70.97590 (14)0.2541 (3)0.89480 (9)0.0242 (3)
H70.96290.24330.95150.029*
C80.87080 (14)0.2629 (3)0.84253 (9)0.0225 (3)
H80.78430.25940.86350.027*
C90.5612 (2)0.2384 (5)0.50094 (10)0.0415 (5)
H9A0.61120.12260.49260.062*
H9B0.61290.34590.48250.062*
H9C0.47940.23220.47020.062*
C100.4263 (2)0.0658 (3)0.64911 (14)0.0376 (5)
H10A0.40970.08360.7070.056*
H10B0.4750.05120.64090.056*
H10C0.34290.05930.62010.056*
C10B0.4280 (2)0.4829 (3)0.62787 (15)0.0394 (5)
H10D0.4770.59120.60750.059*
H10E0.41240.49820.6860.059*
H10F0.34390.47420.59960.059*
N11.21298 (13)0.2499 (3)0.91772 (9)0.0345 (3)
O11.32160 (13)0.2830 (3)0.89090 (11)0.0531 (4)
O21.19270 (16)0.2043 (4)0.98780 (9)0.0670 (7)
Si10.52365 (4)0.26554 (7)0.61012 (3)0.02349 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (7)0.0341 (10)0.0221 (7)0.0007 (8)0.0007 (6)0.0014 (7)
C20.0248 (7)0.0291 (9)0.0219 (6)0.0008 (7)0.0009 (5)0.0006 (7)
C30.0208 (6)0.0240 (8)0.0207 (6)0.0008 (7)0.0020 (5)0.0005 (6)
C40.0247 (7)0.0345 (9)0.0194 (6)0.0007 (8)0.0022 (6)0.0026 (6)
C50.0189 (6)0.0334 (10)0.0270 (7)0.0001 (7)0.0027 (5)0.0008 (8)
C60.0183 (6)0.0274 (9)0.0245 (6)0.0001 (8)0.0048 (5)0.0022 (8)
C70.0223 (6)0.0311 (8)0.0192 (5)0.0013 (8)0.0001 (5)0.0013 (7)
C80.0177 (6)0.0285 (9)0.0212 (6)0.0005 (7)0.0001 (5)0.0016 (7)
C90.0392 (9)0.0626 (15)0.0228 (7)0.0031 (12)0.0018 (7)0.0023 (10)
C100.0296 (10)0.0364 (12)0.0467 (12)0.0002 (8)0.0011 (9)0.0090 (9)
C10B0.0310 (10)0.0343 (11)0.0530 (13)0.0074 (8)0.0112 (10)0.0091 (9)
N10.0235 (6)0.0442 (10)0.0357 (7)0.0034 (8)0.0094 (6)0.0075 (9)
O10.0217 (6)0.0733 (12)0.0641 (10)0.0078 (7)0.0111 (7)0.0065 (11)
O20.0388 (8)0.136 (2)0.0264 (7)0.0166 (12)0.0122 (6)0.0023 (10)
Si10.02129 (18)0.0293 (2)0.01984 (18)0.00030 (19)0.00383 (15)0.00043 (19)
Geometric parameters (Å, º) top
C1—C21.209 (2)C9—Si11.8560 (18)
C1—Si11.8450 (17)C9—H9A0.98
C2—C31.438 (2)C9—H9B0.98
C3—C81.397 (2)C9—H9C0.98
C3—C41.402 (2)C10—Si11.853 (2)
C4—C51.388 (2)C10—H10A0.98
C4—H40.95C10—H10B0.98
C5—C61.380 (2)C10—H10C0.98
C5—H50.95C10B—Si11.856 (2)
C6—C71.388 (2)C10B—H10D0.98
C6—N11.4671 (19)C10B—H10E0.98
C7—C81.380 (2)C10B—H10F0.98
C7—H70.95N1—O11.219 (2)
C8—H80.95N1—O21.221 (2)
C2—C1—Si1176.09 (16)H9A—C9—H9C109.5
C1—C2—C3175.90 (18)H9B—C9—H9C109.5
C8—C3—C4119.38 (13)Si1—C10—H10A109.5
C8—C3—C2119.25 (14)Si1—C10—H10B109.5
C4—C3—C2121.36 (14)H10A—C10—H10B109.5
C5—C4—C3120.35 (14)Si1—C10—H10C109.5
C5—C4—H4119.8H10A—C10—H10C109.5
C3—C4—H4119.8H10B—C10—H10C109.5
C6—C5—C4118.44 (14)Si1—C10B—H10D109.5
C6—C5—H5120.8Si1—C10B—H10E109.5
C4—C5—H5120.8H10D—C10B—H10E109.5
C5—C6—C7122.73 (14)Si1—C10B—H10F109.5
C5—C6—N1118.86 (13)H10D—C10B—H10F109.5
C7—C6—N1118.42 (14)H10E—C10B—H10F109.5
C8—C7—C6118.29 (13)O1—N1—O2123.47 (16)
C8—C7—H7120.9O1—N1—C6118.21 (16)
C6—C7—H7120.9O2—N1—C6118.31 (15)
C7—C8—C3120.81 (13)C1—Si1—C10108.92 (10)
C7—C8—H8119.6C1—Si1—C10B109.77 (10)
C3—C8—H8119.6C10—Si1—C10B107.68 (10)
Si1—C9—H9A109.5C1—Si1—C9108.27 (8)
Si1—C9—H9B109.5C10—Si1—C9111.68 (12)
H9A—C9—H9B109.5C10B—Si1—C9110.51 (12)
Si1—C9—H9C109.5
C8—C3—C4—C50.5 (3)C6—C7—C8—C30.6 (3)
C2—C3—C4—C5178.28 (19)C4—C3—C8—C71.0 (3)
C3—C4—C5—C60.4 (3)C2—C3—C8—C7177.76 (18)
C4—C5—C6—C70.9 (3)C5—C6—N1—O110.6 (3)
C4—C5—C6—N1178.80 (18)C7—C6—N1—O1169.7 (2)
C5—C6—C7—C80.3 (3)C5—C6—N1—O2168.0 (2)
N1—C6—C7—C8179.33 (18)C7—C6—N1—O211.7 (3)

Experimental details

Crystal data
Chemical formulaC11H13NO2Si
Mr219.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.222 (2), 7.128 (2), 16.537 (4)
V3)1204.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
17805, 4690, 3538
Rint0.032
(sin θ/λ)max1)0.782
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.123, 1.02
No. of reflections4690
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.32
Absolute structureFlack (1983), 1953 Bijvoet pairs
Absolute structure parameter0.35 (15)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

CAS 75867-38-8.

Acknowledgements

Purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcia, J. G., Asfaw, B., Rodriguez, A. & Fronczek, F. R. (1998). Acta Cryst. C54, 489–491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, 8, 627–630.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds