organic compounds
N-(2,6-Diisopropylphenyl)thioamide
aSchool of Chemistry, University of KwaZulu-Natal, PO Private Bag X54001, Westville 4000, Durban, South Africa, and bMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: demetrius.levendis@wits.ac.za
In the 13H19NS {systematic name: N-[2,6-bis(propan-2-yl)phenyl]carbothioamide}, molecules assemble via N—H⋯S=C hydrogen bonds into helical chains along the b axis. The thioamide moiety, with a syn disposition of the N- and C-bound H atoms, is twisted out of the plane of the benzene ring to which it is connected, forming a dihedral angle angle of 77.60 (14)°.
of the title compound, CRelated literature
For the synthesis of related arylthioamides, see: Fernandes & Reid (2003). For related thioamide structures, see: Chitanda et al. (2008); Michta et al. (2008); Omondi et al. (2009a); Jarchow & Schmalle (1977). For related N-2,6-disubstituted-arylformamides, see: Omondi et al. (2008, 2009b,c). For phase transformations in N-2,6-phenylformamides and N-2,6-dichlorophenylformamide, see: Omondi et al. (2005); Gowda et al. (2000).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536812033685/tk5134sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812033685/tk5134Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812033685/tk5134Isup3.cml
The title compound was synthesized using a method similar to one described previously (Omondi et al., 2009a). A mixture of the parent formamide and P2S5 was refluxed in a mixture of THF and benzene for about 60 min (monitoring the reaction progress was by TLC plates). The solvent was then removed in vacuo and the product extracted from the remaining solid using benzene. The pale-yellow solution was passed through a column (silica gel) using a 1:1 mixture of hexane and ethyl acetate as the carrier solvent. The product was crystallized directly from the carrier solution. Colourless, block-like crystals were obtained.
The N-bound H atom on the amide was placed according to the observed electron density and allowed to refine freely. The remaining H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 0.93–0.98 Å and with Uiso(H) = 1.2–1.5Ueq(C). Isopropyl atoms C8–C13 were reported by PLATON to have slightly distorted anisotropic displacement parameters (ADP). As a consequence, DELU and SIMU were used in the final
to restrain their ADPs to more reasonable values.Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C13H19NS | F(000) = 480 |
Mr = 221.35 | Dx = 1.091 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 883 reflections |
a = 9.0230 (12) Å | θ = 2.2–23.3° |
b = 9.3670 (12) Å | µ = 0.21 mm−1 |
c = 16.269 (2) Å | T = 293 K |
β = 101.453 (3)° | Block, colourless |
V = 1347.7 (3) Å3 | 0.36 × 0.14 × 0.12 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | Rint = 0.098 |
Graphite monochromator | θmax = 25.5°, θmin = 2.3° |
ω scans | h = −9→10 |
6974 measured reflections | k = −11→11 |
2508 independent reflections | l = −19→16 |
1456 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3 |
2508 reflections | (Δ/σ)max = 0.002 |
143 parameters | Δρmax = 0.23 e Å−3 |
42 restraints | Δρmin = −0.28 e Å−3 |
C13H19NS | V = 1347.7 (3) Å3 |
Mr = 221.35 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.0230 (12) Å | µ = 0.21 mm−1 |
b = 9.3670 (12) Å | T = 293 K |
c = 16.269 (2) Å | 0.36 × 0.14 × 0.12 mm |
β = 101.453 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 1456 reflections with I > 2σ(I) |
6974 measured reflections | Rint = 0.098 |
2508 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 42 restraints |
wR(F2) = 0.160 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.23 e Å−3 |
2508 reflections | Δρmin = −0.28 e Å−3 |
143 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4519 (3) | 0.8487 (2) | 0.32841 (15) | 0.0460 (6) | |
C2 | 0.2981 (3) | 0.8173 (2) | 0.31060 (17) | 0.0570 (7) | |
C3 | 0.2441 (3) | 0.7287 (3) | 0.3670 (2) | 0.0702 (9) | |
H3 | 0.1419 | 0.7056 | 0.3572 | 0.084* | |
C4 | 0.3383 (4) | 0.6750 (3) | 0.4364 (2) | 0.0733 (9) | |
H4 | 0.2995 | 0.6166 | 0.4732 | 0.088* | |
C5 | 0.4902 (4) | 0.7070 (3) | 0.45191 (17) | 0.0639 (7) | |
H5 | 0.5535 | 0.6683 | 0.4987 | 0.077* | |
C6 | 0.5497 (3) | 0.7954 (2) | 0.39911 (15) | 0.0500 (6) | |
C7 | 0.5833 (3) | 0.9161 (3) | 0.21651 (16) | 0.0571 (7) | |
H7 | 0.6092 | 0.9935 | 0.1864 | 0.068* | |
C8 | 0.1944 (3) | 0.8753 (3) | 0.2333 (2) | 0.0851 (10) | |
H8 | 0.245 | 0.9589 | 0.2153 | 0.102* | |
C9 | 0.7154 (3) | 0.8385 (3) | 0.42054 (16) | 0.0612 (7) | |
H9 | 0.7428 | 0.877 | 0.3696 | 0.073* | |
C10 | 0.1760 (6) | 0.7693 (4) | 0.1626 (3) | 0.1243 (15) | |
H10A | 0.2739 | 0.7378 | 0.1553 | 0.186* | |
H10B | 0.1238 | 0.8135 | 0.1118 | 0.186* | |
H10C | 0.1188 | 0.6889 | 0.1755 | 0.186* | |
C11 | 0.0449 (5) | 0.9259 (5) | 0.2488 (4) | 0.168 (2) | |
H11A | −0.0073 | 0.8477 | 0.2685 | 0.252* | |
H11B | −0.0146 | 0.9622 | 0.1975 | 0.252* | |
H11C | 0.0609 | 1.0001 | 0.2903 | 0.252* | |
C12 | 0.7377 (4) | 0.9566 (3) | 0.4862 (2) | 0.0986 (11) | |
H12A | 0.6709 | 1.0345 | 0.4666 | 0.148* | |
H12B | 0.8405 | 0.9894 | 0.4956 | 0.148* | |
H12C | 0.7159 | 0.9204 | 0.5377 | 0.148* | |
C13 | 0.8196 (4) | 0.7135 (4) | 0.4498 (3) | 0.1098 (13) | |
H13A | 0.8007 | 0.6786 | 0.5023 | 0.165* | |
H13B | 0.9229 | 0.7441 | 0.457 | 0.165* | |
H13C | 0.8011 | 0.6387 | 0.4087 | 0.165* | |
S1 | 0.63900 (10) | 0.75914 (7) | 0.18895 (5) | 0.0724 (3) | |
N1 | 0.5084 (2) | 0.9469 (2) | 0.27423 (14) | 0.0530 (6) | |
H1 | 0.485 (3) | 1.032 (3) | 0.2817 (16) | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0531 (16) | 0.0339 (10) | 0.0526 (15) | −0.0004 (10) | 0.0145 (12) | −0.0042 (10) |
C2 | 0.0520 (17) | 0.0388 (12) | 0.0803 (19) | 0.0005 (11) | 0.0134 (14) | −0.0093 (12) |
C3 | 0.0604 (19) | 0.0535 (15) | 0.104 (3) | −0.0078 (13) | 0.0352 (19) | −0.0198 (16) |
C4 | 0.104 (3) | 0.0558 (15) | 0.073 (2) | −0.0112 (16) | 0.049 (2) | −0.0065 (15) |
C5 | 0.088 (2) | 0.0606 (14) | 0.0467 (15) | 0.0014 (15) | 0.0216 (15) | −0.0021 (12) |
C6 | 0.0627 (17) | 0.0431 (11) | 0.0450 (14) | 0.0023 (11) | 0.0125 (13) | −0.0047 (11) |
C7 | 0.0667 (18) | 0.0506 (13) | 0.0508 (15) | −0.0163 (12) | 0.0040 (14) | 0.0105 (12) |
C8 | 0.0568 (19) | 0.0644 (16) | 0.122 (3) | −0.0023 (14) | −0.0107 (19) | 0.0111 (18) |
C9 | 0.0608 (18) | 0.0717 (16) | 0.0479 (15) | −0.0006 (13) | 0.0030 (13) | −0.0004 (13) |
C10 | 0.122 (4) | 0.141 (3) | 0.090 (3) | 0.020 (3) | −0.028 (2) | −0.002 (2) |
C11 | 0.088 (3) | 0.166 (4) | 0.232 (6) | 0.066 (3) | −0.010 (3) | −0.018 (4) |
C12 | 0.094 (3) | 0.092 (2) | 0.106 (3) | −0.0292 (19) | 0.013 (2) | −0.032 (2) |
C13 | 0.072 (2) | 0.109 (2) | 0.135 (3) | 0.0240 (19) | −0.011 (2) | −0.007 (2) |
S1 | 0.0962 (7) | 0.0621 (4) | 0.0675 (5) | −0.0117 (4) | 0.0370 (4) | −0.0061 (3) |
N1 | 0.0592 (14) | 0.0341 (9) | 0.0634 (14) | −0.0014 (9) | 0.0067 (12) | 0.0048 (10) |
C1—C2 | 1.392 (3) | C8—H8 | 0.98 |
C1—C6 | 1.395 (3) | C9—C13 | 1.518 (4) |
C1—N1 | 1.436 (3) | C9—C12 | 1.523 (4) |
C2—C3 | 1.395 (4) | C9—H9 | 0.98 |
C2—C8 | 1.512 (4) | C10—H10A | 0.96 |
C3—C4 | 1.367 (4) | C10—H10B | 0.96 |
C3—H3 | 0.93 | C10—H10C | 0.96 |
C4—C5 | 1.377 (4) | C11—H11A | 0.96 |
C4—H4 | 0.93 | C11—H11B | 0.96 |
C5—C6 | 1.377 (4) | C11—H11C | 0.96 |
C5—H5 | 0.93 | C12—H12A | 0.96 |
C6—C9 | 1.521 (4) | C12—H12B | 0.96 |
C7—N1 | 1.294 (3) | C12—H12C | 0.96 |
C7—S1 | 1.645 (3) | C13—H13A | 0.96 |
C7—H7 | 0.93 | C13—H13B | 0.96 |
C8—C11 | 1.497 (5) | C13—H13C | 0.96 |
C8—C10 | 1.503 (5) | N1—H1 | 0.84 (3) |
C2—C1—C6 | 122.5 (2) | C13—C9—H9 | 107.8 |
C2—C1—N1 | 117.9 (2) | C6—C9—H9 | 107.8 |
C6—C1—N1 | 119.5 (2) | C12—C9—H9 | 107.8 |
C1—C2—C3 | 116.9 (2) | C8—C10—H10A | 109.5 |
C1—C2—C8 | 121.6 (3) | C8—C10—H10B | 109.5 |
C3—C2—C8 | 121.5 (3) | H10A—C10—H10B | 109.5 |
C4—C3—C2 | 121.4 (3) | C8—C10—H10C | 109.5 |
C4—C3—H3 | 119.3 | H10A—C10—H10C | 109.5 |
C2—C3—H3 | 119.3 | H10B—C10—H10C | 109.5 |
C3—C4—C5 | 120.3 (3) | C8—C11—H11A | 109.5 |
C3—C4—H4 | 119.8 | C8—C11—H11B | 109.5 |
C5—C4—H4 | 119.8 | H11A—C11—H11B | 109.5 |
C6—C5—C4 | 120.9 (3) | C8—C11—H11C | 109.5 |
C6—C5—H5 | 119.5 | H11A—C11—H11C | 109.5 |
C4—C5—H5 | 119.5 | H11B—C11—H11C | 109.5 |
C5—C6—C1 | 117.9 (2) | C9—C12—H12A | 109.5 |
C5—C6—C9 | 120.3 (2) | C9—C12—H12B | 109.5 |
C1—C6—C9 | 121.7 (2) | H12A—C12—H12B | 109.5 |
N1—C7—S1 | 128.99 (19) | C9—C12—H12C | 109.5 |
N1—C7—H7 | 115.5 | H12A—C12—H12C | 109.5 |
S1—C7—H7 | 115.5 | H12B—C12—H12C | 109.5 |
C11—C8—C10 | 111.8 (3) | C9—C13—H13A | 109.5 |
C11—C8—C2 | 113.8 (4) | C9—C13—H13B | 109.5 |
C10—C8—C2 | 110.8 (2) | H13A—C13—H13B | 109.5 |
C11—C8—H8 | 106.7 | C9—C13—H13C | 109.5 |
C10—C8—H8 | 106.7 | H13A—C13—H13C | 109.5 |
C2—C8—H8 | 106.7 | H13B—C13—H13C | 109.5 |
C13—C9—C6 | 112.7 (2) | C7—N1—C1 | 127.1 (2) |
C13—C9—C12 | 110.7 (3) | C7—N1—H1 | 119.7 (19) |
C6—C9—C12 | 109.9 (2) | C1—N1—H1 | 113.2 (19) |
C6—C1—C2—C3 | −0.2 (3) | N1—C1—C6—C9 | −0.1 (3) |
N1—C1—C2—C3 | −176.1 (2) | C1—C2—C8—C11 | −138.2 (3) |
C6—C1—C2—C8 | −179.6 (2) | C3—C2—C8—C11 | 42.4 (4) |
N1—C1—C2—C8 | 4.5 (3) | C1—C2—C8—C10 | 94.8 (4) |
C1—C2—C3—C4 | −0.1 (4) | C3—C2—C8—C10 | −84.6 (4) |
C8—C2—C3—C4 | 179.3 (2) | C5—C6—C9—C13 | 45.2 (4) |
C2—C3—C4—C5 | −0.4 (4) | C1—C6—C9—C13 | −137.9 (3) |
C3—C4—C5—C6 | 1.2 (4) | C5—C6—C9—C12 | −78.7 (3) |
C4—C5—C6—C1 | −1.5 (4) | C1—C6—C9—C12 | 98.1 (3) |
C4—C5—C6—C9 | 175.5 (2) | S1—C7—N1—C1 | −1.3 (4) |
C2—C1—C6—C5 | 1.0 (3) | C2—C1—N1—C7 | −103.4 (3) |
N1—C1—C6—C5 | 176.8 (2) | C6—C1—N1—C7 | 80.6 (3) |
C2—C1—C6—C9 | −176.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.84 (3) | 2.49 (3) | 3.316 (2) | 166 (2) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H19NS |
Mr | 221.35 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.0230 (12), 9.3670 (12), 16.269 (2) |
β (°) | 101.453 (3) |
V (Å3) | 1347.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.36 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6974, 2508, 1456 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.160, 0.97 |
No. of reflections | 2508 |
No. of parameters | 143 |
No. of restraints | 42 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.28 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.84 (3) | 2.49 (3) | 3.316 (2) | 166 (2) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the University of the Witwatersrand and the National Research Foundation (GUN: 2067413) for funding and providing the infrastructure to carry out this work.
References
Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chitanda, J. M., Quail, J. W. & Foley, S. R. (2008). Acta Cryst. E64, o1728. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fernandes, M. A. & Reid, D. H. (2003). Synlett, pp. 2231–2233. Google Scholar
Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800. CAS Google Scholar
Jarchow, O. & Schmalle, H. W. (1977). Acta Cryst. B33, 1610–1613. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Michta, A., Chełmecka, E., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o411–o413. Web of Science CSD CrossRef IUCr Journals Google Scholar
Omondi, B., Fernandes, M. A., Layh, M. & Levendis, D. C. (2008). Acta Cryst. C64, o137–o138. Web of Science CSD CrossRef IUCr Journals Google Scholar
Omondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. & Mkwizu, T. S. P. (2005). CrystEngComm, 7, 690–700. Web of Science CSD CrossRef CAS Google Scholar
Omondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2009a). CrystEngComm, 11, 1658–1665. Web of Science CSD CrossRef CAS Google Scholar
Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, o160–o162. Web of Science CSD CrossRef IUCr Journals Google Scholar
Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009c). Acta Cryst. C65, o470–o475. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of arylthioamides related to the title compound has been described (Fernandes & Reid, 2003) as have the structures of related thioamides (Chitanda et al., 2008; Michta et al., 2008; Omondi et al., 2009a; Jarchow & Schmalle, 1977) and N-2,6-disubstituted-arylformamides (Omondi et al., 2009b; Omondi et al., 2009c; Omondi et al., 2008). In a previous study of 2,6-disubstituted N-arylformamides (Omondi et al., 2005), we analyzed the effect of chloro-methyl exchange and the role of weak interactions on the structural and thermal properties of the compounds studied. Phase transitions were observed when the substituents were either both chloride (2,6-dichloro-phenylformamide) or one chloride and one methyl group (2-chloro-6-methyl-phenylformamide); see also Gowda et al. (2000). In a subsequent study we analysed the crystal structures of several N-arylthioamides (Omondi et al., 2009a) with a view to understanding the influence of hydrogen bonds and other weak intermolecular interactions on the conformation and the overall crystal packing of these compounds. The structure of 2,6-diisopropyl-N-phenylformamide, 2, was reported recently (Chitanda et al., 2008). In this paper we report on the crystal structure of the analogous 2,6-diisopropyl-N-phenylthioamide (1, Fig. 1). Compounds 1 and 2 are isostructural.
The angle between the mean plane through the phenyl ring and the thioamide moiety in 1 is 77.60 (14)°, while in 2 the corresponding angle between the formamide and the phenyl plane is ca 79°. The overlay diagram between structures of 1 and 2 is shown in Fig. 2. In 1 chains of molecules are linked via N—H···S═C hydrogen bonds. Molecules along these chains are related by screw (21) symmetry as shown by the packing of the molecules in the unit cell (Fig. 3).