organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Diiso­propyl­phen­yl)thio­amide

aSchool of Chemistry, University of KwaZulu-Natal, PO Private Bag X54001, Westville 4000, Durban, South Africa, and bMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: demetrius.levendis@wits.ac.za

(Received 24 July 2012; accepted 26 July 2012; online 1 August 2012)

In the crystal structure of the title compound, C13H19NS {systematic name: N-[2,6-bis­(propan-2-yl)phen­yl]carbothio­amide}, mol­ecules assemble via N—H⋯S=C hydrogen bonds into helical chains along the b axis. The thio­amide moiety, with a syn disposition of the N- and C-bound H atoms, is twisted out of the plane of the benzene ring to which it is connected, forming a dihedral angle angle of 77.60 (14)°.

Related literature

For the synthesis of related aryl­thio­amides, see: Fernandes & Reid (2003[Fernandes, M. A. & Reid, D. H. (2003). Synlett, pp. 2231-2233.]). For related thio­amide structures, see: Chitanda et al. (2008[Chitanda, J. M., Quail, J. W. & Foley, S. R. (2008). Acta Cryst. E64, o1728.]); Michta et al. (2008[Michta, A., Chełmecka, E., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o411-o413.]); Omondi et al. (2009a[Omondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2009a). CrystEngComm, 11, 1658-1665.]); Jarchow & Schmalle (1977[Jarchow, O. & Schmalle, H. W. (1977). Acta Cryst. B33, 1610-1613.]). For related N-2,6-disubstituted-aryl­formamides, see: Omondi et al. (2008[Omondi, B., Fernandes, M. A., Layh, M. & Levendis, D. C. (2008). Acta Cryst. C64, o137-o138.], 2009b[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, o160-o162.],c[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009c). Acta Cryst. C65, o470-o475.]). For phase transformations in N-2,6-phenyl­formamides and N-2,6-dichloro­phenyl­formamide, see: Omondi et al. (2005[Omondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. & Mkwizu, T. S. P. (2005). CrystEngComm, 7, 690-700.]); Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.]).

[Scheme 1]

Experimental

Crystal data
  • C13H19NS

  • Mr = 221.35

  • Monoclinic, P 21 /c

  • a = 9.0230 (12) Å

  • b = 9.3670 (12) Å

  • c = 16.269 (2) Å

  • β = 101.453 (3)°

  • V = 1347.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.36 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • 6974 measured reflections

  • 2508 independent reflections

  • 1456 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.160

  • S = 0.97

  • 2508 reflections

  • 143 parameters

  • 42 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.84 (3) 2.49 (3) 3.316 (2) 166 (2)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The synthesis of arylthioamides related to the title compound has been described (Fernandes & Reid, 2003) as have the structures of related thioamides (Chitanda et al., 2008; Michta et al., 2008; Omondi et al., 2009a; Jarchow & Schmalle, 1977) and N-2,6-disubstituted-arylformamides (Omondi et al., 2009b; Omondi et al., 2009c; Omondi et al., 2008). In a previous study of 2,6-disubstituted N-arylformamides (Omondi et al., 2005), we analyzed the effect of chloro-methyl exchange and the role of weak interactions on the structural and thermal properties of the compounds studied. Phase transitions were observed when the substituents were either both chloride (2,6-dichloro-phenylformamide) or one chloride and one methyl group (2-chloro-6-methyl-phenylformamide); see also Gowda et al. (2000). In a subsequent study we analysed the crystal structures of several N-arylthioamides (Omondi et al., 2009a) with a view to understanding the influence of hydrogen bonds and other weak intermolecular interactions on the conformation and the overall crystal packing of these compounds. The structure of 2,6-diisopropyl-N-phenylformamide, 2, was reported recently (Chitanda et al., 2008). In this paper we report on the crystal structure of the analogous 2,6-diisopropyl-N-phenylthioamide (1, Fig. 1). Compounds 1 and 2 are isostructural.

The angle between the mean plane through the phenyl ring and the thioamide moiety in 1 is 77.60 (14)°, while in 2 the corresponding angle between the formamide and the phenyl plane is ca 79°. The overlay diagram between structures of 1 and 2 is shown in Fig. 2. In 1 chains of molecules are linked via N—H···SC hydrogen bonds. Molecules along these chains are related by screw (21) symmetry as shown by the packing of the molecules in the unit cell (Fig. 3).

Related literature top

For the synthesis of related arylthioamides, see: Fernandes & Reid (2003). For related thioamide structures, see: Chitanda et al. (2008); Michta et al. (2008); Omondi et al. (2009a); Jarchow & Schmalle (1977). For related N-2,6-disubstituted-arylformamides, see: Omondi et al. (2008, 2009b,c). For phase transformations in N-2,6-phenylformamides and N-2,6-dichlorophenylformamide, see: Omondi et al. (2005); Gowda et al. (2000).

Experimental top

The title compound was synthesized using a method similar to one described previously (Omondi et al., 2009a). A mixture of the parent formamide and P2S5 was refluxed in a mixture of THF and benzene for about 60 min (monitoring the reaction progress was by TLC plates). The solvent was then removed in vacuo and the product extracted from the remaining solid using benzene. The pale-yellow solution was passed through a column (silica gel) using a 1:1 mixture of hexane and ethyl acetate as the carrier solvent. The product was crystallized directly from the carrier solution. Colourless, block-like crystals were obtained.

Refinement top

The N-bound H atom on the amide was placed according to the observed electron density and allowed to refine freely. The remaining H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 0.93–0.98 Å and with Uiso(H) = 1.2–1.5Ueq(C). Isopropyl atoms C8–C13 were reported by PLATON to have slightly distorted anisotropic displacement parameters (ADP). As a consequence, DELU and SIMU were used in the final refinement to restrain their ADPs to more reasonable values.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. An overlay diagram between structures of the title compound and 2,6-diisopropyl-N-phenylformamide (2).
[Figure 3] Fig. 3. A view down the a axis of the unit cell of the title compound showing the N—H···SC hydrogen-bonded chains.
N-(2,6-Diisopropylphenyl)thioamide top
Crystal data top
C13H19NSF(000) = 480
Mr = 221.35Dx = 1.091 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 883 reflections
a = 9.0230 (12) Åθ = 2.2–23.3°
b = 9.3670 (12) ŵ = 0.21 mm1
c = 16.269 (2) ÅT = 293 K
β = 101.453 (3)°Block, colourless
V = 1347.7 (3) Å30.36 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
Rint = 0.098
Graphite monochromatorθmax = 25.5°, θmin = 2.3°
ω scansh = 910
6974 measured reflectionsk = 1111
2508 independent reflectionsl = 1916
1456 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
2508 reflections(Δ/σ)max = 0.002
143 parametersΔρmax = 0.23 e Å3
42 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H19NSV = 1347.7 (3) Å3
Mr = 221.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0230 (12) ŵ = 0.21 mm1
b = 9.3670 (12) ÅT = 293 K
c = 16.269 (2) Å0.36 × 0.14 × 0.12 mm
β = 101.453 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1456 reflections with I > 2σ(I)
6974 measured reflectionsRint = 0.098
2508 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05442 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.23 e Å3
2508 reflectionsΔρmin = 0.28 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4519 (3)0.8487 (2)0.32841 (15)0.0460 (6)
C20.2981 (3)0.8173 (2)0.31060 (17)0.0570 (7)
C30.2441 (3)0.7287 (3)0.3670 (2)0.0702 (9)
H30.14190.70560.35720.084*
C40.3383 (4)0.6750 (3)0.4364 (2)0.0733 (9)
H40.29950.61660.47320.088*
C50.4902 (4)0.7070 (3)0.45191 (17)0.0639 (7)
H50.55350.66830.49870.077*
C60.5497 (3)0.7954 (2)0.39911 (15)0.0500 (6)
C70.5833 (3)0.9161 (3)0.21651 (16)0.0571 (7)
H70.60920.99350.18640.068*
C80.1944 (3)0.8753 (3)0.2333 (2)0.0851 (10)
H80.2450.95890.21530.102*
C90.7154 (3)0.8385 (3)0.42054 (16)0.0612 (7)
H90.74280.8770.36960.073*
C100.1760 (6)0.7693 (4)0.1626 (3)0.1243 (15)
H10A0.27390.73780.15530.186*
H10B0.12380.81350.11180.186*
H10C0.11880.68890.17550.186*
C110.0449 (5)0.9259 (5)0.2488 (4)0.168 (2)
H11A0.00730.84770.26850.252*
H11B0.01460.96220.19750.252*
H11C0.06091.00010.29030.252*
C120.7377 (4)0.9566 (3)0.4862 (2)0.0986 (11)
H12A0.67091.03450.46660.148*
H12B0.84050.98940.49560.148*
H12C0.71590.92040.53770.148*
C130.8196 (4)0.7135 (4)0.4498 (3)0.1098 (13)
H13A0.80070.67860.50230.165*
H13B0.92290.74410.4570.165*
H13C0.80110.63870.40870.165*
S10.63900 (10)0.75914 (7)0.18895 (5)0.0724 (3)
N10.5084 (2)0.9469 (2)0.27423 (14)0.0530 (6)
H10.485 (3)1.032 (3)0.2817 (16)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0531 (16)0.0339 (10)0.0526 (15)0.0004 (10)0.0145 (12)0.0042 (10)
C20.0520 (17)0.0388 (12)0.0803 (19)0.0005 (11)0.0134 (14)0.0093 (12)
C30.0604 (19)0.0535 (15)0.104 (3)0.0078 (13)0.0352 (19)0.0198 (16)
C40.104 (3)0.0558 (15)0.073 (2)0.0112 (16)0.049 (2)0.0065 (15)
C50.088 (2)0.0606 (14)0.0467 (15)0.0014 (15)0.0216 (15)0.0021 (12)
C60.0627 (17)0.0431 (11)0.0450 (14)0.0023 (11)0.0125 (13)0.0047 (11)
C70.0667 (18)0.0506 (13)0.0508 (15)0.0163 (12)0.0040 (14)0.0105 (12)
C80.0568 (19)0.0644 (16)0.122 (3)0.0023 (14)0.0107 (19)0.0111 (18)
C90.0608 (18)0.0717 (16)0.0479 (15)0.0006 (13)0.0030 (13)0.0004 (13)
C100.122 (4)0.141 (3)0.090 (3)0.020 (3)0.028 (2)0.002 (2)
C110.088 (3)0.166 (4)0.232 (6)0.066 (3)0.010 (3)0.018 (4)
C120.094 (3)0.092 (2)0.106 (3)0.0292 (19)0.013 (2)0.032 (2)
C130.072 (2)0.109 (2)0.135 (3)0.0240 (19)0.011 (2)0.007 (2)
S10.0962 (7)0.0621 (4)0.0675 (5)0.0117 (4)0.0370 (4)0.0061 (3)
N10.0592 (14)0.0341 (9)0.0634 (14)0.0014 (9)0.0067 (12)0.0048 (10)
Geometric parameters (Å, º) top
C1—C21.392 (3)C8—H80.98
C1—C61.395 (3)C9—C131.518 (4)
C1—N11.436 (3)C9—C121.523 (4)
C2—C31.395 (4)C9—H90.98
C2—C81.512 (4)C10—H10A0.96
C3—C41.367 (4)C10—H10B0.96
C3—H30.93C10—H10C0.96
C4—C51.377 (4)C11—H11A0.96
C4—H40.93C11—H11B0.96
C5—C61.377 (4)C11—H11C0.96
C5—H50.93C12—H12A0.96
C6—C91.521 (4)C12—H12B0.96
C7—N11.294 (3)C12—H12C0.96
C7—S11.645 (3)C13—H13A0.96
C7—H70.93C13—H13B0.96
C8—C111.497 (5)C13—H13C0.96
C8—C101.503 (5)N1—H10.84 (3)
C2—C1—C6122.5 (2)C13—C9—H9107.8
C2—C1—N1117.9 (2)C6—C9—H9107.8
C6—C1—N1119.5 (2)C12—C9—H9107.8
C1—C2—C3116.9 (2)C8—C10—H10A109.5
C1—C2—C8121.6 (3)C8—C10—H10B109.5
C3—C2—C8121.5 (3)H10A—C10—H10B109.5
C4—C3—C2121.4 (3)C8—C10—H10C109.5
C4—C3—H3119.3H10A—C10—H10C109.5
C2—C3—H3119.3H10B—C10—H10C109.5
C3—C4—C5120.3 (3)C8—C11—H11A109.5
C3—C4—H4119.8C8—C11—H11B109.5
C5—C4—H4119.8H11A—C11—H11B109.5
C6—C5—C4120.9 (3)C8—C11—H11C109.5
C6—C5—H5119.5H11A—C11—H11C109.5
C4—C5—H5119.5H11B—C11—H11C109.5
C5—C6—C1117.9 (2)C9—C12—H12A109.5
C5—C6—C9120.3 (2)C9—C12—H12B109.5
C1—C6—C9121.7 (2)H12A—C12—H12B109.5
N1—C7—S1128.99 (19)C9—C12—H12C109.5
N1—C7—H7115.5H12A—C12—H12C109.5
S1—C7—H7115.5H12B—C12—H12C109.5
C11—C8—C10111.8 (3)C9—C13—H13A109.5
C11—C8—C2113.8 (4)C9—C13—H13B109.5
C10—C8—C2110.8 (2)H13A—C13—H13B109.5
C11—C8—H8106.7C9—C13—H13C109.5
C10—C8—H8106.7H13A—C13—H13C109.5
C2—C8—H8106.7H13B—C13—H13C109.5
C13—C9—C6112.7 (2)C7—N1—C1127.1 (2)
C13—C9—C12110.7 (3)C7—N1—H1119.7 (19)
C6—C9—C12109.9 (2)C1—N1—H1113.2 (19)
C6—C1—C2—C30.2 (3)N1—C1—C6—C90.1 (3)
N1—C1—C2—C3176.1 (2)C1—C2—C8—C11138.2 (3)
C6—C1—C2—C8179.6 (2)C3—C2—C8—C1142.4 (4)
N1—C1—C2—C84.5 (3)C1—C2—C8—C1094.8 (4)
C1—C2—C3—C40.1 (4)C3—C2—C8—C1084.6 (4)
C8—C2—C3—C4179.3 (2)C5—C6—C9—C1345.2 (4)
C2—C3—C4—C50.4 (4)C1—C6—C9—C13137.9 (3)
C3—C4—C5—C61.2 (4)C5—C6—C9—C1278.7 (3)
C4—C5—C6—C11.5 (4)C1—C6—C9—C1298.1 (3)
C4—C5—C6—C9175.5 (2)S1—C7—N1—C11.3 (4)
C2—C1—C6—C51.0 (3)C2—C1—N1—C7103.4 (3)
N1—C1—C6—C5176.8 (2)C6—C1—N1—C780.6 (3)
C2—C1—C6—C9176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.84 (3)2.49 (3)3.316 (2)166 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H19NS
Mr221.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0230 (12), 9.3670 (12), 16.269 (2)
β (°) 101.453 (3)
V3)1347.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.36 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6974, 2508, 1456
Rint0.098
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.160, 0.97
No. of reflections2508
No. of parameters143
No. of restraints42
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.84 (3)2.49 (3)3.316 (2)166 (2)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the University of the Witwatersrand and the National Research Foundation (GUN: 2067413) for funding and providing the infrastructure to carry out this work.

References

First citationBruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChitanda, J. M., Quail, J. W. & Foley, S. R. (2008). Acta Cryst. E64, o1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, M. A. & Reid, D. H. (2003). Synlett, pp. 2231–2233.  Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationJarchow, O. & Schmalle, H. W. (1977). Acta Cryst. B33, 1610–1613.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMichta, A., Chełmecka, E., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o411–o413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmondi, B., Fernandes, M. A., Layh, M. & Levendis, D. C. (2008). Acta Cryst. C64, o137–o138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmondi, B., Fernandes, M. A., Layh, M., Levendis, D. C., Look, J. L. & Mkwizu, T. S. P. (2005). CrystEngComm, 7, 690–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationOmondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2009a). CrystEngComm, 11, 1658–1665.  Web of Science CSD CrossRef CAS Google Scholar
First citationOmondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, o160–o162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009c). Acta Cryst. C65, o470–o475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds