metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1212-m1213

Tetra­butyl­ammonium hydrogen phenyl­arsonate–phenyl­arsonic acid (1/1)

aSchool of Chemistry, Trinity College, Dublin 2, Ireland
*Correspondence e-mail: schmittw@tcd.ie

(Received 1 August 2012; accepted 9 August 2012; online 25 August 2012)

The structure of the title salt adduct, (C4H9)4N+·C6H5AsO3H·C6H5AsO3H2, features chains along the a axis comprising alternating hydrogen phenyl­arsonate anions and phenyl­arsonic acid mol­ecules linked by O—H⋯O hydrogen bonds.

Related literature

For similar structures containing bulky hydro­phobic cations and hydrogen-bonded chains of hydrogen(aryl­phospho­nate)/aryl­phospho­nic acid, see: Clarke et al. (2005[Clarke, R., Latham, K., Rix, C., Hobday, M. & White, J. (2005). CrystEngComm, 7, 28-36.]); Latham et al. (2007[Latham, K., Coyle, A. M., Rix, C. J., Fowless, A. & White, J. M. (2007). Polyhedron, 26, 222-236.], 2008[Latham, K., White, K. F., Szpakolski, K. B., Rix, C. J. & White, J. M. (2008). Inorg. Chim. Acta, 362, 1872-1886.]). For hybrid organic–inorganic polyoxidometalate frameworks including aryl­arsonic acid ligands, see: Breen, Clérac et al. (2012[Breen, J. M., Clérac, R., Zhang, L., Cloonan, S. M., Kennedy, E., Feeney, M., McCabe, T., Willams, D. C. & Schmitt, W. (2012). Dalton Trans. 41, 2918-2926.]); Breen, Zhang et al. (2012[Breen, J. M., Zhang, L., Clement, R. & Schmitt, W. (2012). Inorg. Chem. 51, 19-21.]); Zhang & Schmitt (2011[Zhang, L. & Schmitt, W. (2011). J. Am. Chem. Soc. 133, 11240-11248.]); Onet et al. (2011[Onet, C. I., Zhang, L., Clérac, R., Jean-Denis, J. B., Feeney, M., McCabe, T. & Schmitt, W. (2011). Inorg. Chem. 50, 604-613.]); Breen & Schmitt (2008[Breen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904-6908.]).

[Scheme 1]

Experimental

Crystal data
  • C16H36N+·C6H6AsO3·C6H7AsO3

  • Mr = 645.52

  • Triclinic, [P \overline 1]

  • a = 9.035 (2) Å

  • b = 10.137 (3) Å

  • c = 18.789 (5) Å

  • α = 94.005 (5)°

  • β = 97.749 (4)°

  • γ = 114.289 (4)°

  • V = 1539.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 120 K

  • 0.5 × 0.3 × 0.1 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.291, Tmax = 0.809

  • 15253 measured reflections

  • 7513 independent reflections

  • 6769 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.03

  • 7513 reflections

  • 530 parameters

  • All H-atom parameters refined

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected bond lengths (Å)

As1—O13 1.6625 (10)
As1—O12 1.6723 (11)
As1—O11 1.7279 (11)
As1—C11 1.9001 (16)
As2—O23 1.6432 (11)
As2—O22 1.7013 (11)
As2—O21 1.7030 (12)
As2—C21 1.9153 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O23 0.77 (3) 1.88 (3) 2.6375 (17) 166 (3)
O21—H21⋯O13i 0.75 (3) 1.78 (3) 2.5280 (17) 176 (3)
O22—H22⋯O12i 0.93 (4) 1.57 (4) 2.4936 (17) 176 (4)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2; molecular graphics: OLEX2; software used to prepare material for publication: SHELXL97 and OLEX2.

Supporting information


Comment top

In the course of our studies on hybrid organic-inorganic polyoxometalate frameworks, including arylarsonic acid ligands (Breen, Clérac et al., 2012; Breen, Zhang et al., 2012; Zhang & Schmitt, 2011; Onet et al., 2011; Breen & Schmitt, 2008), we attempted to prepare tetrabutylammonium hydrogen phenylarsonate [(C4H9)4N]+[C6H5AsO3H]- as a starting material for synthesis. Unexpectedly, mixing equimolar amounts of tetrabutylammonium hydroxide and phenylarsonic acid in aqueous solution and slow evaporation resulted in crystals with a 2:1 stoichiometry of tetrabutylammonium to phenylarsonic acid. We therefore undertook a closer structural examination of these crystals in order to find out if there is a structural reason for the apparent stability of this stoichiometry.

The structure consists of hydrogen-bonded chains of alternating hydrogen phenylarsonate anions and phenylarsonic acid molecules extending in the direction of the crystallographic a axis. These chains form two-dimensional sheets via π-π interactions that extend in the crystallographic (010) plane. The sheets alternate along the crystallographic b axis with layers consisting of tetrabutylammonium cations to form a lamellar structure. Analogous structures are known for salts with a 2:1 stoichiometry between a bulky organic monocation and phenylphosphonic acid (see Clarke et al., 2005, Latham et al., 2007 and Latham et al., 2008), but to our knowledge, this is the first time it has been reported for phenylarsonic acid.

The hydrogen phenylarsonate anion contains one long and two short As–O bonds, while the phenylarsonic acid molecule contains one short and two long As–O bonds (see Table 1). This is consistent with the assigned proton positions on these molecules: the As–O distance is shorter when the oxygen atom is unprotonated, as the formal bond order of these bonds is higher than that of bonds to protonated oxygen atoms.

Each hydrogen mphenylarsonate anion acts as a hydrogen acceptor for two very short hydrogen bonds from one neighbouring phenylarsonic acid molecule and as a hydrogen bond donor for a longer hydrogen bond to the other neighbouring phenylarsonic acid molecule (see Table 2, Figure 2).

π-π interactions are weak, with the centroid to centroid distance being 3.8669 (17) Å between the phenyl ring on the hydrogen mphenylarsonate anion and its closest symmetry equivalent and 4.0264 (17) Å between the phenyl ring on the phenylarsonic acid molecule and its closest symmetry equivalent.

We believe that the unexpected stoichiometry of the crystal is due to the balancing between hydrogen bond donors and acceptors: Hydrogen arsonate ions have two hydrogen bond acceptor sites and one hydrogen bond donor site, whereas arsonic acid molecules have two hydrogen bond donor sites and one hydrogen bond acceptor site, so that all sites with a potential for hydrogen bonding are saturated at a 1:1 stoichiometry between neutral acid and monodeprotonated anion. The resulting assembly is the least hydrophilic and therefore the first to crystallize from a concentrated aqueous solution containing a bulky hydrophobic cation.

Related literature top

For similar structures containing bulky hydrophobic cations and hydrogen-bonded chains of hydrogen(arylphosphonate)/arylphosphonic acid, see: Clarke et al. (2005); Latham et al. (2007, 2008). For hybrid organic–inorganic polyoxidometalate frameworks including arylarsonic acid ligands, see: Breen, Clérac et al. (2012); Breen, Zhang et al. (2012); Zhang & Schmitt (2011); Onet et al. (2011); Breen & Schmitt (2008).

Experimental top

Phenylarsonic acid (10 mmol, 2.02 g) was dissolved in 1 M aqueous tetrabutylammonium hydroxide solution (10 mmol, 10 ml). The colourless oil obtained by evaporation of the solution in vacuo formed large colourless crystals on standing at room temperature for 7 days.

Refinement top

H atoms were located in Fourier difference maps and their positions and displacement parameters were refined independently. Modelled C–H bond lengths vary from 0.81 (3) Å to 1.01 (2) Å due to libration effects. Modelled O–H bond lengths vary from 0.75 (3) Å to 0.96 (4) Å due to strong hydrogen bonding. The variations in As–O bond length are consistent with the resulting protonation of the arsonic acid molecules. Several reflections were omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the numbering scheme and displacement ellipsoids on non-H atoms at the 50% probability level.
[Figure 2] Fig. 2. A hydrogen-bonded one-dimensional chain of alternating hydrogen phenylarsonate anions and phenylarsonic acid molecules. Phenyl rings (except for the carbon atom bound to As) and counterions have been omitted for clarity. Displacement ellipsoids on non-H atoms are drawn at the 50% probability level.
Tetrabutylammonium hydrogen phenylarsonate–phenylarsonic acid (1/1) top
Crystal data top
C16H36N+·C6H6AsO3·C6H7AsO3Z = 2
Mr = 645.52F(000) = 676
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.035 (2) ÅCell parameters from 232 reflections
b = 10.137 (3) Åθ = 2.3–27.2°
c = 18.789 (5) ŵ = 2.21 mm1
α = 94.005 (5)°T = 120 K
β = 97.749 (4)°Block, colourless
γ = 114.289 (4)°0.5 × 0.3 × 0.1 mm
V = 1539.2 (7) Å3
Data collection top
Bruker SMART APEX
diffractometer
7513 independent reflections
Radiation source: fine-focus sealed tube6769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.291, Tmax = 0.809k = 1313
15253 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.070All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.2175P]
where P = (Fo2 + 2Fc2)/3
7513 reflections(Δ/σ)max = 0.001
530 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C16H36N+·C6H6AsO3·C6H7AsO3γ = 114.289 (4)°
Mr = 645.52V = 1539.2 (7) Å3
Triclinic, P1Z = 2
a = 9.035 (2) ÅMo Kα radiation
b = 10.137 (3) ŵ = 2.21 mm1
c = 18.789 (5) ÅT = 120 K
α = 94.005 (5)°0.5 × 0.3 × 0.1 mm
β = 97.749 (4)°
Data collection top
Bruker SMART APEX
diffractometer
7513 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
6769 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 0.809Rint = 0.023
15253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.070All H-atom parameters refined
S = 1.03Δρmax = 0.61 e Å3
7513 reflectionsΔρmin = 0.71 e Å3
530 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.983720 (17)0.434497 (16)0.191058 (8)0.01665 (5)
O110.84503 (14)0.41025 (14)0.24937 (6)0.0253 (2)
H110.799 (3)0.458 (3)0.2399 (15)0.060 (8)*
O121.13065 (13)0.60598 (11)0.20887 (6)0.0208 (2)
O131.05793 (13)0.31108 (12)0.20416 (6)0.0218 (2)
N11.04658 (14)0.94499 (13)0.26111 (7)0.0157 (2)
C110.86611 (17)0.39575 (16)0.09453 (8)0.0193 (3)
C120.9186 (2)0.33147 (18)0.04140 (9)0.0248 (3)
H121.011 (3)0.312 (2)0.0525 (12)0.036 (5)*
C130.8426 (2)0.3079 (2)0.02994 (10)0.0301 (4)
H130.880 (2)0.268 (2)0.0679 (11)0.030 (5)*
C140.7155 (2)0.3475 (2)0.04864 (10)0.0322 (4)
H140.674 (3)0.334 (2)0.0930 (12)0.034 (6)*
C150.6630 (2)0.4103 (2)0.00444 (11)0.0379 (4)
H150.571 (3)0.437 (2)0.0117 (12)0.044 (6)*
C160.7377 (2)0.4351 (2)0.07646 (10)0.0292 (4)
H160.707 (3)0.473 (2)0.1076 (12)0.034 (6)*
C311.06254 (18)0.83454 (16)0.30861 (8)0.0171 (3)
H31A0.950 (2)0.764 (2)0.3068 (10)0.018 (4)*
H31B1.115 (2)0.790 (2)0.2842 (10)0.019 (4)*
C321.1517 (2)0.89580 (18)0.38583 (9)0.0222 (3)
H32A1.089 (2)0.926 (2)0.4123 (11)0.026 (5)*
H32B1.253 (2)0.982 (2)0.3874 (10)0.021 (4)*
C331.1868 (2)0.7791 (2)0.42250 (10)0.0281 (3)
H33A1.261 (3)0.751 (2)0.3952 (12)0.035 (5)*
H33B1.241 (3)0.822 (2)0.4668 (12)0.034 (5)*
C341.0341 (3)0.6426 (2)0.42641 (12)0.0406 (5)
H34A1.060 (3)0.580 (3)0.4569 (13)0.045 (6)*
H34B0.988 (3)0.590 (3)0.3788 (15)0.050 (7)*
H34C0.962 (3)0.675 (2)0.4455 (12)0.038 (6)*
C410.93601 (17)0.85567 (16)0.19096 (8)0.0167 (3)
H41A0.835 (2)0.799 (2)0.2031 (9)0.015 (4)*
H41B0.984 (2)0.7952 (19)0.1749 (9)0.014 (4)*
C420.90926 (19)0.94151 (17)0.13157 (8)0.0199 (3)
H42A0.870 (2)1.012 (2)0.1467 (10)0.023 (5)*
H42B1.014 (3)1.004 (2)0.1162 (12)0.037 (6)*
C430.7900 (2)0.8353 (2)0.06719 (9)0.0288 (3)
H43A0.828 (3)0.767 (3)0.0487 (12)0.044 (6)*
H43B0.692 (3)0.781 (3)0.0840 (12)0.039 (6)*
C440.7506 (2)0.9096 (2)0.00493 (10)0.0334 (4)
H44A0.677 (3)0.839 (3)0.0324 (15)0.054 (7)*
H44B0.847 (3)0.971 (3)0.0122 (13)0.050 (7)*
H44C0.698 (3)0.973 (3)0.0199 (13)0.047 (6)*
C511.21333 (17)1.05089 (16)0.24719 (8)0.0180 (3)
H51A1.280 (2)1.095 (2)0.2939 (10)0.018 (4)*
H51B1.192 (2)1.121 (2)0.2232 (10)0.016 (4)*
C521.30155 (18)0.98468 (17)0.20316 (9)0.0209 (3)
H52A1.237 (2)0.947 (2)0.1528 (11)0.026 (5)*
H52B1.310 (2)0.904 (2)0.2218 (11)0.024 (5)*
C531.47142 (19)1.10091 (18)0.19840 (10)0.0224 (3)
H53A1.462 (2)1.176 (2)0.1776 (11)0.027 (5)*
H53B1.530 (2)1.133 (2)0.2446 (11)0.022 (5)*
C541.5617 (2)1.0398 (2)0.15297 (11)0.0288 (4)
H54A1.664 (3)1.110 (2)0.1490 (12)0.035 (5)*
H54B1.506 (3)1.010 (2)0.1048 (13)0.036 (6)*
H54C1.567 (3)0.956 (3)0.1718 (13)0.044 (6)*
C610.97536 (18)1.03791 (16)0.29762 (8)0.0182 (3)
H61A0.972 (2)1.107 (2)0.2659 (10)0.017 (4)*
H61B1.062 (2)1.094 (2)0.3409 (10)0.018 (4)*
C620.81020 (19)0.95365 (18)0.31980 (9)0.0213 (3)
H62A0.810 (2)0.882 (2)0.3471 (11)0.029 (5)*
H62B0.725 (2)0.900 (2)0.2774 (11)0.028 (5)*
C630.7615 (2)1.0596 (2)0.36162 (10)0.0274 (3)
H63A0.845 (3)1.116 (2)0.4042 (12)0.037 (6)*
H63B0.765 (3)1.141 (3)0.3339 (13)0.041 (6)*
C640.5945 (2)0.9811 (2)0.38350 (11)0.0338 (4)
H64A0.559 (3)1.040 (3)0.4060 (13)0.044 (6)*
H64B0.599 (3)0.917 (3)0.4161 (16)0.070 (9)*
H64C0.512 (3)0.928 (3)0.3427 (13)0.043 (6)*
As20.478325 (17)0.517474 (16)0.248301 (8)0.01779 (5)
O210.34772 (15)0.38567 (13)0.17947 (6)0.0231 (2)
H210.260 (4)0.365 (3)0.1849 (15)0.062 (9)*
O220.42750 (14)0.66150 (12)0.24787 (7)0.0251 (2)
H220.317 (5)0.641 (4)0.236 (2)0.112 (13)*
O230.67109 (13)0.56498 (13)0.23897 (7)0.0285 (3)
C210.43938 (19)0.44095 (16)0.33777 (8)0.0211 (3)
C220.3014 (2)0.4323 (2)0.36604 (9)0.0287 (3)
H22A0.232 (3)0.472 (2)0.3414 (12)0.037 (6)*
C230.2713 (3)0.3712 (2)0.42920 (11)0.0416 (5)
H230.196 (4)0.366 (4)0.4490 (18)0.081 (11)*
C240.3770 (3)0.3205 (2)0.46396 (11)0.0476 (6)
H240.362 (3)0.277 (3)0.5068 (16)0.066 (8)*
C250.5133 (3)0.3297 (2)0.43635 (11)0.0456 (5)
H250.585 (3)0.299 (3)0.4570 (15)0.059 (8)*
C260.5467 (2)0.38999 (19)0.37277 (10)0.0312 (4)
H260.638 (3)0.400 (2)0.3565 (11)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.01668 (8)0.01561 (8)0.01751 (8)0.00714 (6)0.00178 (6)0.00218 (6)
O110.0238 (5)0.0326 (7)0.0222 (6)0.0133 (5)0.0079 (4)0.0065 (5)
O120.0195 (5)0.0149 (5)0.0273 (6)0.0079 (4)0.0016 (4)0.0001 (4)
O130.0214 (5)0.0158 (5)0.0293 (6)0.0094 (4)0.0017 (4)0.0055 (4)
N10.0160 (5)0.0137 (6)0.0172 (6)0.0061 (5)0.0031 (4)0.0024 (5)
C110.0193 (6)0.0153 (7)0.0198 (7)0.0046 (6)0.0014 (5)0.0028 (6)
C120.0269 (7)0.0247 (8)0.0227 (8)0.0115 (7)0.0032 (6)0.0018 (6)
C130.0365 (9)0.0262 (9)0.0222 (8)0.0086 (7)0.0055 (7)0.0014 (7)
C140.0342 (9)0.0303 (9)0.0210 (8)0.0062 (7)0.0058 (7)0.0014 (7)
C150.0343 (9)0.0462 (11)0.0337 (10)0.0229 (9)0.0086 (8)0.0001 (9)
C160.0276 (8)0.0351 (9)0.0263 (9)0.0178 (7)0.0015 (7)0.0032 (7)
C310.0195 (6)0.0144 (7)0.0184 (7)0.0080 (6)0.0032 (5)0.0036 (5)
C320.0258 (7)0.0216 (8)0.0187 (7)0.0109 (7)0.0002 (6)0.0016 (6)
C330.0337 (9)0.0297 (9)0.0212 (8)0.0151 (7)0.0009 (7)0.0068 (7)
C340.0480 (11)0.0385 (11)0.0358 (11)0.0149 (10)0.0126 (9)0.0215 (9)
C410.0168 (6)0.0161 (7)0.0157 (7)0.0059 (6)0.0019 (5)0.0016 (5)
C420.0205 (7)0.0211 (7)0.0185 (7)0.0089 (6)0.0041 (6)0.0045 (6)
C430.0336 (9)0.0290 (9)0.0204 (8)0.0125 (8)0.0028 (7)0.0023 (7)
C440.0339 (9)0.0449 (11)0.0219 (8)0.0178 (9)0.0008 (7)0.0086 (8)
C510.0171 (6)0.0135 (7)0.0211 (7)0.0043 (5)0.0036 (5)0.0025 (6)
C520.0171 (6)0.0183 (7)0.0263 (8)0.0066 (6)0.0049 (6)0.0009 (6)
C530.0186 (7)0.0187 (7)0.0289 (9)0.0066 (6)0.0054 (6)0.0038 (7)
C540.0220 (7)0.0248 (8)0.0429 (11)0.0109 (7)0.0125 (7)0.0068 (8)
C610.0202 (6)0.0162 (7)0.0201 (7)0.0093 (6)0.0044 (6)0.0019 (6)
C620.0210 (7)0.0210 (7)0.0246 (8)0.0107 (6)0.0065 (6)0.0035 (6)
C630.0237 (7)0.0305 (9)0.0292 (9)0.0140 (7)0.0049 (7)0.0040 (7)
C640.0258 (8)0.0432 (11)0.0339 (10)0.0170 (8)0.0078 (7)0.0044 (9)
As20.01481 (8)0.01589 (8)0.02339 (9)0.00662 (6)0.00487 (6)0.00389 (6)
O210.0246 (6)0.0215 (6)0.0224 (6)0.0101 (5)0.0022 (5)0.0002 (4)
O220.0236 (5)0.0161 (5)0.0366 (7)0.0103 (5)0.0028 (5)0.0032 (5)
O230.0171 (5)0.0243 (6)0.0462 (7)0.0081 (5)0.0123 (5)0.0083 (5)
C210.0233 (7)0.0153 (7)0.0203 (7)0.0056 (6)0.0006 (6)0.0005 (6)
C220.0272 (8)0.0300 (9)0.0212 (8)0.0054 (7)0.0033 (6)0.0007 (7)
C230.0475 (11)0.0354 (11)0.0253 (9)0.0002 (9)0.0123 (9)0.0008 (8)
C240.0809 (16)0.0269 (10)0.0188 (9)0.0090 (10)0.0026 (10)0.0033 (7)
C250.0738 (15)0.0286 (10)0.0294 (10)0.0248 (11)0.0150 (10)0.0004 (8)
C260.0371 (9)0.0228 (8)0.0309 (9)0.0147 (7)0.0062 (7)0.0015 (7)
Geometric parameters (Å, º) top
As1—O131.6625 (10)C44—H44C0.99 (2)
As1—O121.6723 (11)C51—C521.520 (2)
As1—O111.7279 (11)C51—H51A0.956 (19)
As1—C111.9001 (16)C51—H51B0.941 (18)
O11—H110.77 (3)C52—C531.522 (2)
N1—C411.5130 (18)C52—H52A1.00 (2)
N1—C611.5163 (17)C52—H52B0.94 (2)
N1—C511.5185 (18)C53—C541.519 (2)
N1—C311.5194 (18)C53—H53A0.91 (2)
C11—C161.383 (2)C53—H53B0.91 (2)
C11—C121.392 (2)C54—H54A0.92 (2)
C12—C131.378 (2)C54—H54B0.94 (2)
C12—H120.94 (2)C54—H54C0.96 (2)
C13—C141.376 (3)C61—C621.516 (2)
C13—H130.96 (2)C61—H61A0.954 (18)
C14—C151.383 (3)C61—H61B1.000 (18)
C14—H140.84 (2)C62—C631.526 (2)
C15—C161.384 (3)C62—H62A0.92 (2)
C15—H151.00 (2)C62—H62B0.97 (2)
C16—H160.82 (2)C63—C641.518 (2)
C31—C321.512 (2)C63—H63A0.98 (2)
C31—H31A0.966 (19)C63—H63B1.00 (2)
C31—H31B0.922 (18)C64—H64A0.89 (2)
C32—C331.529 (2)C64—H64B0.93 (3)
C32—H32A0.929 (19)C64—H64C0.94 (2)
C32—H32B0.96 (2)As2—O231.6432 (11)
C33—C341.515 (3)As2—O221.7013 (11)
C33—H33A1.01 (2)As2—O211.7030 (12)
C33—H33B0.89 (2)As2—C211.9153 (16)
C34—H34A0.96 (3)O21—H210.75 (3)
C34—H34B0.95 (3)O22—H220.93 (4)
C34—H34C0.94 (2)C21—C261.388 (2)
C41—C421.515 (2)C21—C221.393 (2)
C41—H41A0.930 (18)C22—C231.385 (3)
C41—H41B0.943 (17)C22—H22A0.96 (2)
C42—C431.515 (2)C23—C241.372 (4)
C42—H42A0.964 (19)C23—H230.81 (3)
C42—H42B1.00 (2)C24—C251.371 (4)
C43—C441.515 (2)C24—H240.94 (3)
C43—H43A0.95 (2)C25—C261.392 (3)
C43—H43B0.94 (2)C25—H250.88 (3)
C44—H44A0.93 (3)C26—H260.89 (2)
C44—H44B0.95 (3)
O13—As1—O12112.71 (6)H44A—C44—H44C108 (2)
O13—As1—O11106.12 (6)H44B—C44—H44C106 (2)
O12—As1—O11109.42 (6)N1—C51—C52115.86 (12)
O13—As1—C11109.58 (6)N1—C51—H51A106.0 (11)
O12—As1—C11110.72 (6)C52—C51—H51A109.5 (10)
O11—As1—C11108.09 (6)N1—C51—H51B104.9 (11)
As1—O11—H11108 (2)C52—C51—H51B110.5 (10)
C41—N1—C61111.98 (11)H51A—C51—H51B109.9 (15)
C41—N1—C51110.79 (11)C51—C52—C53109.94 (12)
C61—N1—C51105.97 (11)C51—C52—H52A109.8 (10)
C41—N1—C31105.49 (11)C53—C52—H52A108.1 (11)
C61—N1—C31111.07 (11)C51—C52—H52B112.6 (12)
C51—N1—C31111.65 (11)C53—C52—H52B110.7 (12)
C16—C11—C12120.67 (15)H52A—C52—H52B105.6 (16)
C16—C11—As1121.87 (12)C54—C53—C52111.50 (14)
C12—C11—As1117.40 (11)C54—C53—H53A107.9 (12)
C13—C12—C11119.57 (15)C52—C53—H53A110.2 (12)
C13—C12—H12119.0 (13)C54—C53—H53B109.1 (11)
C11—C12—H12121.2 (13)C52—C53—H53B107.3 (12)
C14—C13—C12120.28 (16)H53A—C53—H53B110.8 (17)
C14—C13—H13118.4 (12)C53—C54—H54A112.0 (13)
C12—C13—H13121.2 (12)C53—C54—H54B111.1 (13)
C13—C14—C15119.90 (17)H54A—C54—H54B103.3 (19)
C13—C14—H14117.8 (14)C53—C54—H54C109.8 (14)
C15—C14—H14122.3 (14)H54A—C54—H54C112.9 (19)
C14—C15—C16120.79 (17)H54B—C54—H54C107.5 (19)
C14—C15—H15117.1 (13)C62—C61—N1115.27 (12)
C16—C15—H15122.1 (13)C62—C61—H61A112.6 (10)
C11—C16—C15118.79 (16)N1—C61—H61A106.8 (10)
C11—C16—H16120.8 (15)C62—C61—H61B111.0 (10)
C15—C16—H16120.4 (15)N1—C61—H61B103.2 (10)
C32—C31—N1115.79 (12)H61A—C61—H61B107.2 (15)
C32—C31—H31A111.6 (11)C61—C62—C63109.42 (13)
N1—C31—H31A104.5 (11)C61—C62—H62A112.9 (12)
C32—C31—H31B111.6 (11)C63—C62—H62A110.1 (12)
N1—C31—H31B104.9 (11)C61—C62—H62B110.8 (12)
H31A—C31—H31B107.8 (15)C63—C62—H62B109.8 (11)
C31—C32—C33109.85 (13)H62A—C62—H62B103.7 (17)
C31—C32—H32A110.9 (12)C64—C63—C62111.56 (15)
C33—C32—H32A108.9 (12)C64—C63—H63A110.2 (13)
C31—C32—H32B111.2 (11)C62—C63—H63A112.0 (12)
C33—C32—H32B110.5 (11)C64—C63—H63B111.4 (13)
H32A—C32—H32B105.5 (16)C62—C63—H63B111.7 (13)
C34—C33—C32114.41 (15)H63A—C63—H63B99.4 (18)
C34—C33—H33A109.1 (12)C63—C64—H64A114.5 (16)
C32—C33—H33A108.3 (12)C63—C64—H64B110.2 (17)
C34—C33—H33B110.2 (14)H64A—C64—H64B105 (2)
C32—C33—H33B105.8 (14)C63—C64—H64C111.0 (14)
H33A—C33—H33B108.9 (18)H64A—C64—H64C106 (2)
C33—C34—H34A111.7 (14)H64B—C64—H64C109 (2)
C33—C34—H34B108.6 (15)O23—As2—O22111.86 (6)
H34A—C34—H34B108 (2)O23—As2—O21110.46 (6)
C33—C34—H34C105.8 (14)O22—As2—O21107.93 (6)
H34A—C34—H34C110 (2)O23—As2—C21110.94 (7)
H34B—C34—H34C112 (2)O22—As2—C21107.65 (6)
N1—C41—C42116.09 (12)O21—As2—C21107.84 (6)
N1—C41—H41A106.0 (11)As2—O21—H21109 (2)
C42—C41—H41A108.8 (11)As2—O22—H22118 (2)
N1—C41—H41B105.8 (10)C26—C21—C22120.47 (17)
C42—C41—H41B110.2 (10)C26—C21—As2119.45 (13)
H41A—C41—H41B109.8 (15)C22—C21—As2120.05 (12)
C43—C42—C41108.80 (13)C23—C22—C21119.34 (18)
C43—C42—H42A110.4 (11)C23—C22—H22A122.5 (13)
C41—C42—H42A113.6 (11)C21—C22—H22A118.1 (13)
C43—C42—H42B109.7 (13)C24—C23—C22120.4 (2)
C41—C42—H42B112.0 (13)C24—C23—H23116 (2)
H42A—C42—H42B102.2 (17)C22—C23—H23124 (2)
C44—C43—C42113.39 (16)C25—C24—C23120.3 (2)
C44—C43—H43A107.8 (14)C25—C24—H24115.5 (17)
C42—C43—H43A112.9 (14)C23—C24—H24124.2 (17)
C44—C43—H43B108.8 (14)C24—C25—C26120.7 (2)
C42—C43—H43B106.7 (14)C24—C25—H25123.4 (18)
H43A—C43—H43B106.9 (19)C26—C25—H25115.9 (18)
C43—C44—H44A109.2 (16)C21—C26—C25118.77 (19)
C43—C44—H44B112.1 (15)C21—C26—H26120.8 (14)
H44A—C44—H44B110 (2)C25—C26—H26120.3 (14)
C43—C44—H44C111.2 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O230.77 (3)1.88 (3)2.6375 (17)166 (3)
O21—H21···O13i0.75 (3)1.78 (3)2.5280 (17)176 (3)
O22—H22···O12i0.93 (4)1.57 (4)2.4936 (17)176 (4)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H36N+·C6H6AsO3·C6H7AsO3
Mr645.52
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.035 (2), 10.137 (3), 18.789 (5)
α, β, γ (°)94.005 (5), 97.749 (4), 114.289 (4)
V3)1539.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.5 × 0.3 × 0.1
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.291, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
15253, 7513, 6769
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.03
No. of reflections7513
No. of parameters530
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.61, 0.71

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), OLEX2 (Dolomanov et al., 2009).

Selected bond lengths (Å) top
As1—O131.6625 (10)As2—O231.6432 (11)
As1—O121.6723 (11)As2—O221.7013 (11)
As1—O111.7279 (11)As2—O211.7030 (12)
As1—C111.9001 (16)As2—C211.9153 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O230.77 (3)1.88 (3)2.6375 (17)166 (3)
O21—H21···O13i0.75 (3)1.78 (3)2.5280 (17)176 (3)
O22—H22···O12i0.93 (4)1.57 (4)2.4936 (17)176 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the Science Foundation Ireland (SFI) for financial support (grant No. 08/IN.1/I2047). LR gratefully acknowledges financial support from Trinity College Dublin through an Ussher Fellowship award.

References

First citationBreen, J. M., Clérac, R., Zhang, L., Cloonan, S. M., Kennedy, E., Feeney, M., McCabe, T., Willams, D. C. & Schmitt, W. (2012). Dalton Trans. 41, 2918–2926.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBreen, J. M. & Schmitt, W. (2008). Angew. Chem. Int. Ed. 47, 6904–6908.  Web of Science CSD CrossRef CAS Google Scholar
First citationBreen, J. M., Zhang, L., Clement, R. & Schmitt, W. (2012). Inorg. Chem. 51, 19–21.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, R., Latham, K., Rix, C., Hobday, M. & White, J. (2005). CrystEngComm, 7, 28–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLatham, K., Coyle, A. M., Rix, C. J., Fowless, A. & White, J. M. (2007). Polyhedron, 26, 222–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationLatham, K., White, K. F., Szpakolski, K. B., Rix, C. J. & White, J. M. (2008). Inorg. Chim. Acta, 362, 1872–1886.  Web of Science CSD CrossRef Google Scholar
First citationOnet, C. I., Zhang, L., Clérac, R., Jean-Denis, J. B., Feeney, M., McCabe, T. & Schmitt, W. (2011). Inorg. Chem. 50, 604–613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. & Schmitt, W. (2011). J. Am. Chem. Soc. 133, 11240–11248.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1212-m1213
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds