organic compounds
(E)-4-Hydroxy-N′-(2-hydroxy-5-iodobenzylidene)benzohydrazide methanol monosolvate
aSama Technical and Vocational Training College, Islamic Azad University, Mamaghan Branch, Mamaghan, Iran, bDepartment of Chemistry, Faculty of Science, University of Zanjan, 45195-313 Zanjan, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55019 Kurupelit, Samsun, Turkey
*Correspondence e-mail: bikas_r@yahoo.com
In the title compound, C14H11IN2O3·CH4O, the dihedral angle between the benzene rings is 33.2 (3)°. The molecule displays trans and anti conformations about the C=N and N—N bonds, respectively. There is an intramolecular O—H⋯N(azomethine) hydrogen bond. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds consolidate molecules into a three-dimensional architecture.
Related literature
For the structures of related carbohydrazides, see: Monfared et al. (2010a); Bikas et al. (2010a,b, 2012a,b). For catalytic applications of aroylhydrazones, see: Monfared et al. (2010b).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812034848/tk5140sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812034848/tk5140Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812034848/tk5140Isup3.cml
For preparing the title compound, a methanol (10 ml) solution of 2-hydroxy-5-iodobenzaldehyde (1.5 mmol) was added drop-wise to a methanol solution (10 ml) of 4-hydroxybenzoic acid hydrazide (1.5 mmol). The mixture was refluxed for 5 h. The solution was evaporated on a steam-bath to 5 ml and cooled to room temperature. White precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Colourless crystals of the title compound were obtained from its methanol solution by slow solvent evaporation. Yield 94%. Selected IR (cm-1): 3446 (s, broad, O—H), 3224 (s, N—H), 1626 (vs), 1577 (m), 1509 (s), 1278 (vs), 1013 (s), 850 (m), 690 (m).
The hydrogen atoms of the N—H and O—H groups were positioned geometrically and refined as riding atoms with, N—H = 0.86 Å and U(H) = 1.2Ueq(N), and with O—H = 0.82 Å and U(H) = 1.5Ueq(O). The C—H hydrogen atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and U(H) = 1.2Ueq(C) for aromatic-hydrogen atoms, and C—H = 0.96 Å and U(H) = 1.2 Ueq(C) for the methyl group.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C14H11IN2O3·CH4O | F(000) = 816 |
Mr = 414.19 | Dx = 1.688 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1140 reflections |
a = 10.1077 (7) Å | θ = 3.3–32.3° |
b = 12.5703 (11) Å | µ = 1.98 mm−1 |
c = 13.1586 (17) Å | T = 293 K |
β = 102.886 (10)° | Block, colourless |
V = 1629.8 (3) Å3 | 0.3 × 0.3 × 0.3 mm |
Z = 4 |
Agilent SuperNova (Single source at offset), Eos diffractometer | 2094 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1981 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 16.0454 pixels mm-1 | θmax = 26.4°, θmin = 3.3° |
ω scans | h = −12→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −13→15 |
Tmin = 0.864, Tmax = 1.000 | l = −16→14 |
3370 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0466P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2094 reflections | Δρmax = 0.32 e Å−3 |
201 parameters | Δρmin = −0.56 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 419 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (3) |
C14H11IN2O3·CH4O | V = 1629.8 (3) Å3 |
Mr = 414.19 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 10.1077 (7) Å | µ = 1.98 mm−1 |
b = 12.5703 (11) Å | T = 293 K |
c = 13.1586 (17) Å | 0.3 × 0.3 × 0.3 mm |
β = 102.886 (10)° |
Agilent SuperNova (Single source at offset), Eos diffractometer | 2094 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1981 reflections with I > 2σ(I) |
Tmin = 0.864, Tmax = 1.000 | Rint = 0.034 |
3370 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.32 e Å−3 |
S = 1.04 | Δρmin = −0.56 e Å−3 |
2094 reflections | Absolute structure: Flack (1983), 419 Friedel pairs |
201 parameters | Absolute structure parameter: −0.01 (3) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.71478 (4) | 0.35952 (3) | 0.30013 (4) | 0.05205 (16) | |
O1 | 0.3254 (6) | 0.5311 (5) | 0.5685 (4) | 0.0672 (17) | |
H1 | 0.2521 | 0.5492 | 0.5321 | 0.101* | |
O2 | −0.0512 (5) | 0.6112 (4) | 0.4916 (3) | 0.0450 (11) | |
O3 | −0.5681 (5) | 0.7936 (4) | 0.1732 (3) | 0.0548 (13) | |
H3 | −0.5634 | 0.8156 | 0.1155 | 0.082* | |
O4 | 0.0029 (7) | 0.5759 (4) | 0.1189 (4) | 0.0613 (15) | |
H4 | −0.0129 | 0.5213 | 0.0842 | 0.092* | |
N1 | 0.1430 (6) | 0.5574 (5) | 0.3960 (4) | 0.0412 (12) | |
N2 | 0.0194 (5) | 0.5934 (4) | 0.3409 (4) | 0.0379 (11) | |
H2 | 0.0008 | 0.5958 | 0.2739 | 0.045* | |
C1 | 0.4061 (7) | 0.4922 (6) | 0.5066 (5) | 0.0469 (16) | |
C2 | 0.5354 (8) | 0.4584 (7) | 0.5544 (5) | 0.0553 (19) | |
H2A | 0.5635 | 0.4611 | 0.6266 | 0.066* | |
C3 | 0.6226 (7) | 0.4209 (6) | 0.4960 (5) | 0.0472 (16) | |
H3A | 0.7102 | 0.4002 | 0.5285 | 0.057* | |
C4 | 0.5793 (6) | 0.4142 (5) | 0.3886 (4) | 0.0376 (13) | |
C5 | 0.4500 (6) | 0.4478 (5) | 0.3393 (4) | 0.0369 (13) | |
H5 | 0.4225 | 0.4441 | 0.2671 | 0.044* | |
C6 | 0.3614 (6) | 0.4868 (5) | 0.3973 (4) | 0.0359 (13) | |
C7 | 0.2277 (6) | 0.5220 (5) | 0.3436 (5) | 0.0395 (14) | |
H7 | 0.2027 | 0.5190 | 0.2712 | 0.047* | |
C8 | −0.0721 (7) | 0.6251 (4) | 0.3958 (4) | 0.0336 (13) | |
C9 | −0.1990 (6) | 0.6748 (5) | 0.3356 (4) | 0.0318 (12) | |
C10 | −0.3134 (7) | 0.6734 (6) | 0.3778 (5) | 0.0407 (14) | |
H10 | −0.3078 | 0.6452 | 0.4439 | 0.049* | |
C11 | −0.4344 (7) | 0.7135 (6) | 0.3224 (5) | 0.0426 (15) | |
H11 | −0.5112 | 0.7094 | 0.3502 | 0.051* | |
C12 | −0.4438 (6) | 0.7604 (5) | 0.2252 (4) | 0.0371 (13) | |
C13 | −0.3289 (6) | 0.7659 (5) | 0.1848 (4) | 0.0374 (13) | |
H13 | −0.3338 | 0.7982 | 0.1204 | 0.045* | |
C14 | −0.2068 (7) | 0.7242 (5) | 0.2388 (5) | 0.0369 (14) | |
H14 | −0.1301 | 0.7288 | 0.2110 | 0.044* | |
C15 | 0.0531 (14) | 0.6548 (7) | 0.0605 (7) | 0.075 (3) | |
H15A | −0.0125 | 0.7109 | 0.0429 | 0.112* | |
H15B | 0.0696 | 0.6238 | −0.0022 | 0.112* | |
H15C | 0.1363 | 0.6833 | 0.1013 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0380 (2) | 0.0592 (3) | 0.0620 (3) | 0.0113 (3) | 0.01773 (16) | −0.0025 (2) |
O1 | 0.054 (3) | 0.108 (5) | 0.039 (2) | 0.030 (4) | 0.010 (2) | −0.005 (2) |
O2 | 0.043 (3) | 0.057 (3) | 0.035 (2) | 0.009 (2) | 0.0088 (19) | 0.0027 (18) |
O3 | 0.036 (3) | 0.080 (4) | 0.052 (3) | 0.020 (3) | 0.016 (2) | 0.019 (2) |
O4 | 0.083 (4) | 0.062 (3) | 0.040 (2) | −0.015 (3) | 0.015 (2) | −0.007 (2) |
N1 | 0.031 (3) | 0.053 (3) | 0.038 (2) | 0.006 (3) | 0.005 (2) | 0.002 (2) |
N2 | 0.030 (3) | 0.048 (3) | 0.035 (2) | 0.009 (3) | 0.006 (2) | −0.002 (2) |
C1 | 0.041 (4) | 0.060 (4) | 0.040 (3) | 0.011 (3) | 0.007 (3) | 0.004 (3) |
C2 | 0.042 (4) | 0.079 (5) | 0.041 (3) | 0.015 (4) | 0.000 (3) | 0.005 (3) |
C3 | 0.032 (3) | 0.059 (4) | 0.048 (3) | 0.008 (3) | 0.003 (3) | 0.004 (3) |
C4 | 0.032 (3) | 0.038 (3) | 0.045 (3) | 0.002 (3) | 0.012 (3) | 0.000 (2) |
C5 | 0.034 (3) | 0.043 (3) | 0.032 (3) | 0.003 (3) | 0.005 (2) | −0.002 (2) |
C6 | 0.030 (3) | 0.039 (3) | 0.036 (3) | 0.003 (3) | 0.004 (2) | −0.001 (2) |
C7 | 0.032 (3) | 0.053 (4) | 0.034 (3) | 0.002 (3) | 0.007 (2) | −0.001 (2) |
C8 | 0.031 (3) | 0.034 (3) | 0.035 (3) | 0.001 (2) | 0.006 (2) | −0.001 (2) |
C9 | 0.032 (3) | 0.031 (3) | 0.032 (3) | 0.005 (2) | 0.007 (2) | −0.003 (2) |
C10 | 0.040 (4) | 0.051 (4) | 0.035 (3) | 0.004 (3) | 0.016 (3) | 0.005 (3) |
C11 | 0.035 (3) | 0.057 (4) | 0.041 (3) | 0.012 (3) | 0.019 (3) | 0.010 (3) |
C12 | 0.030 (3) | 0.041 (3) | 0.043 (3) | 0.009 (3) | 0.012 (2) | 0.004 (2) |
C13 | 0.034 (3) | 0.044 (3) | 0.036 (3) | 0.004 (3) | 0.012 (2) | 0.009 (2) |
C14 | 0.032 (3) | 0.047 (4) | 0.034 (3) | −0.001 (3) | 0.012 (3) | 0.001 (2) |
C15 | 0.099 (9) | 0.066 (5) | 0.061 (5) | −0.003 (5) | 0.021 (5) | −0.003 (4) |
I1—C4 | 2.101 (6) | C5—C6 | 1.389 (9) |
O1—C1 | 1.365 (9) | C5—H5 | 0.9300 |
O1—H1 | 0.8200 | C6—C7 | 1.447 (8) |
O2—C8 | 1.243 (7) | C7—H7 | 0.9300 |
O3—C12 | 1.355 (7) | C8—C9 | 1.486 (8) |
O3—H3 | 0.8200 | C9—C10 | 1.390 (9) |
O4—C15 | 1.416 (12) | C9—C14 | 1.403 (8) |
O4—H4 | 0.8200 | C10—C11 | 1.373 (9) |
N1—C7 | 1.292 (9) | C10—H10 | 0.9300 |
N1—N2 | 1.374 (7) | C11—C12 | 1.392 (9) |
N2—C8 | 1.355 (8) | C11—H11 | 0.9300 |
N2—H2 | 0.8600 | C12—C13 | 1.383 (9) |
C1—C2 | 1.385 (10) | C13—C14 | 1.383 (9) |
C1—C6 | 1.409 (8) | C13—H13 | 0.9300 |
C2—C3 | 1.375 (10) | C14—H14 | 0.9300 |
C2—H2A | 0.9300 | C15—H15A | 0.9600 |
C3—C4 | 1.387 (9) | C15—H15B | 0.9600 |
C3—H3A | 0.9300 | C15—H15C | 0.9600 |
C4—C5 | 1.388 (8) | ||
C1—O1—H1 | 109.5 | O2—C8—N2 | 121.2 (6) |
C12—O3—H3 | 109.5 | O2—C8—C9 | 122.1 (6) |
C15—O4—H4 | 109.5 | N2—C8—C9 | 116.7 (5) |
C7—N1—N2 | 117.7 (5) | C10—C9—C14 | 119.0 (6) |
C8—N2—N1 | 117.7 (5) | C10—C9—C8 | 118.5 (5) |
C8—N2—H2 | 121.2 | C14—C9—C8 | 122.5 (6) |
N1—N2—H2 | 121.2 | C11—C10—C9 | 120.4 (6) |
O1—C1—C2 | 117.9 (6) | C11—C10—H10 | 119.8 |
O1—C1—C6 | 121.9 (6) | C9—C10—H10 | 119.8 |
C2—C1—C6 | 120.3 (7) | C10—C11—C12 | 120.9 (6) |
C3—C2—C1 | 120.6 (6) | C10—C11—H11 | 119.6 |
C3—C2—H2A | 119.7 | C12—C11—H11 | 119.6 |
C1—C2—H2A | 119.7 | O3—C12—C13 | 123.6 (5) |
C2—C3—C4 | 119.6 (6) | O3—C12—C11 | 117.3 (6) |
C2—C3—H3A | 120.2 | C13—C12—C11 | 118.9 (6) |
C4—C3—H3A | 120.2 | C12—C13—C14 | 120.9 (5) |
C3—C4—C5 | 120.5 (6) | C12—C13—H13 | 119.6 |
C3—C4—I1 | 119.2 (5) | C14—C13—H13 | 119.6 |
C5—C4—I1 | 120.2 (4) | C13—C14—C9 | 119.9 (6) |
C4—C5—C6 | 120.4 (5) | C13—C14—H14 | 120.1 |
C4—C5—H5 | 119.8 | C9—C14—H14 | 120.1 |
C6—C5—H5 | 119.8 | O4—C15—H15A | 109.5 |
C5—C6—C1 | 118.6 (5) | O4—C15—H15B | 109.5 |
C5—C6—C7 | 119.0 (5) | H15A—C15—H15B | 109.5 |
C1—C6—C7 | 122.4 (6) | O4—C15—H15C | 109.5 |
N1—C7—C6 | 120.1 (5) | H15A—C15—H15C | 109.5 |
N1—C7—H7 | 119.9 | H15B—C15—H15C | 109.5 |
C6—C7—H7 | 119.9 | ||
C7—N1—N2—C8 | 176.5 (6) | N1—N2—C8—O2 | −7.8 (9) |
O1—C1—C2—C3 | −178.4 (7) | N1—N2—C8—C9 | 173.5 (5) |
C6—C1—C2—C3 | 1.1 (12) | O2—C8—C9—C10 | −21.6 (9) |
C1—C2—C3—C4 | −1.8 (12) | N2—C8—C9—C10 | 157.1 (6) |
C2—C3—C4—C5 | 1.8 (10) | O2—C8—C9—C14 | 157.4 (6) |
C2—C3—C4—I1 | 178.9 (6) | N2—C8—C9—C14 | −23.9 (8) |
C3—C4—C5—C6 | −1.2 (10) | C14—C9—C10—C11 | 4.3 (10) |
I1—C4—C5—C6 | −178.2 (5) | C8—C9—C10—C11 | −176.6 (6) |
C4—C5—C6—C1 | 0.5 (10) | C9—C10—C11—C12 | −2.8 (11) |
C4—C5—C6—C7 | 179.5 (6) | C10—C11—C12—O3 | 177.0 (7) |
O1—C1—C6—C5 | 179.0 (7) | C10—C11—C12—C13 | 0.1 (10) |
C2—C1—C6—C5 | −0.4 (11) | O3—C12—C13—C14 | −175.6 (6) |
O1—C1—C6—C7 | 0.0 (11) | C11—C12—C13—C14 | 1.1 (10) |
C2—C1—C6—C7 | −179.5 (7) | C12—C13—C14—C9 | 0.4 (10) |
N2—N1—C7—C6 | 177.6 (6) | C10—C9—C14—C13 | −3.1 (10) |
C5—C6—C7—N1 | 179.2 (6) | C8—C9—C14—C13 | 177.9 (6) |
C1—C6—C7—N1 | −1.8 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.89 | 2.607 (8) | 146 |
N2—H2···O4 | 0.86 | 2.06 | 2.897 (7) | 164 |
O3—H3···O2i | 0.82 | 1.90 | 2.712 (6) | 171 |
O4—H4···O2ii | 0.82 | 2.05 | 2.868 (7) | 177 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H11IN2O3·CH4O |
Mr | 414.19 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 293 |
a, b, c (Å) | 10.1077 (7), 12.5703 (11), 13.1586 (17) |
β (°) | 102.886 (10) |
V (Å3) | 1629.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.98 |
Crystal size (mm) | 0.3 × 0.3 × 0.3 |
Data collection | |
Diffractometer | Agilent SuperNova (Single source at offset), Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.864, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3370, 2094, 1981 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.090, 1.04 |
No. of reflections | 2094 |
No. of parameters | 201 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.56 |
Absolute structure | Flack (1983), 419 Friedel pairs |
Absolute structure parameter | −0.01 (3) |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.89 | 2.607 (8) | 146 |
N2—H2···O4 | 0.86 | 2.06 | 2.897 (7) | 164 |
O3—H3···O2i | 0.82 | 1.90 | 2.712 (6) | 171 |
O4—H4···O2ii | 0.82 | 2.05 | 2.868 (7) | 177 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, −y+1, z−1/2. |
Footnotes
‡Additional correspondence author, e-mail: mahboubi_p@yahoo.com.
Acknowledgements
The authors are grateful to the Islamic Azad University, the University of Zanjan and Ondokuz Mayis University.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o413–o414. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o193. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bikas, R., Monfared, H. H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010a). Acta Cryst. E66, o2073. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bikas, R., Monfared, H. H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010b). Acta Cryst. E66, o2015. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Monfared, H. H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236–o237. Web of Science CSD CrossRef IUCr Journals Google Scholar
Monfared, H. H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574–2583. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones are a special group of compounds in the Schiff base family that are characterized by the presence of RR'C=N–N=C(O)R'' which two inter-linked nitrogen atoms (–N—N–) separate them into a different class from imines, oximes, etc. Hydrazone ligands derived from the condensation of acid hydrazides (R–CO–NH–NH2) with aromatic carbonyl compounds are important O, N-donor ligands. Hydrazone derivatives have widespread applications in fields such as coordination chemistry, bioinorganic chemistry, magnetics, electronics, nonlinear optics and fluorescent materials. Aroylhydrazone complexes also seem to be good candidates for catalytic oxidation studies because of their resistance to oxidation (Monfared et al., 2010b).
As part of our studies on the synthesis and characterization of hydrazone derivatives (Bikas et al., 2010a,b; Bikas et al., 2012a,b), we report here the crystal structure of [(E)-4-hydroxy-N'-(2-hydroxy-5-iodobenzylidene)benzohydrazide] methanol solvate. The asymmetric unit of C14H11IN2O3.CH4O contains one molecule of hydrazone and a molecule of methanol, as shown in Fig. 1. In the title compound, the bond distances are in the normal range for similar hydrazone compounds (Monfared et al., 2010a; Bikas et al., 2012a,b). The dihedral angle between the mean planes of the phenol ring and the salcylidine ring is 33.2 (3)°. Molecule adopts an E configuration with respect to the C7=N1 bond. There is an intramolecular O—H···N hydrogen bond between the hydroxyl group and imine nitrogen atom, Table 1. In the crystal structure, the O atom of methanol molecule accepts a hydrogen bond from an amine H atom (NH), and forms another intermolecular O—H···O(carbonyl) hydrogen bond, thereby linking two carbohydrazide molecules. The result is a supramolecular layer parallel to (010). The carbonyl O atom accepts another O—H···O hydrogen bond which the O—H phenol is a donor group (Table 1, Fig. 2).