organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hy­dr­oxy-N′-(2-hy­dr­oxy-5-iodo­benzyl­­idene)benzohydrazide methanol monosolvate

aSama Technical and Vocational Training College, Islamic Azad University, Mamaghan Branch, Mamaghan, Iran, bDepartment of Chemistry, Faculty of Science, University of Zanjan, 45195-313 Zanjan, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55019 Kurupelit, Samsun, Turkey
*Correspondence e-mail: bikas_r@yahoo.com

(Received 5 August 2012; accepted 7 August 2012; online 11 August 2012)

In the title compound, C14H11IN2O3·CH4O, the dihedral angle between the benzene rings is 33.2 (3)°. The mol­ecule displays trans and anti conformations about the C=N and N—N bonds, respectively. There is an intra­molecular O—H⋯N(azomethine) hydrogen bond. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds consolidate mol­ecules into a three-dimensional architecture.

Related literature

For the structures of related carbohydrazides, see: Monfared et al. (2010a[Monfared, H. H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236-o237.]); Bikas et al. (2010a[Bikas, R., Monfared, H. H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010a). Acta Cryst. E66, o2073.],b[Bikas, R., Monfared, H. H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010b). Acta Cryst. E66, o2015.], 2012a[Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o413-o414.],b[Bikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o193.]). For catalytic applications of aroylhydrazones, see: Monfared et al. (2010b[Monfared, H. H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574-2583.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11IN2O3·CH4O

  • Mr = 414.19

  • Monoclinic, C c

  • a = 10.1077 (7) Å

  • b = 12.5703 (11) Å

  • c = 13.1586 (17) Å

  • β = 102.886 (10)°

  • V = 1629.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.3 mm

Data collection
  • Agilent SuperNova (Single source at offset), Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.864, Tmax = 1.000

  • 3370 measured reflections

  • 2094 independent reflections

  • 1981 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.04

  • 2094 reflections

  • 201 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 419 Friedel pairs

  • Flack parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.607 (8) 146
N2—H2⋯O4 0.86 2.06 2.897 (7) 164
O3—H3⋯O2i 0.82 1.90 2.712 (6) 171
O4—H4⋯O2ii 0.82 2.05 2.868 (7) 177
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones are a special group of compounds in the Schiff base family that are characterized by the presence of RR'C=N–N=C(O)R'' which two inter-linked nitrogen atoms (–N—N–) separate them into a different class from imines, oximes, etc. Hydrazone ligands derived from the condensation of acid hydrazides (R–CO–NH–NH2) with aromatic carbonyl compounds are important O, N-donor ligands. Hydrazone derivatives have widespread applications in fields such as coordination chemistry, bioinorganic chemistry, magnetics, electronics, nonlinear optics and fluorescent materials. Aroylhydrazone complexes also seem to be good candidates for catalytic oxidation studies because of their resistance to oxidation (Monfared et al., 2010b).

As part of our studies on the synthesis and characterization of hydrazone derivatives (Bikas et al., 2010a,b; Bikas et al., 2012a,b), we report here the crystal structure of [(E)-4-hydroxy-N'-(2-hydroxy-5-iodobenzylidene)benzohydrazide] methanol solvate. The asymmetric unit of C14H11IN2O3.CH4O contains one molecule of hydrazone and a molecule of methanol, as shown in Fig. 1. In the title compound, the bond distances are in the normal range for similar hydrazone compounds (Monfared et al., 2010a; Bikas et al., 2012a,b). The dihedral angle between the mean planes of the phenol ring and the salcylidine ring is 33.2 (3)°. Molecule adopts an E configuration with respect to the C7=N1 bond. There is an intramolecular O—H···N hydrogen bond between the hydroxyl group and imine nitrogen atom, Table 1. In the crystal structure, the O atom of methanol molecule accepts a hydrogen bond from an amine H atom (NH), and forms another intermolecular OH···O(carbonyl) hydrogen bond, thereby linking two carbohydrazide molecules. The result is a supramolecular layer parallel to (010). The carbonyl O atom accepts another O—H···O hydrogen bond which the O—H phenol is a donor group (Table 1, Fig. 2).

Related literature top

For the structures of related carbohydrazides, see: Monfared et al. (2010a); Bikas et al. (2010a,b, 2012a,b). For catalytic applications of aroylhydrazones, see: Monfared et al. (2010b).

Experimental top

For preparing the title compound, a methanol (10 ml) solution of 2-hydroxy-5-iodobenzaldehyde (1.5 mmol) was added drop-wise to a methanol solution (10 ml) of 4-hydroxybenzoic acid hydrazide (1.5 mmol). The mixture was refluxed for 5 h. The solution was evaporated on a steam-bath to 5 ml and cooled to room temperature. White precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Colourless crystals of the title compound were obtained from its methanol solution by slow solvent evaporation. Yield 94%. Selected IR (cm-1): 3446 (s, broad, O—H), 3224 (s, N—H), 1626 (vs), 1577 (m), 1509 (s), 1278 (vs), 1013 (s), 850 (m), 690 (m).

Refinement top

The hydrogen atoms of the N—H and O—H groups were positioned geometrically and refined as riding atoms with, N—H = 0.86 Å and U(H) = 1.2Ueq(N), and with O—H = 0.82 Å and U(H) = 1.5Ueq(O). The C—H hydrogen atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and U(H) = 1.2Ueq(C) for aromatic-hydrogen atoms, and C—H = 0.96 Å and U(H) = 1.2 Ueq(C) for the methyl group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. The blue dashed lines indicate intra- and inter-molecular hydrogen bonds.
(E)-4-Hydroxy-N'-(2-hydroxy-5-iodobenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C14H11IN2O3·CH4OF(000) = 816
Mr = 414.19Dx = 1.688 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1140 reflections
a = 10.1077 (7) Åθ = 3.3–32.3°
b = 12.5703 (11) ŵ = 1.98 mm1
c = 13.1586 (17) ÅT = 293 K
β = 102.886 (10)°Block, colourless
V = 1629.8 (3) Å30.3 × 0.3 × 0.3 mm
Z = 4
Data collection top
Agilent SuperNova (Single source at offset), Eos
diffractometer
2094 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1981 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 16.0454 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 128
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1315
Tmin = 0.864, Tmax = 1.000l = 1614
3370 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2094 reflectionsΔρmax = 0.32 e Å3
201 parametersΔρmin = 0.56 e Å3
2 restraintsAbsolute structure: Flack (1983), 419 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C14H11IN2O3·CH4OV = 1629.8 (3) Å3
Mr = 414.19Z = 4
Monoclinic, CcMo Kα radiation
a = 10.1077 (7) ŵ = 1.98 mm1
b = 12.5703 (11) ÅT = 293 K
c = 13.1586 (17) Å0.3 × 0.3 × 0.3 mm
β = 102.886 (10)°
Data collection top
Agilent SuperNova (Single source at offset), Eos
diffractometer
2094 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1981 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 1.000Rint = 0.034
3370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.32 e Å3
S = 1.04Δρmin = 0.56 e Å3
2094 reflectionsAbsolute structure: Flack (1983), 419 Friedel pairs
201 parametersAbsolute structure parameter: 0.01 (3)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.71478 (4)0.35952 (3)0.30013 (4)0.05205 (16)
O10.3254 (6)0.5311 (5)0.5685 (4)0.0672 (17)
H10.25210.54920.53210.101*
O20.0512 (5)0.6112 (4)0.4916 (3)0.0450 (11)
O30.5681 (5)0.7936 (4)0.1732 (3)0.0548 (13)
H30.56340.81560.11550.082*
O40.0029 (7)0.5759 (4)0.1189 (4)0.0613 (15)
H40.01290.52130.08420.092*
N10.1430 (6)0.5574 (5)0.3960 (4)0.0412 (12)
N20.0194 (5)0.5934 (4)0.3409 (4)0.0379 (11)
H20.00080.59580.27390.045*
C10.4061 (7)0.4922 (6)0.5066 (5)0.0469 (16)
C20.5354 (8)0.4584 (7)0.5544 (5)0.0553 (19)
H2A0.56350.46110.62660.066*
C30.6226 (7)0.4209 (6)0.4960 (5)0.0472 (16)
H3A0.71020.40020.52850.057*
C40.5793 (6)0.4142 (5)0.3886 (4)0.0376 (13)
C50.4500 (6)0.4478 (5)0.3393 (4)0.0369 (13)
H50.42250.44410.26710.044*
C60.3614 (6)0.4868 (5)0.3973 (4)0.0359 (13)
C70.2277 (6)0.5220 (5)0.3436 (5)0.0395 (14)
H70.20270.51900.27120.047*
C80.0721 (7)0.6251 (4)0.3958 (4)0.0336 (13)
C90.1990 (6)0.6748 (5)0.3356 (4)0.0318 (12)
C100.3134 (7)0.6734 (6)0.3778 (5)0.0407 (14)
H100.30780.64520.44390.049*
C110.4344 (7)0.7135 (6)0.3224 (5)0.0426 (15)
H110.51120.70940.35020.051*
C120.4438 (6)0.7604 (5)0.2252 (4)0.0371 (13)
C130.3289 (6)0.7659 (5)0.1848 (4)0.0374 (13)
H130.33380.79820.12040.045*
C140.2068 (7)0.7242 (5)0.2388 (5)0.0369 (14)
H140.13010.72880.21100.044*
C150.0531 (14)0.6548 (7)0.0605 (7)0.075 (3)
H15A0.01250.71090.04290.112*
H15B0.06960.62380.00220.112*
H15C0.13630.68330.10130.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0380 (2)0.0592 (3)0.0620 (3)0.0113 (3)0.01773 (16)0.0025 (2)
O10.054 (3)0.108 (5)0.039 (2)0.030 (4)0.010 (2)0.005 (2)
O20.043 (3)0.057 (3)0.035 (2)0.009 (2)0.0088 (19)0.0027 (18)
O30.036 (3)0.080 (4)0.052 (3)0.020 (3)0.016 (2)0.019 (2)
O40.083 (4)0.062 (3)0.040 (2)0.015 (3)0.015 (2)0.007 (2)
N10.031 (3)0.053 (3)0.038 (2)0.006 (3)0.005 (2)0.002 (2)
N20.030 (3)0.048 (3)0.035 (2)0.009 (3)0.006 (2)0.002 (2)
C10.041 (4)0.060 (4)0.040 (3)0.011 (3)0.007 (3)0.004 (3)
C20.042 (4)0.079 (5)0.041 (3)0.015 (4)0.000 (3)0.005 (3)
C30.032 (3)0.059 (4)0.048 (3)0.008 (3)0.003 (3)0.004 (3)
C40.032 (3)0.038 (3)0.045 (3)0.002 (3)0.012 (3)0.000 (2)
C50.034 (3)0.043 (3)0.032 (3)0.003 (3)0.005 (2)0.002 (2)
C60.030 (3)0.039 (3)0.036 (3)0.003 (3)0.004 (2)0.001 (2)
C70.032 (3)0.053 (4)0.034 (3)0.002 (3)0.007 (2)0.001 (2)
C80.031 (3)0.034 (3)0.035 (3)0.001 (2)0.006 (2)0.001 (2)
C90.032 (3)0.031 (3)0.032 (3)0.005 (2)0.007 (2)0.003 (2)
C100.040 (4)0.051 (4)0.035 (3)0.004 (3)0.016 (3)0.005 (3)
C110.035 (3)0.057 (4)0.041 (3)0.012 (3)0.019 (3)0.010 (3)
C120.030 (3)0.041 (3)0.043 (3)0.009 (3)0.012 (2)0.004 (2)
C130.034 (3)0.044 (3)0.036 (3)0.004 (3)0.012 (2)0.009 (2)
C140.032 (3)0.047 (4)0.034 (3)0.001 (3)0.012 (3)0.001 (2)
C150.099 (9)0.066 (5)0.061 (5)0.003 (5)0.021 (5)0.003 (4)
Geometric parameters (Å, º) top
I1—C42.101 (6)C5—C61.389 (9)
O1—C11.365 (9)C5—H50.9300
O1—H10.8200C6—C71.447 (8)
O2—C81.243 (7)C7—H70.9300
O3—C121.355 (7)C8—C91.486 (8)
O3—H30.8200C9—C101.390 (9)
O4—C151.416 (12)C9—C141.403 (8)
O4—H40.8200C10—C111.373 (9)
N1—C71.292 (9)C10—H100.9300
N1—N21.374 (7)C11—C121.392 (9)
N2—C81.355 (8)C11—H110.9300
N2—H20.8600C12—C131.383 (9)
C1—C21.385 (10)C13—C141.383 (9)
C1—C61.409 (8)C13—H130.9300
C2—C31.375 (10)C14—H140.9300
C2—H2A0.9300C15—H15A0.9600
C3—C41.387 (9)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.388 (8)
C1—O1—H1109.5O2—C8—N2121.2 (6)
C12—O3—H3109.5O2—C8—C9122.1 (6)
C15—O4—H4109.5N2—C8—C9116.7 (5)
C7—N1—N2117.7 (5)C10—C9—C14119.0 (6)
C8—N2—N1117.7 (5)C10—C9—C8118.5 (5)
C8—N2—H2121.2C14—C9—C8122.5 (6)
N1—N2—H2121.2C11—C10—C9120.4 (6)
O1—C1—C2117.9 (6)C11—C10—H10119.8
O1—C1—C6121.9 (6)C9—C10—H10119.8
C2—C1—C6120.3 (7)C10—C11—C12120.9 (6)
C3—C2—C1120.6 (6)C10—C11—H11119.6
C3—C2—H2A119.7C12—C11—H11119.6
C1—C2—H2A119.7O3—C12—C13123.6 (5)
C2—C3—C4119.6 (6)O3—C12—C11117.3 (6)
C2—C3—H3A120.2C13—C12—C11118.9 (6)
C4—C3—H3A120.2C12—C13—C14120.9 (5)
C3—C4—C5120.5 (6)C12—C13—H13119.6
C3—C4—I1119.2 (5)C14—C13—H13119.6
C5—C4—I1120.2 (4)C13—C14—C9119.9 (6)
C4—C5—C6120.4 (5)C13—C14—H14120.1
C4—C5—H5119.8C9—C14—H14120.1
C6—C5—H5119.8O4—C15—H15A109.5
C5—C6—C1118.6 (5)O4—C15—H15B109.5
C5—C6—C7119.0 (5)H15A—C15—H15B109.5
C1—C6—C7122.4 (6)O4—C15—H15C109.5
N1—C7—C6120.1 (5)H15A—C15—H15C109.5
N1—C7—H7119.9H15B—C15—H15C109.5
C6—C7—H7119.9
C7—N1—N2—C8176.5 (6)N1—N2—C8—O27.8 (9)
O1—C1—C2—C3178.4 (7)N1—N2—C8—C9173.5 (5)
C6—C1—C2—C31.1 (12)O2—C8—C9—C1021.6 (9)
C1—C2—C3—C41.8 (12)N2—C8—C9—C10157.1 (6)
C2—C3—C4—C51.8 (10)O2—C8—C9—C14157.4 (6)
C2—C3—C4—I1178.9 (6)N2—C8—C9—C1423.9 (8)
C3—C4—C5—C61.2 (10)C14—C9—C10—C114.3 (10)
I1—C4—C5—C6178.2 (5)C8—C9—C10—C11176.6 (6)
C4—C5—C6—C10.5 (10)C9—C10—C11—C122.8 (11)
C4—C5—C6—C7179.5 (6)C10—C11—C12—O3177.0 (7)
O1—C1—C6—C5179.0 (7)C10—C11—C12—C130.1 (10)
C2—C1—C6—C50.4 (11)O3—C12—C13—C14175.6 (6)
O1—C1—C6—C70.0 (11)C11—C12—C13—C141.1 (10)
C2—C1—C6—C7179.5 (7)C12—C13—C14—C90.4 (10)
N2—N1—C7—C6177.6 (6)C10—C9—C14—C133.1 (10)
C5—C6—C7—N1179.2 (6)C8—C9—C14—C13177.9 (6)
C1—C6—C7—N11.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.607 (8)146
N2—H2···O40.862.062.897 (7)164
O3—H3···O2i0.821.902.712 (6)171
O4—H4···O2ii0.822.052.868 (7)177
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11IN2O3·CH4O
Mr414.19
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)10.1077 (7), 12.5703 (11), 13.1586 (17)
β (°) 102.886 (10)
V3)1629.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerAgilent SuperNova (Single source at offset), Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.864, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3370, 2094, 1981
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.04
No. of reflections2094
No. of parameters201
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.56
Absolute structureFlack (1983), 419 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.607 (8)146
N2—H2···O40.862.062.897 (7)164
O3—H3···O2i0.821.902.712 (6)171
O4—H4···O2ii0.822.052.868 (7)177
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z1/2.
 

Footnotes

Additional correspondence author, e-mail: mahboubi_p@yahoo.com.

Acknowledgements

The authors are grateful to the Islamic Azad University, the University of Zanjan and Ondokuz Mayis University.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o413–o414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Anarjan, P. M., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Monfared, H. H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010a). Acta Cryst. E66, o2073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Monfared, H. H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010b). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMonfared, H. H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236–o237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMonfared, H. H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574–2583.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds