organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-1-phenyl-1H-benzimidazole

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 7 August 2012; accepted 8 August 2012; online 15 August 2012)

In the title mol­ecule, C19H13FN2, the benzimidazole unit is close to planar [maximum deviation = 0.0342 (9) Å] and forms dihedral angles of 58.94 (3) and 51.43 (3)° with the phenyl and fluoro­benzene rings, respectively; the dihedral angle between the phenyl and fluoro­benzene rings is 60.17 (6)°. In the crystal, three C—H⋯F hydrogen bonds and two weak C—H⋯π inter­actions involving the fused benzene ring lead to a three-dimensional architecture.

Related literature

For linear and non-linear optical properties of benzimidazole compounds, see: Cross et al. (1995[Cross, E. M., White, K. M., Moshrefzadeh, R. S. & Francis, C. V. (1995). Macromolecules, 28, 2526-2532.]); Bu et al. (1996[Bu, X. R., Li, H., Derveer, D. V. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331-7334.]); Dirk et al. (1990[Dirk, C. W., Katz, H. E., Schilling, M. L. & King, L. A. (1990). Chem. Mater. 2, 700-705.]). For a related structure, see: Rosepriya et al. (2011[Rosepriya, S., Thiruvalluvar, A., Jayamoorthy, K., Jayabharathi, J. & Linden, A. (2011). Acta Cryst. E67, o3519.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13FN2

  • Mr = 288.31

  • Monoclinic, P 21 /n

  • a = 8.7527 (4) Å

  • b = 10.1342 (4) Å

  • c = 17.0211 (6) Å

  • β = 104.187 (4)°

  • V = 1463.75 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.47 × 0.42 × 0.15 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.961, Tmax = 1.000

  • 13721 measured reflections

  • 7347 independent reflections

  • 5352 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.160

  • S = 1.04

  • 7347 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the fused benzene ring (C4–C9).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F4i 0.93 2.46 3.3640 (14) 164
C7—H7⋯F4ii 0.93 2.43 3.3058 (13) 157
C26—H26⋯F4iii 0.93 2.52 3.4348 (14) 166
C16—H16⋯Cg2iv 0.93 2.75 3.5443 (12) 144
C22—H22⋯Cg2v 0.93 2.80 3.5245 (13) 136
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Benzimidazole based chromophores have received increasing attention due to their distinctive linear, non-linear optical properties and also due to their excellent thermal stability in guest-host systems (Cross et al., 1995). The imidazole ring can be easily tailored to accommodate functional groups, which allows the covalent incorporation of the NLO chromophores into polyamides leading to NLO side chain polymers (Bu et al., 1996). Most π-conjugated systems play a major role in determining second-order NLO response (Dirk et al., 1990). Since our group is doing research in organic light emitting devices (OLEDs), we are interested in using the title compound as a ligand in the preparation of Ir(III) complexes and in studying the photophysical properties of these complexes. Rosepriya et al. (2011) have reported a related crystal structure, namely 1-(4-Methylbenzyl)-2-(4-methylphenyl)-1H-benzimidazole.

In the title molecule, C19H13FN2 (Fig. 1), the benzimidazole unit is almost planar [maximum deviation = 0.0342 (9) Å for C6]. The dihedral angles between the planes of the benzimidazole and the phenyl and the fluorobenzene groups are 58.94 (3) and 51.43 (3)°, respectively. The dihedral angle between the planes of the phenyl and the fluorobenzene rings is 60.17 (6)°. Intermolecular C4—H4···F4, C7—H7···F4 and C26—H26···F4 hydrogen bonds and weak C16—H16···π and C22—H22···π interactions involving the fused benzene ring are found in the crystal structure (Fig. 2, Table 1).

Related literature top

For linear and non-linear optical properties of benzimidazole compounds, see: Cross et al. (1995); Bu et al. (1996); Dirk et al. (1990). For a related structure, see: Rosepriya et al. (2011).

Experimental top

To N-phenyl-o-phenylenediamine (3.128 g, 17 mmol) in ethanol (10 ml) was added 4-fluorobenzaldehyde (1.9 ml, 17 mmol) and ammonium acetate (3 g) over about 1 h while maintaining the temperature at 353 K. The reaction mixture was refluxed until the completion of reaction, as monitored by TLC. The reaction mixture was extracted with dichloromethane. The solid that separated out was purified by column chromatography using petroleum ether: ethyl acetate as the eluent. Yield: 2.47 g (50%). The title compound was dissolved in acetonitrile and allowed to slowly evaporate for two days to obtain crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

The packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
2-(4-Fluorophenyl)-1-phenyl-1H-benzimidazole top
Crystal data top
C19H13FN2F(000) = 600
Mr = 288.31Dx = 1.308 Mg m3
Monoclinic, P21/nMelting point: 369 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.7527 (4) ÅCell parameters from 3202 reflections
b = 10.1342 (4) Åθ = 3.1–37.6°
c = 17.0211 (6) ŵ = 0.09 mm1
β = 104.187 (4)°T = 123 K
V = 1463.75 (11) Å3Plate, colourless
Z = 40.47 × 0.42 × 0.15 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7347 independent reflections
Radiation source: Enhance (Mo) X-ray Source5352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.5081 pixels mm-1θmax = 37.7°, θmin = 3.1°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1217
Tmin = 0.961, Tmax = 1.000l = 2824
13721 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.2726P]
where P = (Fo2 + 2Fc2)/3
7347 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H13FN2V = 1463.75 (11) Å3
Mr = 288.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7527 (4) ŵ = 0.09 mm1
b = 10.1342 (4) ÅT = 123 K
c = 17.0211 (6) Å0.47 × 0.42 × 0.15 mm
β = 104.187 (4)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7347 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5352 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 1.000Rint = 0.031
13721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
7347 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F40.45822 (10)0.05502 (7)0.23042 (4)0.0296 (2)
N10.25329 (11)0.44506 (9)0.01000 (5)0.0181 (2)
N30.32447 (11)0.53932 (9)0.11392 (5)0.0204 (2)
C20.30699 (12)0.42744 (10)0.07314 (6)0.0181 (2)
C40.27719 (14)0.77382 (11)0.06432 (7)0.0224 (3)
C50.22041 (14)0.84918 (11)0.00490 (7)0.0241 (3)
C60.16727 (14)0.79006 (11)0.08140 (7)0.0242 (3)
C70.17379 (14)0.65470 (11)0.09192 (6)0.0227 (3)
C80.23331 (12)0.57999 (10)0.02222 (6)0.0184 (2)
C90.28005 (12)0.63684 (10)0.05527 (6)0.0192 (2)
C110.21724 (12)0.34608 (10)0.07164 (6)0.0181 (2)
C120.29236 (14)0.34944 (12)0.13497 (6)0.0250 (3)
C130.25650 (17)0.25270 (14)0.19472 (7)0.0326 (4)
C140.14865 (18)0.15428 (13)0.19126 (7)0.0342 (4)
C150.07463 (16)0.15197 (12)0.12781 (8)0.0296 (3)
C160.10831 (13)0.24826 (11)0.06771 (6)0.0222 (3)
C210.34251 (12)0.29683 (10)0.11128 (6)0.0184 (2)
C220.43985 (13)0.20730 (11)0.08453 (6)0.0207 (3)
C230.47933 (13)0.08832 (11)0.12460 (6)0.0226 (3)
C240.41834 (13)0.06137 (11)0.19050 (6)0.0216 (3)
C250.31950 (14)0.14570 (11)0.21819 (6)0.0240 (3)
C260.28287 (14)0.26534 (11)0.17816 (6)0.0224 (3)
H40.312070.813170.114910.0269*
H50.217530.940560.000490.0289*
H60.126610.843180.126210.0290*
H70.140300.615730.142710.0273*
H120.365220.415220.137270.0299*
H130.305490.254190.237410.0391*
H140.125810.089830.231330.0410*
H150.002250.085810.125470.0355*
H160.058370.247070.025380.0266*
H220.478380.227480.039660.0248*
H230.545000.028340.107620.0271*
H250.278860.123320.262040.0288*
H260.218080.325140.195960.0269*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F40.0397 (4)0.0227 (3)0.0241 (3)0.0008 (3)0.0033 (3)0.0082 (3)
N10.0235 (4)0.0161 (3)0.0140 (3)0.0019 (3)0.0035 (3)0.0001 (3)
N30.0259 (4)0.0195 (4)0.0158 (3)0.0011 (3)0.0051 (3)0.0005 (3)
C20.0208 (4)0.0193 (4)0.0144 (3)0.0009 (3)0.0047 (3)0.0010 (3)
C40.0266 (5)0.0188 (4)0.0221 (4)0.0028 (4)0.0065 (4)0.0029 (4)
C50.0275 (5)0.0183 (4)0.0280 (5)0.0008 (4)0.0096 (4)0.0009 (4)
C60.0279 (5)0.0209 (5)0.0235 (4)0.0007 (4)0.0059 (4)0.0055 (4)
C70.0279 (5)0.0217 (5)0.0174 (4)0.0007 (4)0.0032 (3)0.0028 (3)
C80.0214 (4)0.0170 (4)0.0167 (4)0.0021 (3)0.0045 (3)0.0002 (3)
C90.0214 (4)0.0197 (4)0.0167 (4)0.0021 (3)0.0048 (3)0.0003 (3)
C110.0203 (4)0.0186 (4)0.0148 (3)0.0007 (3)0.0030 (3)0.0010 (3)
C120.0285 (5)0.0289 (5)0.0192 (4)0.0028 (4)0.0091 (4)0.0010 (4)
C130.0437 (7)0.0362 (7)0.0192 (4)0.0128 (6)0.0102 (5)0.0029 (4)
C140.0464 (8)0.0263 (6)0.0244 (5)0.0114 (5)0.0017 (5)0.0089 (4)
C150.0329 (6)0.0203 (5)0.0307 (5)0.0001 (4)0.0017 (4)0.0051 (4)
C160.0236 (5)0.0207 (4)0.0211 (4)0.0011 (4)0.0034 (3)0.0015 (4)
C210.0211 (4)0.0194 (4)0.0144 (3)0.0013 (3)0.0039 (3)0.0009 (3)
C220.0230 (4)0.0222 (5)0.0180 (4)0.0003 (4)0.0073 (3)0.0027 (3)
C230.0244 (5)0.0219 (5)0.0218 (4)0.0019 (4)0.0062 (4)0.0024 (4)
C240.0266 (5)0.0189 (4)0.0170 (4)0.0022 (4)0.0010 (3)0.0042 (3)
C250.0322 (5)0.0244 (5)0.0167 (4)0.0023 (4)0.0086 (4)0.0027 (4)
C260.0278 (5)0.0233 (5)0.0178 (4)0.0009 (4)0.0090 (4)0.0008 (3)
Geometric parameters (Å, º) top
F4—C241.3633 (13)C21—C221.3952 (15)
N1—C21.3890 (13)C21—C261.4005 (15)
N1—C81.3877 (14)C22—C231.3867 (15)
N1—C111.4298 (13)C23—C241.3825 (15)
N3—C21.3186 (13)C24—C251.3787 (16)
N3—C91.3908 (13)C25—C261.3893 (15)
C2—C211.4735 (14)C4—H40.9300
C4—C51.3897 (16)C5—H50.9300
C4—C91.3976 (15)C6—H60.9300
C5—C61.4050 (16)C7—H70.9300
C6—C71.3864 (16)C12—H120.9300
C7—C81.3961 (14)C13—H130.9300
C8—C91.4052 (14)C14—H140.9300
C11—C121.3939 (15)C15—H150.9300
C11—C161.3883 (15)C16—H160.9300
C12—C131.3919 (17)C22—H220.9300
C13—C141.384 (2)C23—H230.9300
C14—C151.3891 (19)C25—H250.9300
C15—C161.3920 (17)C26—H260.9300
C2—N1—C8106.15 (8)F4—C24—C25118.13 (9)
C2—N1—C11128.03 (9)C23—C24—C25123.67 (10)
C8—N1—C11125.75 (8)C24—C25—C26117.52 (10)
C2—N3—C9104.91 (8)C21—C26—C25120.69 (10)
N1—C2—N3113.10 (9)C5—C4—H4121.00
N1—C2—C21123.13 (9)C9—C4—H4121.00
N3—C2—C21123.76 (9)C4—C5—H5119.00
C5—C4—C9117.69 (10)C6—C5—H5119.00
C4—C5—C6121.32 (10)C5—C6—H6119.00
C5—C6—C7121.80 (10)C7—C6—H6119.00
C6—C7—C8116.45 (10)C6—C7—H7122.00
N1—C8—C7131.97 (9)C8—C7—H7122.00
N1—C8—C9105.45 (8)C11—C12—H12121.00
C7—C8—C9122.51 (9)C13—C12—H12121.00
N3—C9—C4129.50 (9)C12—C13—H13120.00
N3—C9—C8110.38 (9)C14—C13—H13120.00
C4—C9—C8120.12 (9)C13—C14—H14120.00
N1—C11—C12119.29 (10)C15—C14—H14120.00
N1—C11—C16119.75 (9)C14—C15—H15120.00
C12—C11—C16120.96 (10)C16—C15—H15120.00
C11—C12—C13118.90 (11)C11—C16—H16120.00
C12—C13—C14120.69 (12)C15—C16—H16120.00
C13—C14—C15119.87 (12)C21—C22—H22120.00
C14—C15—C16120.29 (12)C23—C22—H22120.00
C11—C16—C15119.30 (10)C22—C23—H23121.00
C2—C21—C22121.34 (9)C24—C23—H23121.00
C2—C21—C26118.84 (9)C24—C25—H25121.00
C22—C21—C26119.75 (10)C26—C25—H25121.00
C21—C22—C23120.23 (10)C21—C26—H26120.00
C22—C23—C24118.14 (10)C25—C26—H26120.00
F4—C24—C23118.21 (10)
C8—N1—C2—N30.88 (13)C6—C7—C8—N1178.40 (12)
C8—N1—C2—C21179.88 (10)C6—C7—C8—C91.94 (17)
C11—N1—C2—N3178.02 (10)N1—C8—C9—N31.25 (12)
C11—N1—C2—C212.74 (17)N1—C8—C9—C4178.72 (10)
C2—N1—C8—C7175.66 (12)C7—C8—C9—N3176.02 (10)
C2—N1—C8—C91.24 (12)C7—C8—C9—C44.00 (17)
C11—N1—C8—C71.56 (19)N1—C11—C12—C13179.97 (12)
C11—N1—C8—C9178.46 (10)C16—C11—C12—C130.00 (17)
C2—N1—C11—C12123.95 (12)N1—C11—C16—C15179.68 (10)
C2—N1—C11—C1656.07 (16)C12—C11—C16—C150.33 (17)
C8—N1—C11—C1259.44 (15)C11—C12—C13—C140.32 (19)
C8—N1—C11—C16120.54 (12)C12—C13—C14—C150.3 (2)
C9—N3—C2—N10.11 (13)C13—C14—C15—C160.1 (2)
C9—N3—C2—C21179.34 (10)C14—C15—C16—C110.36 (18)
C2—N3—C9—C4179.25 (12)C2—C21—C22—C23176.01 (10)
C2—N3—C9—C80.72 (12)C26—C21—C22—C230.90 (16)
N1—C2—C21—C2250.81 (15)C2—C21—C26—C25177.04 (10)
N1—C2—C21—C26132.26 (11)C22—C21—C26—C250.06 (17)
N3—C2—C21—C22128.35 (12)C21—C22—C23—C240.67 (16)
N3—C2—C21—C2648.58 (16)C22—C23—C24—F4179.40 (10)
C9—C4—C5—C60.15 (18)C22—C23—C24—C250.53 (17)
C5—C4—C9—N3177.21 (11)F4—C24—C25—C26178.48 (10)
C5—C4—C9—C82.83 (17)C23—C24—C25—C261.45 (17)
C4—C5—C6—C72.2 (2)C24—C25—C26—C211.18 (17)
C5—C6—C7—C81.13 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the fused benzene ring (C4–C9).
D—H···AD—HH···AD···AD—H···A
C4—H4···F4i0.932.463.3640 (14)164
C7—H7···F4ii0.932.433.3058 (13)157
C26—H26···F4iii0.932.523.4348 (14)166
C16—H16···Cg2iv0.932.753.5443 (12)144
C22—H22···Cg2v0.932.803.5245 (13)136
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H13FN2
Mr288.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)8.7527 (4), 10.1342 (4), 17.0211 (6)
β (°) 104.187 (4)
V3)1463.75 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.42 × 0.15
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.961, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13721, 7347, 5352
Rint0.031
(sin θ/λ)max1)0.859
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.160, 1.04
No. of reflections7347
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.22

Computer programs: CrysAlis PRO (Agilent, 2012), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the fused benzene ring (C4–C9).
D—H···AD—HH···AD···AD—H···A
C4—H4···F4i0.932.463.3640 (14)164
C7—H7···F4ii0.932.433.3058 (13)157
C26—H26···F4iii0.932.523.4348 (14)166
C16—H16···Cg2iv0.932.753.5443 (12)144
C22—H22···Cg2v0.932.803.5245 (13)136
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z.
 

Acknowledgements

KJ thanks the DST (No. SR/S1/IC-73/2010) for a fellowship. JJ thanks the DST (No. SR/S1/IC-73/2010), and the UGC [F. No. 36–21/2008 (SR)] and the DRDO (NRB-213/MAT/10–11) for providing funds to this research study. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBu, X. R., Li, H., Derveer, D. V. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331–7334.  CSD CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCross, E. M., White, K. M., Moshrefzadeh, R. S. & Francis, C. V. (1995). Macromolecules, 28, 2526–2532.  CrossRef CAS Web of Science Google Scholar
First citationDirk, C. W., Katz, H. E., Schilling, M. L. & King, L. A. (1990). Chem. Mater. 2, 700–705.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRosepriya, S., Thiruvalluvar, A., Jayamoorthy, K., Jayabharathi, J. & Linden, A. (2011). Acta Cryst. E67, o3519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds