organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-3-anilino-1H-pyrazole-4-carbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and dDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 14 August 2012; accepted 16 August 2012; online 25 August 2012)

In the title compound, C10H9N5, the phenyl ring is twisted with respect to the pyrazole ring, forming a dihedral angle of 24.00 (6)°. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds into chains running parallel to [010] containing alternating R22(6) and R22(12) rings. Further inter­actions are found in the crystal, viz. N—H⋯π(phen­yl) inter­actions and weak face-to-face ππ stacking inter­actions [centroid–centroid distance = 3.8890 (6) Å] between the centroids of the pyrazole and phenyl rings are observed.

Related literature

For biological activities of pyrazoles, see: Kaushik et al. (2010[Kaushik, D., Khan, S. A., Chawla, G. & Kumar, S. (2010). Eur. J. Med. Chem. 45, 3943-3949.]); Sheikh et al. (2009[Sheikh, T. U., Khan, M. A., Arshad, M. N., Khan, I. U. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, o330.]); Krishnamurthy et al. (2004[Krishnamurthy, M., Li, W. & Moore, B. M. (2004). Bioorg. Med. Chem. 12, 393-404.]); Grimmett (1970[Grimmett, M. R. (1970). Adv. Heterocycl. Chem. 12, 103-183.]). For the use of related compounds as bridging ligands, see: Lynch & McClenaghan (2005[Lynch, D. E. & McClenaghan, I. (2005). Acta Cryst. E61, o2347-o2348.]). For the synthesis of the title compound, see: Soliman et al. (2010[Soliman, A. M., Sultan, A. A., Abdel-Aleem, M. & Abdel-Ghany, H. (2010). J. Int. Environ. Appl. Sci. 5, 883-889.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N5

  • Mr = 199.22

  • Orthorhombic, P 21 21 21

  • a = 6.3441 (1) Å

  • b = 11.1354 (2) Å

  • c = 13.7754 (3) Å

  • V = 973.15 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.25 × 0.17 × 0.08 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.993

  • 32878 measured reflections

  • 2975 independent reflections

  • 2767 reflections with I > 2σ(I)

  • Rint = 0.035

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.09

  • 2975 reflections

  • 152 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N5i 0.84 (2) 2.15 (2) 2.9934 (13) 179 (2)
N3—H3N⋯N2ii 0.87 (2) 2.09 (2) 2.8947 (13) 154 (2)
N4—H12⋯Cg2iii 0.85 (2) 2.51 (2) 3.2011 (12) 140 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The interest in pyrazole compounds stems from their pharmaceutical and agricultural applications such as drugs, dyes and anaesthetics (Grimmett, 1970; Sheikh et al., 2009; Kaushik et al., 2010; Krishnamurthy et al., 2004). In addition, such pyrazoles and related compounds are common molecules used in coordination or organometallic chemistry as bridging ligands, utilizing the ring positions of the two N atoms (Lynch & McClenaghan, 2005). We report herein the crystal structure of the title compound which was synthesized by our team as a precursor having two functional substituents (amino and nitrile groups) for the purposes of synthesis of multi-fused pyrazolo-heterocyclic compounds such as nitrogen bridgehead derivatives having potential biological activities (Soliman et al., 2010).

In the molecule of the title compound, (Fig. 1), the phenyl and 1H-pyrazole ring makes a dihedral angle of 24.00 (6)° with each other.

The crystal structure is stabilized by N—H···N hydrogen bonds (Table 1, Fig. 2) which link the molecules into chains running parallel to [010] with alternating R22(6) and R22(12) motifs (Bernstein et al., 1995). In addition, the crystal structure exhibits N—H···π(phenyl) interactions, Table 1, and weak face-to-face ππ stacking interactions [Cg1···Cg2 (1 + x, y, z) = 3.8890 (6) Å; where Cg1 and Cg2 are the centroid of the (N2/N3/C7–C9) 1H-pyrazole and (C1–C6) phenyl rings].

Related literature top

For biological activities of pyrazoles, see: Kaushik et al. (2010); Sheikh et al. (2009); Krishnamurthy et al. (2004); Grimmett (1970). For related literature, see: Lynch & McClenaghan (2005). For the synthesis of the title compound, see: Soliman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared according to the literature procedure (Soliman et al., 2010). Crystals were obtained from an ethanol solution of (I) by slow evaporation (M.pt: 481 K).

Refinement top

The hydrogen atoms bound to nitrogen were located from a difference Fourier map and were refined with a distance restraint of N—H = 0.86 (2) Å; their Uiso values were refined freely. The hydrogen atoms bound to carbon were positioned geometrically and refined using a riding model with C—H = 0.93 Å, and with Uiso = 1.2Ueq(C). The absolute structure could not be determined reliably; Friedel pairs were not merged.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

View of chains of the dimers formed by pairs of N—H···N hydrogen bonds, with the R22(12) and R22(6) motifs connected into a supramolecular chain. H atoms not involved in hydrogen bonds have been omitted for clarity.
5-Amino-3-anilino-1H-pyrazole-4-carbonitrile top
Crystal data top
C10H9N5F(000) = 416
Mr = 199.22Dx = 1.360 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9908 reflections
a = 6.3441 (1) Åθ = 2.4–30.5°
b = 11.1354 (2) ŵ = 0.09 mm1
c = 13.7754 (3) ÅT = 90 K
V = 973.15 (3) Å3Plate, colourless
Z = 40.25 × 0.17 × 0.08 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
2975 independent reflections
Radiation source: fine-focus sealed tube2767 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.978, Tmax = 0.993k = 1515
32878 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1533P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2975 reflectionsΔρmax = 0.32 e Å3
152 parametersΔρmin = 0.20 e Å3
4 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H9N5V = 973.15 (3) Å3
Mr = 199.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3441 (1) ŵ = 0.09 mm1
b = 11.1354 (2) ÅT = 90 K
c = 13.7754 (3) Å0.25 × 0.17 × 0.08 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
2975 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2767 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.993Rint = 0.035
32878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.32 e Å3
2975 reflectionsΔρmin = 0.20 e Å3
152 parametersAbsolute structure: nd
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.50345 (15)0.01004 (8)0.89839 (7)0.0142 (2)
N20.71282 (15)0.15769 (8)0.94613 (7)0.0154 (2)
N30.89266 (15)0.16812 (8)1.00299 (7)0.0168 (2)
N41.13973 (17)0.05235 (10)1.09010 (8)0.0234 (3)
N50.84875 (15)0.24944 (9)1.03572 (7)0.0204 (3)
C10.40580 (18)0.15607 (10)0.78868 (8)0.0173 (3)
C20.2548 (2)0.20761 (11)0.72811 (8)0.0205 (3)
C30.06057 (19)0.15345 (11)0.71341 (8)0.0213 (3)
C40.01783 (19)0.04497 (11)0.75945 (8)0.0193 (3)
C50.16597 (18)0.00746 (10)0.82040 (7)0.0152 (3)
C60.36064 (16)0.04854 (9)0.83683 (7)0.0130 (2)
C70.66942 (16)0.04110 (9)0.94711 (7)0.0122 (2)
C80.81769 (17)0.02408 (9)1.00460 (8)0.0133 (2)
C90.96026 (17)0.06332 (10)1.03764 (8)0.0153 (3)
C100.83277 (17)0.14847 (9)1.02122 (7)0.0145 (2)
H10.536000.193000.797000.0210*
H1N0.459 (3)0.0771 (13)0.9176 (12)0.027 (4)*
H20.284800.279700.697000.0250*
H30.039600.189100.673400.0260*
H3N0.958 (3)0.2358 (13)1.0116 (14)0.034 (5)*
H40.111100.007200.749300.0230*
H50.135800.080200.850500.0180*
H111.200 (3)0.1170 (14)1.1129 (13)0.038 (5)*
H121.165 (3)0.0151 (14)1.1162 (13)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0145 (4)0.0093 (4)0.0189 (4)0.0012 (3)0.0034 (4)0.0031 (3)
N20.0152 (4)0.0112 (4)0.0197 (4)0.0003 (3)0.0030 (3)0.0012 (3)
N30.0178 (4)0.0117 (4)0.0208 (4)0.0023 (3)0.0038 (3)0.0005 (3)
N40.0219 (5)0.0230 (5)0.0253 (5)0.0035 (4)0.0095 (4)0.0041 (4)
N50.0189 (5)0.0160 (4)0.0262 (5)0.0023 (4)0.0001 (4)0.0038 (4)
C10.0189 (5)0.0150 (5)0.0179 (5)0.0012 (4)0.0018 (4)0.0018 (4)
C20.0260 (6)0.0172 (5)0.0183 (5)0.0030 (4)0.0029 (4)0.0044 (4)
C30.0206 (5)0.0250 (6)0.0182 (5)0.0068 (5)0.0037 (4)0.0018 (4)
C40.0144 (5)0.0251 (5)0.0184 (5)0.0007 (4)0.0004 (4)0.0010 (4)
C50.0134 (5)0.0170 (4)0.0153 (4)0.0011 (4)0.0010 (4)0.0006 (4)
C60.0136 (4)0.0126 (4)0.0129 (4)0.0025 (4)0.0004 (3)0.0002 (3)
C70.0124 (4)0.0105 (4)0.0137 (4)0.0007 (4)0.0005 (4)0.0003 (3)
C80.0128 (4)0.0126 (4)0.0145 (4)0.0008 (3)0.0001 (4)0.0011 (3)
C90.0157 (4)0.0155 (5)0.0147 (4)0.0005 (4)0.0002 (3)0.0004 (4)
C100.0125 (4)0.0164 (4)0.0147 (4)0.0011 (4)0.0008 (3)0.0017 (3)
Geometric parameters (Å, º) top
N1—C61.4020 (14)C2—C31.3868 (17)
N1—C71.3724 (14)C3—C41.3910 (17)
N2—N31.3888 (14)C4—C51.3889 (16)
N2—C71.3272 (13)C5—C61.4019 (15)
N3—C91.3318 (14)C7—C81.4279 (15)
N4—C91.3541 (15)C8—C91.4044 (15)
N5—C101.1464 (14)C8—C101.4072 (14)
N1—H1N0.841 (15)C1—H10.9300
N3—H3N0.868 (16)C2—H20.9300
N4—H110.874 (17)C3—H30.9300
N4—H120.848 (16)C4—H40.9300
C1—C21.3940 (16)C5—H50.9300
C1—C61.3985 (15)
C6—N1—C7126.77 (9)N1—C7—N2124.06 (9)
N3—N2—C7104.27 (8)N1—C7—C8124.46 (9)
N2—N3—C9113.17 (9)C7—C8—C9104.58 (9)
C6—N1—H1N112.8 (13)C7—C8—C10129.45 (10)
C7—N1—H1N118.2 (12)C9—C8—C10125.85 (10)
N2—N3—H3N122.8 (12)N3—C9—N4122.76 (10)
C9—N3—H3N123.9 (12)N3—C9—C8106.48 (9)
C9—N4—H12117.7 (12)N4—C9—C8130.69 (11)
H11—N4—H12119.7 (17)N5—C10—C8178.64 (11)
C9—N4—H11119.1 (12)C2—C1—H1120.00
C2—C1—C6119.71 (10)C6—C1—H1120.00
C1—C2—C3121.26 (11)C1—C2—H2119.00
C2—C3—C4118.97 (11)C3—C2—H2119.00
C3—C4—C5120.58 (11)C2—C3—H3121.00
C4—C5—C6120.45 (10)C4—C3—H3121.00
N1—C6—C1123.57 (9)C3—C4—H4120.00
N1—C6—C5117.39 (9)C5—C4—H4120.00
C1—C6—C5119.00 (9)C4—C5—H5120.00
N2—C7—C8111.48 (9)C6—C5—H5120.00
C7—N1—C6—C5159.01 (10)C2—C3—C4—C50.99 (17)
C6—N1—C7—N23.39 (17)C3—C4—C5—C60.32 (16)
C7—N1—C6—C123.65 (16)C4—C5—C6—C11.90 (15)
C6—N1—C7—C8176.20 (10)C4—C5—C6—N1179.36 (10)
C7—N2—N3—C90.38 (12)N1—C7—C8—C9178.44 (10)
N3—N2—C7—C80.53 (12)N2—C7—C8—C10177.26 (11)
N3—N2—C7—N1179.10 (10)N1—C7—C8—C102.37 (18)
N2—N3—C9—N4176.12 (10)N2—C7—C8—C91.19 (12)
N2—N3—C9—C81.13 (13)C7—C8—C9—N31.35 (12)
C6—C1—C2—C30.88 (17)C10—C8—C9—N40.7 (2)
C2—C1—C6—N1179.46 (10)C7—C8—C9—N4175.60 (12)
C2—C1—C6—C52.16 (16)C10—C8—C9—N3177.60 (10)
C1—C2—C3—C40.71 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N5i0.84 (2)2.15 (2)2.9934 (13)179 (2)
N3—H3N···N2ii0.87 (2)2.09 (2)2.8947 (13)154 (2)
C1—H1···N20.932.372.9152 (15)117
N4—H12···Cg2iii0.85 (2)2.51 (2)3.2011 (12)140 (2)
Symmetry codes: (i) x1/2, y1/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9N5
Mr199.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)6.3441 (1), 11.1354 (2), 13.7754 (3)
V3)973.15 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.17 × 0.08
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
32878, 2975, 2767
Rint0.035
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.09
No. of reflections2975
No. of parameters152
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.20
Absolute structureNd

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N5i0.841 (15)2.153 (15)2.9934 (13)178.8 (15)
N3—H3N···N2ii0.868 (16)2.088 (18)2.8947 (13)154.3 (16)
N4—H12···Cg2iii0.848 (16)2.506 (18)3.2011 (12)139.9 (15)
Symmetry codes: (i) x1/2, y1/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x+3/2, y, z+1/2.
 

Acknowledgements

We thank Sohag University for financial support of this project. Manchester Metropolitan University, Erciyes University and Louisiana State University are gratefully acknowledged for supporting this study.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrimmett, M. R. (1970). Adv. Heterocycl. Chem. 12, 103–183.  CrossRef CAS Google Scholar
First citationKaushik, D., Khan, S. A., Chawla, G. & Kumar, S. (2010). Eur. J. Med. Chem. 45, 3943–3949.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrishnamurthy, M., Li, W. & Moore, B. M. (2004). Bioorg. Med. Chem. 12, 393–404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2005). Acta Cryst. E61, o2347–o2348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheikh, T. U., Khan, M. A., Arshad, M. N., Khan, I. U. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, o330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoliman, A. M., Sultan, A. A., Abdel-Aleem, M. & Abdel-Ghany, H. (2010). J. Int. Environ. Appl. Sci. 5, 883–889.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds