metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-Bromidotri­carbonyl[2-(diiso­propylphosphanyl)benzaldehyde-κ2O,P]rhenium(I)

aEuropean Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, and bIKFT, KIT-Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: olaf.walter@ec.europa.eu

(Received 13 July 2012; accepted 15 August 2012; online 23 August 2012)

The structure of the title complex, [ReBr(C13H19OP)(CO)3], displays a facial coordination of the three CO ligands and a κ2O,P coordination mode of the 2-diisopropyl­phosphino­benzaldehyde ligands. The Re—C bond distance for the CO ligand trans to the P atom is, due to its trans influence, elongated to 1.943 (3) Å, showing that this CO ligand is more weakly bound to the Re centre than the other two.

Related literature

For the structures of halo-fac-tricarbonyl-[κ2O,P-(ligand)]rhenium(I) complexes with ligands based on 2-diphenyl­phosphinobenzaldehyde or 2-diphenyl­phosphinobenzoic acid derivatives, see: Correia et al. (2001[Correia, J. D. G., Domingos, A., Santos, I., Alberto, R. & Ortner, K. (2001). Inorg. Chem. 40, 5147-5151.]); Chen et al. (2001[Chen, X., Femia, F. J., Babich, J. W. & Zubieta, J. (2001). Inorg. Chim. Acta, 315, 147-152.]); Palma et al. (2004[Palma, E., Correia, J. D. G., Domingos, A., Santos, I., Alberto, R. & Spies, H. (2004). J. Organomet. Chem. 689, 4811-4819.]).

[Scheme 1]

Experimental

Crystal data
  • [ReBr(C13H19OP)(CO)3]

  • Mr = 572.39

  • Monoclinic, P 21 /c

  • a = 10.750 (2) Å

  • b = 15.194 (3) Å

  • c = 13.699 (3) Å

  • β = 125.29 (3)°

  • V = 1826.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.94 mm−1

  • T = 200 K

  • 0.43 × 0.33 × 0.31 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: numerical SADABS (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.631, Tmax = 1

  • 18487 measured reflections

  • 4436 independent reflections

  • 4095 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.045

  • S = 1.11

  • 4436 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected bond lengths (Å)

Re1—C14 1.901 (3)
Re1—C15 1.943 (3)
Re1—C16 1.915 (3)
Re1—O1 2.1739 (18)
Re1—P1 2.4655 (13)
Re1—Br1 2.6116 (6)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPMA (Zsolnai, 1996[Zsolnai, L. (1996). XPMA. University of Heidelberg, Germany.]), ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the structures of halo-fac-tricarbonyl-[η2-P,O-(ligand)]rhenium(I) complexes with ligands based on 2-diphenylphosphinobenzaldehyde or 2-diphenylphosphinobenzoic acid derivatives, see: Correia et al. (2001); Chen et al. (2001); Palma et al. (2004).

Experimental top

The title compound was obtained from the reaction of 371.0 mg (1.38 mmol) 2-diisopropylphosphinobenzaldehydedimethylacetale and 561.5 mg (1.38 mmol) bromo-pentacarbonyl-rhenium(I) in refluxing thf (30 ml) after recrystallization from diethylether in 93% yield (736 mg). Single crystals of the title compound were grown in an NMR tube with CDCl3 as the solvant.

Refinement top

The position of the H atom located at the aldehyde carbon atom was localized and refined together with its isotropic displacement parameter. The positions of all other H atoms were calculated at geometrical positions according to the hybridization of the atoms they are bound to. The isotropic U values of the hydrogen atoms were refined group-wisely.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPMA (Zsolnai, 1996), ORTEP (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
fac-Bromidotricarbonyl[2-(diisopropylphosphanyl)benzaldehyde- κ2O,P]rhenium(I) top
Crystal data top
[ReBr(C13H19OP)(CO)3]F(000) = 1088
Mr = 572.39Dx = 2.082 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 165 reflections
a = 10.750 (2) Åθ = 2.3–28.3°
b = 15.194 (3) ŵ = 8.94 mm1
c = 13.699 (3) ÅT = 200 K
β = 125.29 (3)°Cube, orange
V = 1826.4 (9) Å30.43 × 0.33 × 0.31 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD
diffractometer
4436 independent reflections
Radiation source: fine-focus sealed tube4095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scansh = 1414
Absorption correction: numerical
SADABS (Bruker, 1997)
k = 1919
Tmin = 0.631, Tmax = 1l = 1717
18487 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.987P]
where P = (Fo2 + 2Fc2)/3
4436 reflections(Δ/σ)max = 0.002
221 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[ReBr(C13H19OP)(CO)3]V = 1826.4 (9) Å3
Mr = 572.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.750 (2) ŵ = 8.94 mm1
b = 15.194 (3) ÅT = 200 K
c = 13.699 (3) Å0.43 × 0.33 × 0.31 mm
β = 125.29 (3)°
Data collection top
Siemens SMART 1000 CCD
diffractometer
4436 independent reflections
Absorption correction: numerical
SADABS (Bruker, 1997)
4095 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 1Rint = 0.027
18487 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.51 e Å3
4436 reflectionsΔρmin = 1.04 e Å3
221 parameters
Special details top

Experimental. Spectroscopic data: 1H{31P} NMR (CDCl3): δ = 9.71, s, 1H, CHO; 7.99, dd, 3JHH = 7.5 Hz, 4JHH = 1.2 Hz, 1H, CH(arom); 7.89, dt, 3JHH = 7.5 Hz, 4JHH = 1.2 Hz, 1H, CH(arom); 7.78, dt, 3JHH = 7.5 Hz, 4JHH = 1.2 Hz, 1H, CH(arom); 7.72, dd, 3JHH = 7.5 Hz, 4JHH = 1.2 Hz, 1H, CH(arom); 2.94, hept, 3JHH = 7.0 Hz, 1H, CH(Me)2; 2.55, hept, 3JHH = 6.9 Hz, 1H, CH(Me)2; 1.38, d, 3JHH = 7.0 Hz, 3H, CH3; 1.31, d, 3JHH = 7.0 Hz, 3H, CH3; 1.03, d, 3JHH = 7.0 Hz, 3H, CH3; 0.97, d, 3JHH = 6.9 Hz, 3H, CH3; 31P{1H} NMR (CDCl3): δ = 19.7, s; 13C{31P}{1H} NMR (CDCl3): δ = 200.6; 196.2; 190.3; 141.0; 136.0; 132.5; 131.6; 27.9; 23.3; 18.9; 18.2; 17.2; 16.2; IR νCO [cm-1]: 2041, 1949, 1905, 1634; UV vis (CHCl3): 414 nm (ε 2142); 261 nm (ε 9780); UV vis (MeCN): 391 nm (ε 1794); 312 nm (sh); 257 nm (ε 7952); 214 nm (ε 27000)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The data of the structure have been deposited at the CCDC with the reference number 894003 (Allen, 2002).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.096757 (10)0.651316 (6)0.822326 (9)0.01984 (4)
Br10.09257 (4)0.70831 (2)1.00026 (3)0.03331 (7)
P10.17759 (7)0.68270 (4)0.68063 (6)0.01901 (13)
O10.0136 (2)0.53062 (12)0.85118 (17)0.0246 (4)
O20.2119 (2)0.83034 (14)0.8052 (2)0.0381 (5)
O30.4316 (2)0.59455 (16)1.0029 (2)0.0446 (6)
O40.1170 (3)0.57547 (15)0.6249 (2)0.0387 (5)
C10.2889 (3)0.63407 (17)0.7300 (2)0.0217 (5)
C20.4274 (3)0.6705 (2)0.6956 (3)0.0294 (6)
H20.45960.72280.65250.035 (4)*
C30.5192 (3)0.6307 (2)0.7243 (3)0.0343 (7)
H30.61040.65710.70130.035 (4)*
C40.4759 (3)0.5528 (2)0.7861 (3)0.0320 (6)
H40.53830.52580.80380.035 (4)*
C50.3387 (3)0.51476 (19)0.8221 (2)0.0275 (6)
H50.30920.46180.86380.035 (4)*
C60.2436 (3)0.55548 (17)0.7962 (2)0.0220 (5)
C70.1008 (3)0.50735 (17)0.8444 (2)0.0231 (5)
C80.2409 (3)0.79816 (17)0.6455 (3)0.0273 (6)
H80.35260.79810.59390.038 (9)*
C90.1909 (4)0.8520 (2)0.7555 (3)0.0427 (8)
H9A0.08200.85760.80460.049 (4)*
H9B0.22270.82310.80000.049 (4)*
H9C0.23650.90930.73160.049 (4)*
C100.1865 (4)0.8395 (2)0.5746 (3)0.0390 (8)
H10A0.21890.89980.55720.049 (4)*
H10B0.22920.80770.50110.049 (4)*
H10C0.07730.83680.62090.049 (4)*
C110.2622 (3)0.6290 (2)0.5325 (3)0.0288 (6)
H110.20260.64850.50290.030 (9)*
C120.4282 (4)0.6553 (2)0.4382 (3)0.0429 (8)
H12A0.46550.62440.36500.048 (4)*
H12B0.43380.71760.42420.048 (4)*
H12C0.48920.64040.46630.048 (4)*
C130.2484 (4)0.5296 (2)0.5436 (3)0.0357 (7)
H13A0.31620.50730.56200.048 (4)*
H13B0.14550.51380.60630.048 (4)*
H13C0.27490.50470.46940.048 (4)*
C140.1677 (3)0.76221 (19)0.8091 (2)0.0262 (6)
C150.3070 (3)0.6152 (2)0.9370 (3)0.0296 (6)
C160.1055 (3)0.60419 (18)0.6968 (3)0.0256 (6)
H70.101 (3)0.4472 (19)0.876 (2)0.015 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01570 (6)0.01934 (6)0.02291 (6)0.00064 (3)0.01024 (4)0.00179 (4)
Br10.04358 (17)0.02932 (15)0.02861 (14)0.00256 (12)0.02177 (13)0.00259 (12)
P10.0162 (3)0.0179 (3)0.0219 (3)0.0005 (2)0.0105 (2)0.0015 (3)
O10.0244 (9)0.0195 (9)0.0297 (10)0.0009 (7)0.0155 (8)0.0024 (8)
O20.0290 (11)0.0302 (11)0.0431 (13)0.0090 (9)0.0139 (10)0.0058 (10)
O30.0185 (10)0.0465 (14)0.0523 (14)0.0029 (9)0.0110 (10)0.0147 (11)
O40.0445 (13)0.0394 (13)0.0460 (13)0.0008 (10)0.0342 (11)0.0043 (10)
C10.0184 (12)0.0227 (13)0.0240 (13)0.0042 (10)0.0122 (10)0.0025 (10)
C20.0242 (14)0.0278 (15)0.0385 (16)0.0006 (11)0.0194 (12)0.0019 (12)
C30.0220 (14)0.0438 (18)0.0406 (17)0.0017 (12)0.0201 (13)0.0037 (14)
C40.0296 (15)0.0386 (17)0.0346 (15)0.0143 (13)0.0225 (13)0.0074 (13)
C50.0296 (14)0.0285 (14)0.0261 (13)0.0083 (11)0.0172 (11)0.0033 (11)
C60.0238 (12)0.0200 (13)0.0227 (12)0.0051 (10)0.0136 (10)0.0037 (10)
C70.0265 (13)0.0186 (13)0.0242 (13)0.0033 (10)0.0147 (11)0.0013 (10)
C80.0219 (13)0.0190 (13)0.0375 (15)0.0028 (10)0.0151 (12)0.0069 (11)
C90.0440 (19)0.0245 (16)0.054 (2)0.0056 (13)0.0251 (17)0.0042 (14)
C100.0322 (16)0.0329 (17)0.0437 (19)0.0016 (12)0.0171 (14)0.0165 (14)
C110.0243 (13)0.0342 (15)0.0253 (14)0.0002 (11)0.0127 (11)0.0040 (12)
C120.0294 (16)0.053 (2)0.0275 (16)0.0033 (14)0.0055 (13)0.0007 (14)
C130.0361 (16)0.0339 (17)0.0338 (16)0.0083 (13)0.0184 (13)0.0114 (13)
C140.0182 (12)0.0294 (15)0.0268 (14)0.0000 (10)0.0106 (10)0.0037 (11)
C150.0241 (14)0.0283 (15)0.0338 (15)0.0038 (11)0.0152 (12)0.0044 (12)
C160.0210 (12)0.0241 (14)0.0316 (14)0.0002 (10)0.0151 (11)0.0033 (11)
Geometric parameters (Å, º) top
Re1—C141.901 (3)C5—H50.9300
Re1—C151.943 (3)C6—C71.468 (4)
Re1—C161.915 (3)C7—H71.01 (3)
Re1—O12.1739 (18)C8—C91.514 (5)
Re1—P12.4655 (13)C8—C101.528 (4)
Re1—Br12.6116 (6)C8—H80.9800
P1—C11.835 (3)C9—H9A0.9600
P1—C81.842 (3)C9—H9B0.9600
P1—C111.865 (3)C9—H9C0.9600
O1—C71.231 (3)C10—H10A0.9600
O2—C141.153 (3)C10—H10B0.9600
O3—C151.144 (3)C10—H10C0.9600
O4—C161.148 (3)C11—C131.517 (4)
C1—C21.392 (4)C11—C121.533 (4)
C1—C61.406 (4)C11—H110.9800
C2—C31.393 (4)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.371 (5)C12—H12C0.9600
C3—H30.9300C13—H13A0.9600
C4—C51.383 (4)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.405 (3)
C14—Re1—C1690.87 (12)O1—C7—H7118.4 (15)
C14—Re1—C1589.06 (12)C6—C7—H7112.5 (15)
C16—Re1—C1589.00 (12)C9—C8—C10111.4 (3)
C14—Re1—O1174.15 (10)C9—C8—P1112.9 (2)
C16—Re1—O194.97 (9)C10—C8—P1109.7 (2)
C15—Re1—O191.35 (10)C9—C8—H8107.5
C14—Re1—P196.71 (8)C10—C8—H8107.5
C16—Re1—P191.28 (8)P1—C8—H8107.5
C15—Re1—P1174.22 (8)C8—C9—H9A109.5
O1—Re1—P182.87 (5)C8—C9—H9B109.5
C14—Re1—Br191.10 (9)H9A—C9—H9B109.5
C16—Re1—Br1177.00 (8)C8—C9—H9C109.5
C15—Re1—Br188.77 (10)H9A—C9—H9C109.5
O1—Re1—Br183.07 (5)H9B—C9—H9C109.5
P1—Re1—Br190.74 (3)C8—C10—H10A109.5
C1—P1—C8104.98 (12)C8—C10—H10B109.5
C1—P1—C11102.31 (13)H10A—C10—H10B109.5
C8—P1—C11104.94 (14)C8—C10—H10C109.5
C1—P1—Re1111.71 (9)H10A—C10—H10C109.5
C8—P1—Re1118.89 (9)H10B—C10—H10C109.5
C11—P1—Re1112.42 (10)C13—C11—C12110.0 (3)
C7—O1—Re1136.60 (18)C13—C11—P1111.6 (2)
C2—C1—C6117.4 (2)C12—C11—P1113.6 (2)
C2—C1—P1120.9 (2)C13—C11—H11107.1
C6—C1—P1121.56 (19)C12—C11—H11107.1
C1—C2—C3121.7 (3)P1—C11—H11107.1
C1—C2—H2119.1C11—C12—H12A109.5
C3—C2—H2119.1C11—C12—H12B109.5
C4—C3—C2120.4 (3)H12A—C12—H12B109.5
C4—C3—H3119.8C11—C12—H12C109.5
C2—C3—H3119.8H12A—C12—H12C109.5
C3—C4—C5119.6 (3)H12B—C12—H12C109.5
C3—C4—H4120.2C11—C13—H13A109.5
C5—C4—H4120.2C11—C13—H13B109.5
C4—C5—C6120.5 (3)H13A—C13—H13B109.5
C4—C5—H5119.7C11—C13—H13C109.5
C6—C5—H5119.7H13A—C13—H13C109.5
C5—C6—C1120.4 (2)H13B—C13—H13C109.5
C5—C6—C7113.0 (2)O2—C14—Re1177.4 (3)
C1—C6—C7126.6 (2)O3—C15—Re1178.6 (3)
O1—C7—C6129.1 (2)O4—C16—Re1177.2 (2)

Experimental details

Crystal data
Chemical formula[ReBr(C13H19OP)(CO)3]
Mr572.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.750 (2), 15.194 (3), 13.699 (3)
β (°) 125.29 (3)
V3)1826.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)8.94
Crystal size (mm)0.43 × 0.33 × 0.31
Data collection
DiffractometerSiemens SMART 1000 CCD
diffractometer
Absorption correctionNumerical
SADABS (Bruker, 1997)
Tmin, Tmax0.631, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
18487, 4436, 4095
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.11
No. of reflections4436
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 1.04

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPMA (Zsolnai, 1996), ORTEP (Farrugia, 1997), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Re1—C141.901 (3)Re1—O12.1739 (18)
Re1—C151.943 (3)Re1—P12.4655 (13)
Re1—C161.915 (3)Re1—Br12.6116 (6)
 

Footnotes

Current address: European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Acknowledgements

The authors acknowledge financial support of this work from the Karlsruhe Institute for Technology and the European Commission.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Femia, F. J., Babich, J. W. & Zubieta, J. (2001). Inorg. Chim. Acta, 315, 147–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationCorreia, J. D. G., Domingos, A., Santos, I., Alberto, R. & Ortner, K. (2001). Inorg. Chem. 40, 5147–5151.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPalma, E., Correia, J. D. G., Domingos, A., Santos, I., Alberto, R. & Spies, H. (2004). J. Organomet. Chem. 689, 4811–4819.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZsolnai, L. (1996). XPMA. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds