metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(μ8-benzene-1,2,4,5-tetra­carboxyl­ato)calciumzinc] monohydrate]

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: 13623712409@139.com

(Received 12 July 2012; accepted 31 July 2012; online 4 August 2012)

In the title complex, {[CaZn(C10H2O8)(H2O)2]·H2O}n, the ZnII ion is coordinated by four O atoms from four benzene-1,2,4,5-tetra­carboxyl­ate anions in a distorted tetra­hedral geometry. The CaII ion is eight-coordinated by six O atoms from four benzene-1,2,4,5-tetra­carboxyl­ate anions and by two water mol­ecules in a distorted square-anti­prismatic geometry. The CaII and ZnII ions and the lattice water mol­ecule are located on twofold rotation axes; the centroid of the benzene-1,2,4,5-tetra­carboxyl­ate anion is located on a centre of inversion. The μ8-bridging mode of the anion results in the formation of a three-dimensional structure with channels extending along [100] in which lattice water mol­ecules are situated. Inter­molecular O—H⋯O hydrogen bonds involving the coordinating and lattice water mol­ecules as donors and the carboxyl­ate O atoms and lattice water mol­ecules as acceptors are present in the structure.

Related literature

For background to complexes based on benzene-1,2,4,5-tetra­carb­oxy­lic acid and its anions, see: Prajapati et al. (2009[Prajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600-608.]); Xie et al. (2008[Xie, Z.-L., Feng, M.-L., Li, J.-R. & Huang, X.-Y. (2008). Inorg. Chem. Commun. 11, 1143-1146.]).

[Scheme 1]

Experimental

Crystal data
  • [CaZn(C10H2O8)(H2O)2]·H2O

  • Mr = 409.61

  • Monoclinic, P 2/c

  • a = 6.2006 (12) Å

  • b = 9.770 (2) Å

  • c = 11.259 (3) Å

  • β = 115.33 (2)°

  • V = 616.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.14 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.651, Tmax = 0.723

  • 3849 measured reflections

  • 1447 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.099

  • S = 0.84

  • 1447 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O4 0.85 2.49 3.255 (4) 151
O5—H5A⋯O6i 0.85 2.11 2.914 (4) 157
O5—H5B⋯O1ii 0.85 2.16 2.951 (2) 156
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y-1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A large number of complexes constructed from the multidentate aromatic ligand benzene-1,2,4,5-tetracarboxylic acid and its corresponding anions have been extensively studied due to the diversity of the coordination modes and sensitivity to pH values of the carboxylate anions. Some of the final products exhibit useful functional properties (Prajapati et al., 2009; Xie et al., 2008). In order to further explore complexes with new structures, we selected benzene-1,2,4,5-tetracarboxylic acid as precursor to self-assembly with ZnCl2 and CaCl2 simultaneously in solution and obtained the title complex, [CaZn(C10H2O8)(H2O)2].(H2O), the crystal structure of which is reported herein.

As shown in Figure 1, the ZnII ion displays a distorted tetrahedral coordination geometry defined by four oxygen atoms from four symmetry-related benzene-1,2,4,5-tetracarboxylate groups (O1, O1A, O4B and O4C). The CaII ion is bound to six oxygen atoms from four benzene-1,2,4,5-tetracarboxylate groups (O1E, O1D, O2, O2F, O3D, O3E) and two water molecules (O5, O5F) leading to a distorted square-antiprismatic geometry. The base plane of the square antiprism consists of atoms O1E, O2F, O3E, and O5F with a mean deviation of 0.1065 Å from the least-squares plane. The top plane of the square antiprism consists of symmetry-related atoms O1D, O2, O3D, and O5. The dihedral angle between the two planes is 3.9 °. The three-dimensional set-up of the structure leaves space for channels extending along [100] where the lattice water molecules are located.

Intermolecular O—H···O hydrogen bonds between coordinating water molecules and lattice water molecules, between coordinating water molecules and carboxylate groups, and between solvent water molecules and carboxylate groups consolidate the crystal packing (Table 1, Fig. 2).

Related literature top

For background to complexes based on benzene-1,2,4,5-tetracarboxylic acid and its anions, see: Prajapati et al. (2009); Xie et al. (2008).

Experimental top

A mixture of ZnCl2 (0.05 mmol), CaCl2 (0.05 mmol), benzene-1,2,4,5-tetracarboxylic acid (0.05 mmol), water (4 ml) and methanol (4 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 393 K for 72 h, then cooled to room temperature. Colourless crystals were obtained from the filtrate and dried in air.

Refinement top

The H atom bound to C5 was positioned geometrically and refined as riding, with C—H = 0.93 Å. H atoms bound to water O atoms were found from difference maps and refined with distance restraints of O—H = 0.85 Å. All H atoms were refined with Uiso(H) = 1.2 Ueq(C,O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear (Rigaku/MSC, 2004); data reduction: CrystalClear (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the building units of the title compound showing the coordination environment around the metal ions. The displacement parameters of the atoms are displayed at the 30% probability level. [Symmetry code A: -x, y, -z - 1/2; B: x - 1, y, z; C: -x + 1, y, -z - 1/2; D: -x + 1, -y, -z - 1; E: x, -y - 1, z + 1/2; F: -x + 1, y, 1/2 - z; G: -x + 1, -y, -z.].
[Figure 2] Fig. 2. Packing plot of the title complex with O—H···O hydrogen bonds indicated by dashed lines.
Poly[[diaqua(µ8-benzene-1,2,4,5-tetracarboxylato)calciumzinc] monohydrate] top
Crystal data top
[CaZn(C10H2O8)(H2O)2]·H2OF(000) = 412
Mr = 409.61Dx = 2.207 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 6.2006 (12) ÅCell parameters from 1852 reflections
b = 9.770 (2) Åθ = 2.1–27.9°
c = 11.259 (3) ŵ = 2.47 mm1
β = 115.33 (2)°T = 293 K
V = 616.5 (2) Å3Prism, colourless
Z = 20.19 × 0.17 × 0.14 mm
Data collection top
Rigaku Saturn CCD
diffractometer
1447 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = 87
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
k = 1212
Tmin = 0.651, Tmax = 0.723l = 149
3849 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1447 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[CaZn(C10H2O8)(H2O)2]·H2OV = 616.5 (2) Å3
Mr = 409.61Z = 2
Monoclinic, P2/cMo Kα radiation
a = 6.2006 (12) ŵ = 2.47 mm1
b = 9.770 (2) ÅT = 293 K
c = 11.259 (3) Å0.19 × 0.17 × 0.14 mm
β = 115.33 (2)°
Data collection top
Rigaku Saturn CCD
diffractometer
1447 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2004)
1360 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.723Rint = 0.027
3849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.84Δρmax = 0.38 e Å3
1447 reflectionsΔρmin = 0.56 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.23661 (3)0.25000.01455 (15)
Ca10.50000.51637 (6)0.25000.01865 (18)
O10.2538 (3)0.34567 (15)0.11362 (14)0.0200 (3)
O20.5157 (3)0.35902 (17)0.09520 (15)0.0244 (4)
O30.7153 (3)0.29814 (17)0.11799 (15)0.0221 (3)
O40.8547 (3)0.10913 (16)0.16958 (16)0.0209 (3)
O50.0955 (3)0.4370 (2)0.14219 (19)0.0345 (4)
H5A0.05340.35620.15100.041*
H5B0.02700.48820.11100.041*
C10.4111 (4)0.2941 (2)0.00731 (19)0.0144 (4)
C20.7341 (3)0.1716 (2)0.11904 (19)0.0156 (4)
C30.4642 (3)0.1423 (2)0.00489 (18)0.0138 (4)
C40.6098 (3)0.0840 (2)0.05841 (18)0.0139 (4)
C50.3573 (4)0.0571 (2)0.05340 (18)0.0160 (4)
H50.26180.09530.08980.019*
O61.00000.1852 (4)0.25000.0787 (13)
H60.92160.12820.22690.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0131 (2)0.0155 (2)0.0160 (2)0.0000.00726 (16)0.000
Ca10.0200 (3)0.0125 (3)0.0166 (3)0.0000.0012 (2)0.000
O10.0177 (7)0.0131 (7)0.0220 (7)0.0011 (5)0.0016 (6)0.0009 (5)
O20.0274 (8)0.0226 (8)0.0185 (7)0.0040 (6)0.0054 (6)0.0062 (6)
O30.0241 (8)0.0164 (7)0.0272 (8)0.0003 (7)0.0123 (7)0.0057 (6)
O40.0220 (8)0.0206 (7)0.0271 (8)0.0008 (6)0.0171 (7)0.0036 (6)
O50.0247 (8)0.0326 (9)0.0434 (11)0.0056 (8)0.0118 (8)0.0062 (8)
C10.0128 (9)0.0134 (9)0.0171 (9)0.0011 (7)0.0063 (7)0.0012 (7)
C20.0110 (8)0.0198 (10)0.0144 (9)0.0009 (8)0.0040 (7)0.0045 (7)
C30.0118 (8)0.0148 (9)0.0136 (9)0.0016 (7)0.0043 (7)0.0032 (7)
C40.0121 (8)0.0153 (10)0.0136 (9)0.0013 (7)0.0050 (7)0.0031 (7)
C50.0156 (9)0.0174 (10)0.0160 (9)0.0031 (8)0.0077 (7)0.0023 (7)
O60.071 (3)0.040 (2)0.085 (3)0.0000.005 (2)0.000
Geometric parameters (Å, º) top
Zn1—O4i1.9701 (15)O3—C21.243 (3)
Zn1—O4ii1.9701 (15)O3—Ca1v2.3618 (17)
Zn1—O1iii1.9754 (15)O4—C21.273 (3)
Zn1—O11.9754 (15)O4—Zn1vii1.9701 (15)
Ca1—O2iv2.3571 (17)O5—H5A0.8500
Ca1—O22.3571 (17)O5—H5B0.8500
Ca1—O3v2.3618 (17)C1—C31.517 (3)
Ca1—O3vi2.3618 (17)C2—C41.497 (3)
Ca1—O5iv2.4003 (19)C3—C51.391 (3)
Ca1—O52.4003 (19)C3—C41.403 (3)
Ca1—O1v2.9172 (16)C4—C5viii1.392 (3)
Ca1—O1vi2.9172 (16)C5—C4viii1.392 (3)
O1—C11.280 (2)C5—H50.9300
O1—Ca1v2.9172 (16)O6—H60.8500
O2—C11.231 (3)
O4i—Zn1—O4ii101.57 (9)O3v—Ca1—O1vi72.21 (5)
O4i—Zn1—O1iii109.22 (7)O3vi—Ca1—O1vi66.20 (5)
O4ii—Zn1—O1iii110.65 (7)O5iv—Ca1—O1vi123.51 (6)
O4i—Zn1—O1110.65 (7)O5—Ca1—O1vi75.32 (6)
O4ii—Zn1—O1109.22 (7)O1v—Ca1—O1vi124.96 (6)
O1iii—Zn1—O1114.72 (9)C1—O1—Zn1123.33 (14)
O2iv—Ca1—O298.59 (9)C1—O1—Ca1v108.26 (12)
O2iv—Ca1—O3v140.78 (6)Zn1—O1—Ca1v105.21 (6)
O2—Ca1—O3v103.07 (6)C1—O2—Ca1149.04 (15)
O2iv—Ca1—O3vi103.07 (6)C2—O3—Ca1v141.97 (13)
O2—Ca1—O3vi140.78 (6)C2—O4—Zn1vii111.98 (13)
O3v—Ca1—O3vi79.77 (9)Ca1—O5—H5A123.2
O2iv—Ca1—O5iv77.30 (6)Ca1—O5—H5B125.0
O2—Ca1—O5iv78.37 (7)H5A—O5—H5B109.3
O3v—Ca1—O5iv138.88 (7)O2—C1—O1124.0 (2)
O3vi—Ca1—O5iv75.09 (7)O2—C1—C3117.63 (18)
O2iv—Ca1—O578.37 (7)O1—C1—C3118.31 (17)
O2—Ca1—O577.30 (6)O3—C2—O4123.82 (17)
O3v—Ca1—O575.09 (7)O3—C2—C4119.71 (17)
O3vi—Ca1—O5138.88 (7)O4—C2—C4116.47 (18)
O5iv—Ca1—O5142.29 (10)C5—C3—C4118.95 (18)
O2iv—Ca1—O1v152.50 (5)C5—C3—C1116.74 (18)
O2—Ca1—O1v73.48 (5)C4—C3—C1124.31 (17)
O3v—Ca1—O1v66.20 (5)C5viii—C4—C3119.66 (18)
O3vi—Ca1—O1v72.21 (5)C5viii—C4—C2119.30 (18)
O5iv—Ca1—O1v75.32 (6)C3—C4—C2121.03 (18)
O5—Ca1—O1v123.51 (6)C3—C5—C4viii121.39 (18)
O2iv—Ca1—O1vi73.48 (5)C3—C5—H5119.3
O2—Ca1—O1vi152.50 (5)C4viii—C5—H5119.3
O4i—Zn1—O1—C144.54 (17)Ca1v—O3—C2—O482.2 (3)
O4ii—Zn1—O1—C166.46 (16)Ca1v—O3—C2—C497.8 (2)
O1iii—Zn1—O1—C1168.66 (17)Zn1vii—O4—C2—O31.6 (2)
O4i—Zn1—O1—Ca1v169.11 (6)Zn1vii—O4—C2—C4178.32 (13)
O4ii—Zn1—O1—Ca1v58.11 (7)O2—C1—C3—C577.1 (2)
O1iii—Zn1—O1—Ca1v66.77 (4)O1—C1—C3—C5100.1 (2)
O2iv—Ca1—O2—C196.5 (3)O2—C1—C3—C4103.6 (2)
O3v—Ca1—O2—C150.6 (3)O1—C1—C3—C479.2 (2)
O3vi—Ca1—O2—C1140.4 (3)C5—C3—C4—C5viii0.6 (3)
O5iv—Ca1—O2—C1171.5 (3)C1—C3—C4—C5viii178.61 (17)
O5—Ca1—O2—C120.5 (3)C5—C3—C4—C2178.36 (17)
O1v—Ca1—O2—C1110.5 (3)C1—C3—C4—C22.4 (3)
O1vi—Ca1—O2—C125.9 (4)O3—C2—C4—C5viii176.38 (17)
Ca1—O2—C1—O145.2 (4)O4—C2—C4—C5viii3.7 (3)
Ca1—O2—C1—C3131.8 (2)O3—C2—C4—C32.6 (3)
Zn1—O1—C1—O2154.42 (16)O4—C2—C4—C3177.33 (17)
Ca1v—O1—C1—O282.4 (2)C4—C3—C5—C4viii0.6 (3)
Zn1—O1—C1—C322.6 (2)C1—C3—C5—C4viii178.66 (17)
Ca1v—O1—C1—C3100.63 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z1/2; (iii) x, y, z1/2; (iv) x+1, y, z+1/2; (v) x+1, y1, z; (vi) x, y1, z+1/2; (vii) x+1, y, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O40.852.493.255 (4)151
O5—H5A···O6viii0.852.112.914 (4)157
O5—H5B···O1ix0.852.162.951 (2)156
Symmetry codes: (viii) x+1, y, z; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[CaZn(C10H2O8)(H2O)2]·H2O
Mr409.61
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)6.2006 (12), 9.770 (2), 11.259 (3)
β (°) 115.33 (2)
V3)616.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.19 × 0.17 × 0.14
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2004)
Tmin, Tmax0.651, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
3849, 1447, 1360
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.099, 0.84
No. of reflections1447
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.56

Computer programs: CrystalClear (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O40.852.493.255 (4)150.5
O5—H5A···O6i0.852.112.914 (4)157.1
O5—H5B···O1ii0.852.162.951 (2)155.6
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Acknowledgements

This study was supported by the Science and Technology Department of Henan Province (082102330003).

References

First citationPrajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600–608.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Z.-L., Feng, M.-L., Li, J.-R. & Huang, X.-Y. (2008). Inorg. Chem. Commun. 11, 1143–1146.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds