metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1158-m1159

trans-Acetyl­dicarbon­yl(η5-cyclo­penta­dien­yl)(methyl­di­phenyl­phosphane)molybdenum(II)

aDepartment of Chemistry, Carleton College, 1 N. College Street, Northfield, MN 55057, USA, and bDepartment of Chemistry, St Catherine University, 2004 Randolph Avenue, St. Paul, MN 55105, USA
*Correspondence e-mail: mwhited@carleton.edu

(Received 24 July 2012; accepted 1 August 2012; online 8 August 2012)

The title compound, [Mo(C5H5)(C2H3O)(C13H13P)(CO)2], was prepared by reaction of [Mo(CH3)(C5H5)(CO)3] with methyl­diphenyl­phosphane. The MoII atom exhibits a four-legged piano-stool coordination geometry with the acetyl and phosphane ligands trans to each other. There are several inter­molecular C—H⋯O hydrogen-bonding inter­actions involving carbonyl and acetyl O atoms as acceptors. A close nearly parallel ππ inter­action between the cyclo­penta­dienyl plane and the phenyl ring of the phosphane ligand is present, with an angle of 6.4 (1)° between the two least-squares planes. The centroid-to-centroid distance between these groups is 3.772 (3) Å, and the closest distance between two atoms of these groups is 3.449 (4) Å. Since each Mo complex is engaged in two of these inter­actions, the complexes form an infinite π-stack coincident with the a axis.

Related literature

The synthesis of the title compound has been reported previously and its reactivity studied, though no structural information was provided (Adams et al., 1997[Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589-3598.]; Barnett et al., 1972[Barnett, K. W., Pollman, T. G. & Solomon, T. W. (1972). J. Organomet. Chem. 36, C23-C26.]). A related structure has been reported for the triphenyl­phosphane-substituted version of the title compound (Churchill & Fennessey, 1968[Churchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953-959.]). For synthetic details, see: Gladysz et al. (1979[Gladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553-558.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C5H5)(C2H3O)(C13H13P)(CO)2]

  • Mr = 460.32

  • Orthorhombic, P b c a

  • a = 11.482 (7) Å

  • b = 17.648 (10) Å

  • c = 20.771 (12) Å

  • V = 4209 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 193 K

  • 0.44 × 0.24 × 0.24 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.687, Tmax = 0.842

  • 40944 measured reflections

  • 4809 independent reflections

  • 4311 reflections with F2 > 2σ(F2)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.072

  • S = 1.13

  • 4809 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—P1 2.4619 (15)
Mo1—C1 2.327 (3)
Mo1—C2 2.352 (3)
Mo1—C3 2.399 (3)
Mo1—C4 2.375 (3)
Mo1—C5 2.348 (3)
Mo1—C6 2.252 (3)
Mo1—C8 1.974 (3)
Mo1—C9 1.966 (3)
O1—C6 1.216 (3)
O2—C8 1.153 (4)
O3—C9 1.160 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.98 2.41 3.346 (3) 159
C16—H16⋯O2ii 0.95 2.42 3.256 (3) 147
C3—H3⋯O1iii 1.00 2.45 3.390 (4) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) -x, -y, -z.

Data collection: CrystalClear (Rigaku Americas and Rigaku, 2011[Rigaku Americas and Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku Americas and Rigaku, 2010[Rigaku Americas and Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Synthesis of the title complex, [Mo(C5H5)(C2H3O)(CO)2(C13H13P)], (I), has been previously reported and its reactivity studied, though no structural information was provided (Adams et al., 1997; Barnett et al., 1972).

The molecular structure of (Fig. 1), consists of a Mo(II) atom coordinated to a cyclopentadienyl ring in an η5 fashion, two CO ligands, one PMePh2 ligand, and one acetyl ligand. The orientation of the CO ligands can be described as trans. A view of the trans CO ligand orientation is shown in Fig. 2. The Mo—Cp centroid distance is 2.02959 (17) Å. The methyl group of the acetyl group is oriented in a syn fashion relative to the orientation of the methyl group of the PMePh2 ligand. A unit cell packing diagram is shown in Fig. 3.

There are several particularly short intermolecular distances involving H atoms. One short contact (2.421 Å) is present between O2 of a carbonyl ligand and H16 of a phenyl group (symmetry code: x - 1/2, -y + 1/2, -z). Another short contact (2.414 Å) involves O1 of the acetyl group and H10A of the methyl group of a PMePh2 ligand (symmetry code: -x + 1/2, y + 1/2,z). A third short contact (2.453 Å) is present between O1 of the acetyl group and H3 of a Cp ring (symmetry code: -x, -y, -z).

A close nearly parallel ππ intermolecular interaction between the Cp plane and the phenyl ring of a PMePh2 ligand is present. The angle between the least-squares planes of these close π systems is 6.4 (1)° (Cp ring plane composed of atoms C1–C5; phenyl ring plane composed of atoms C17–C22). While the Cp centroid–phenyl ring centroid distance is 3.772 (3) Å, the closest distance between these groups is 3.449 (4) Å between C20 and C5 (symmetry code: 1/2 + x, 1/2 - y, -z). Each Mo complex is engaged in two of these interactions, forming an infinite stack that is coincident with the a-axis. Fig. 4 shows the π overlap of neighboring molecules. Fig. 5 shows the infinite π-stacking interaction.

A related structure has been reported for the triphenylphosphane-substituted version of (I) (Churchill & Fennessey, 1968).

Related literature top

The synthesis of the title compound has been reported previously and its reactivity studied, though no structural information was provided (Adams et al., 1997; Barnett et al., 1972). A related structure has been reported for the triphenylphosphane-substituted version of the title compound (Churchill & Fennessey, 1968). For synthetic details, see: Gladysz et al. (1979).

Experimental top

CpMo(CO)3(CH3). This compound was prepared by a modification of the method used by Gladysz et al. (1979) for the synthesis of a related iron compound. In an inert atmosphere glove box, [CpMo(CO)3]2 (181 mg, 0.370 mmol) was dissolved in THF (10 ml). LiEt3BH (0.87 ml, 1M in THF) was added dropwise by syringe with stirring, causing the evolution of H2 and a color change from purple to yellow. The solution was stirred for 30 min, then CH3I (75 µl, 1.2 mmol) was slowly added to the solution by micropipette, and the resulting solution was stirred for 2 h, causing a green–yellow precipitate to form. The solvent was removed in vacuo and the residues were extracted into pentane (2 × 15 ml) and filtered through a 2 cm plug of Al2O3 on a 30 ml fritted funnel, leaving a clear pale-yellow liquid. The Al2O3 was washed with about 10 ml of pentane, and the solvent was removed in vacuo to afford a solid yellow product (87 mg, 45%). IR and NMR (1H and 13C) spectral analyses confirmed the formation of the desired product.

CpMo(CO)2(PMePh2)(COCH3), (I). In an inert-atmosphere glove box, CpMo(CO)3(CH3) (87.2 mg, 0.335 mmol) was dissolved in 10 ml acetonitrile. PMePh2 (93 µl, 0.50 mmol) was added with stirring, and the resulting solution was stirred for 48 h. Solvent was removed in vacuo, leaving an orange oil, which was dissolved in diethyl ether and dried in vacuo to a yellow powder. The powder was triturated with pentane (5 ml) and isolated by filtration to afford the desired product in pure form as a yellow powder (79 mg, 51%), as confirmed by IR and NMR (1H, 13C, and 31P) spectral analyses. Crystalline material was obtained as yellow prisms by chilling a concentrated solution of (I) in diethyl ether.

Refinement top

H atoms were treated in calculated positions and refined in the riding model approximation with distances of C—H = 0.95, 1.00 and 0.98 Å for the phenyl, cyclopentadienyl and methyl groups, respectively, and with Uiso(H) = kUeq(C), k = 1.2 for phenyl and cyclopentadienyl groups and 1.5 for methyl groups. Methyl group H atoms were allowed to rotate in order to find the best rotameric conformation. The maximum and minimum electron densities in the final difference Fourier map are located 0.87 and 0.75 Å, respectively, from atom Mo1.

Computing details top

Data collection: CrystalClear (Rigaku Americas and Rigaku, 2011); cell refinement: CrystalClear (Rigaku Americas and Rigaku, 2011); data reduction: CrystalClear (Rigaku Americas and Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku Americas and Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku Americas and Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Numbered thermal ellipsoid plot (50% probability ellipsoids for non-H atoms) of the structure of (I).
[Figure 2] Fig. 2. View of (I) perpendicular to Cp least-squares plane showing trans CO orientation.
[Figure 3] Fig. 3. Unit cell packing diagram of (I) (50% probability ellipsoids).
[Figure 4] Fig. 4. View of two complexes of (I) showing the π overlap (black atoms) of the phenyl ring of one molecule and the Cp ring of another molecule (symm. codes x, y, z for Cp, -1/2 + x, 1/2 - y, -z for Ph ring). H atoms omitted for clarity.
[Figure 5] Fig. 5. View of infinite intermolecular ππ stacking in (I) between Cp and Ph groups of neighboring complexes along the a-axis.
trans-Acetyldicarbonyl(η5- cyclopentadienyl)(methyldiphenylphosphane)molybdenum(II) top
Crystal data top
[Mo(C5H5)(C2H3O)(C13H13P)(CO)2]F(000) = 1872.00
Mr = 460.32Dx = 1.453 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 1664 reflections
a = 11.482 (7) Åθ = 5.8–27.4°
b = 17.648 (10) ŵ = 0.72 mm1
c = 20.771 (12) ÅT = 193 K
V = 4209 (4) Å3Prism, yellow
Z = 80.44 × 0.24 × 0.24 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4311 reflections with F2 > 2σ(F2)
Detector resolution: 6.849 pixels mm-1Rint = 0.037
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1414
Tmin = 0.687, Tmax = 0.842k = 2222
40944 measured reflectionsl = 2626
4809 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0289P)2 + 2.9563P]
where P = (Fo2 + 2Fc2)/3
4809 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.67 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Mo(C5H5)(C2H3O)(C13H13P)(CO)2]V = 4209 (4) Å3
Mr = 460.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.482 (7) ŵ = 0.72 mm1
b = 17.648 (10) ÅT = 193 K
c = 20.771 (12) Å0.44 × 0.24 × 0.24 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
4809 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
4311 reflections with F2 > 2σ(F2)
Tmin = 0.687, Tmax = 0.842Rint = 0.037
40944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.13Δρmax = 0.63 e Å3
4809 reflectionsΔρmin = 0.67 e Å3
246 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.060442 (15)0.126963 (10)0.104324 (8)0.02232 (7)
P10.10879 (5)0.26230 (3)0.09372 (2)0.02307 (11)
O10.13079 (18)0.03933 (9)0.11872 (8)0.0440 (5)
O20.26219 (18)0.11759 (12)0.00363 (10)0.0571 (6)
O30.16580 (19)0.16063 (12)0.23997 (8)0.0519 (5)
C10.1051 (3)0.06501 (17)0.14181 (14)0.0472 (7)
C20.0856 (3)0.03902 (16)0.07757 (16)0.0483 (7)
C30.1018 (3)0.09998 (17)0.03529 (13)0.0435 (6)
C40.12974 (19)0.16438 (16)0.07247 (13)0.0401 (6)
C50.1332 (2)0.14285 (16)0.13805 (13)0.0433 (6)
C60.1703 (2)0.02414 (13)0.12514 (10)0.0318 (5)
C70.2962 (3)0.02999 (15)0.14855 (15)0.0490 (7)
C80.1896 (2)0.12249 (13)0.04171 (11)0.0325 (5)
C90.1317 (2)0.14872 (13)0.18841 (10)0.0308 (5)
C100.2599 (2)0.28503 (13)0.11366 (11)0.0335 (5)
C110.0223 (2)0.32333 (12)0.14697 (10)0.0287 (5)
C120.0544 (3)0.33488 (14)0.21134 (12)0.0393 (6)
C130.0172 (4)0.37648 (16)0.25232 (13)0.0545 (8)
C140.1206 (3)0.40696 (19)0.22946 (14)0.0626 (9)
C150.1530 (3)0.39641 (18)0.16607 (15)0.0573 (8)
C160.0814 (3)0.35472 (15)0.12501 (12)0.0403 (6)
C170.09086 (18)0.30855 (13)0.01478 (10)0.0278 (5)
C180.06705 (19)0.26664 (15)0.04063 (11)0.0340 (5)
C190.0595 (3)0.30314 (18)0.10050 (11)0.0430 (7)
C200.0746 (3)0.38056 (17)0.10492 (12)0.0456 (7)
C210.0974 (3)0.42270 (16)0.05024 (13)0.0442 (7)
C220.1062 (3)0.38683 (14)0.00936 (12)0.0379 (6)
H10.11000.03260.18120.0566*
H20.07220.01480.06460.0580*
H30.09980.09740.01280.0522*
H40.15170.21520.05510.0481*
H50.16000.17540.17460.0519*
H7A0.33020.02080.15120.0588*
H7B0.29770.05370.19120.0588*
H7C0.34130.06080.11830.0588*
H10A0.27170.33990.11050.0402*
H10B0.31210.25910.08350.0402*
H10C0.27680.26820.15760.0402*
H120.12530.31430.22710.0471*
H130.00470.38400.29600.0654*
H140.16940.43520.25760.0751*
H150.22380.41740.15050.0688*
H160.10380.34770.08140.0483*
H180.05600.21340.03780.0408*
H190.04390.27440.13820.0516*
H200.06930.40490.14560.0547*
H210.10710.47600.05330.0530*
H220.12290.41590.04670.0455*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02136 (10)0.02484 (10)0.02077 (10)0.00183 (6)0.00309 (6)0.00097 (7)
P10.0228 (3)0.0254 (3)0.0211 (3)0.0007 (2)0.00052 (19)0.0007 (2)
O10.0625 (13)0.0279 (9)0.0418 (10)0.0008 (8)0.0040 (9)0.0023 (8)
O20.0538 (13)0.0667 (14)0.0508 (12)0.0067 (10)0.0315 (10)0.0057 (10)
O30.0704 (14)0.0585 (12)0.0267 (9)0.0002 (10)0.0137 (9)0.0010 (9)
C10.0326 (14)0.0555 (17)0.0535 (16)0.0186 (12)0.0053 (12)0.0097 (13)
C20.0282 (13)0.0434 (15)0.073 (2)0.0121 (11)0.0024 (13)0.0167 (14)
C30.0286 (13)0.0616 (17)0.0403 (14)0.0073 (12)0.0052 (11)0.0111 (13)
C40.0175 (11)0.0498 (15)0.0529 (15)0.0005 (10)0.0043 (10)0.0022 (12)
C50.0222 (12)0.0583 (17)0.0494 (15)0.0056 (11)0.0118 (11)0.0113 (13)
C60.0408 (13)0.0289 (11)0.0257 (11)0.0031 (10)0.0073 (9)0.0023 (9)
C70.0369 (15)0.0408 (14)0.0693 (19)0.0089 (11)0.0017 (13)0.0096 (14)
C80.0320 (12)0.0313 (12)0.0342 (12)0.0011 (9)0.0052 (10)0.0034 (10)
C90.0339 (12)0.0301 (11)0.0284 (11)0.0012 (9)0.0015 (10)0.0026 (9)
C100.0264 (12)0.0325 (12)0.0415 (13)0.0055 (9)0.0056 (10)0.0041 (10)
C110.0340 (12)0.0265 (11)0.0257 (11)0.0019 (9)0.0016 (9)0.0007 (9)
C120.0521 (16)0.0354 (13)0.0303 (12)0.0054 (11)0.0040 (11)0.0045 (10)
C130.080 (3)0.0530 (17)0.0304 (13)0.0117 (16)0.0023 (14)0.0119 (12)
C140.077 (3)0.064 (2)0.0466 (17)0.0237 (18)0.0154 (16)0.0158 (15)
C150.0537 (18)0.068 (2)0.0500 (17)0.0300 (15)0.0059 (14)0.0058 (15)
C160.0398 (14)0.0490 (15)0.0321 (13)0.0147 (11)0.0003 (10)0.0046 (11)
C170.0244 (11)0.0352 (12)0.0238 (10)0.0036 (9)0.0034 (8)0.0051 (9)
C180.0307 (12)0.0444 (14)0.0270 (11)0.0010 (10)0.0014 (9)0.0036 (10)
C190.0343 (13)0.0688 (19)0.0259 (12)0.0019 (12)0.0027 (10)0.0049 (12)
C200.0321 (14)0.0682 (19)0.0364 (14)0.0097 (12)0.0043 (10)0.0256 (13)
C210.0418 (15)0.0444 (15)0.0462 (15)0.0108 (12)0.0094 (12)0.0185 (12)
C220.0455 (15)0.0342 (13)0.0340 (13)0.0049 (11)0.0047 (11)0.0051 (10)
Geometric parameters (Å, º) top
Mo1—P12.4619 (15)C17—C181.395 (4)
Mo1—C12.327 (3)C17—C221.397 (4)
Mo1—C22.352 (3)C18—C191.403 (4)
Mo1—C32.399 (3)C19—C201.380 (5)
Mo1—C42.375 (3)C20—C211.383 (4)
Mo1—C52.348 (3)C21—C221.394 (4)
Mo1—C62.252 (3)C1—H11.000
Mo1—C81.974 (3)C2—H21.000
Mo1—C91.966 (3)C3—H31.000
P1—C101.828 (3)C4—H41.000
P1—C111.836 (3)C5—H51.000
P1—C171.843 (3)C7—H7A0.980
O1—C61.216 (3)C7—H7B0.980
O2—C81.153 (4)C7—H7C0.980
O3—C91.160 (3)C10—H10A0.980
C1—C21.429 (5)C10—H10B0.980
C1—C51.413 (5)C10—H10C0.980
C2—C31.401 (5)C12—H120.950
C3—C41.411 (4)C13—H130.950
C4—C51.415 (4)C14—H140.950
C6—C71.529 (4)C15—H150.950
C11—C121.402 (4)C16—H160.950
C11—C161.390 (4)C18—H180.950
C12—C131.393 (4)C19—H190.950
C13—C141.387 (5)C20—H200.950
C14—C151.381 (5)C21—H210.950
C15—C161.395 (4)C22—H220.950
P1···O33.588 (3)C2···H21vii3.5742
O1···C13.310 (4)C3···H2i3.2486
O1···C22.969 (4)C3···H10Avii3.5224
O1···C83.342 (4)C4···H10Bvii3.5725
O2···C63.194 (4)C5···H20vii3.5218
O2···C73.406 (4)C6···H3i3.2715
O2···C183.576 (4)C6···H10Aii3.3327
O3···C63.390 (4)C6···H13iii3.5838
O3···C73.341 (4)C6···H14iii2.8981
O3···C103.588 (4)C6···H22ii3.4551
O3···C123.383 (4)C7···H10Aii3.5336
C4···C163.575 (5)C7···H14iii2.9531
C7···C83.015 (4)C7···H20iv3.3399
C7···C92.940 (4)C7···H22ii3.0641
C8···C103.334 (4)C8···H2i3.2094
C8···C173.518 (4)C8···H16iv3.5279
C8···C183.373 (4)C10···H3iv3.3599
C9···C103.220 (4)C10···H19iv3.4630
C9···C113.437 (4)C11···H7Aix3.2309
C9···C123.436 (4)C12···H7Aix3.1301
C10···C123.234 (4)C13···H1x3.4102
C10···C223.322 (4)C13···H7Aix3.5078
C11···C142.794 (4)C13···H10Cviii3.5690
C11···C223.218 (4)C13···H19vi3.5713
C12···C152.782 (5)C14···H10Cviii3.5888
C13···C162.772 (4)C14···H12viii3.4638
C16···C173.133 (4)C15···H21xiii3.2914
C16···C223.276 (4)C16···H21xiii3.3506
C17···C202.798 (4)C17···H4iv3.3192
C18···C212.783 (5)C18···H4iv3.2589
C19···C222.771 (4)C18···H10Bvii3.0935
O1···C3i3.390 (4)C19···H4iv3.4631
O1···C10ii3.346 (4)C19···H5iv3.5902
O1···C13iii3.329 (4)C19···H7Cvii3.4892
O1···C14iii3.295 (4)C19···H10Bvii3.0662
O2···C16iv3.256 (4)C20···H5iv3.5154
O3···C5v3.441 (4)C20···H7Cvii2.8845
O3···C19vi3.589 (4)C21···H7Cvii3.2752
O3···C20vi3.465 (4)C22···H3iv3.3875
C3···O1i3.390 (4)C22···H4iv3.5719
C3···C21vii3.491 (4)C22···H7Aix3.4448
C3···C22vii3.486 (4)C22···H21xiii3.5620
C4···C20vii3.551 (4)H1···C13iii3.4102
C4···C21vii3.520 (4)H1···H7Bviii2.8790
C4···C22vii3.591 (4)H1···H13iii2.9263
C5···O3viii3.441 (4)H1···H14xii3.4470
C5···C20vii3.449 (4)H1···H15xii2.8593
C10···O1ix3.346 (4)H2···O2i3.1709
C13···O1x3.329 (4)H2···C2i3.4907
C14···O1x3.295 (4)H2···C3i3.2486
C16···O2vii3.256 (4)H2···C8i3.2094
C19···O3xi3.589 (4)H2···H2i3.1975
C20···O3xi3.465 (4)H2···H3i2.6799
C20···C4iv3.551 (4)H2···H13iii3.4899
C20···C5iv3.449 (4)H2···H15xii3.1778
C21···C3iv3.491 (4)H2···H18i3.5528
C21···C4iv3.520 (4)H3···O1i2.4532
C22···C3iv3.486 (4)H3···C2i3.4843
C22···C4iv3.591 (4)H3···C6i3.2715
Mo1···H7B3.5141H3···C10vii3.3599
Mo1···H7C3.4422H3···C22vii3.3875
Mo1···H183.3238H3···H2i2.6799
P1···H43.2066H3···H10Avii2.7424
P1···H122.9240H3···H10Bvii3.0966
P1···H162.8797H3···H22vii3.2696
P1···H182.9289H4···O2vii3.3418
P1···H222.8864H4···C17vii3.3192
O1···H13.3073H4···C18vii3.2589
O1···H22.6237H4···C19vii3.4631
O1···H7A2.4098H4···C22vii3.5719
O1···H7B2.9389H4···H10Bvii2.9426
O1···H7C2.9947H5···O3viii2.6865
O2···H7C2.7383H5···C19vii3.5902
O2···H10B3.0530H5···C20vii3.5154
O2···H183.0344H5···H7Bviii3.5515
O3···H7B2.6231H5···H19vii3.5945
O3···H10C2.8558H5···H20vii3.4692
O3···H122.7637H7A···C11ii3.2309
C1···H33.2623H7A···C12ii3.1301
C1···H43.2499H7A···C13ii3.5078
C2···H43.2350H7A···C22ii3.4448
C2···H53.2528H7A···H10Aii2.8504
C3···H13.2570H7A···H12ii3.3486
C3···H53.2543H7A···H14iii2.7577
C3···H183.0975H7A···H20iv3.4250
C4···H13.2500H7A···H22ii2.4989
C4···H23.2352H7B···H1v2.8790
C4···H163.2540H7B···H5v3.5515
C4···H183.2472H7B···H14iii2.7710
C5···H23.2502H7B···H20iv3.3394
C5···H33.2568H7C···C19iv3.4892
C6···H13.4260H7C···C20iv2.8845
C6···H23.1320H7C···C21iv3.2752
C8···H33.5380H7C···H20iv2.7456
C8···H7B3.5574H7C···H21iv3.3995
C8···H7C2.5979H7C···H22ii2.9857
C8···H10B2.9238H10A···O1ix2.4134
C8···H182.7671H10A···C3iv3.5224
C9···H13.4534H10A···C6ix3.3327
C9···H53.3938H10A···C7ix3.5336
C9···H7B2.5395H10A···H3iv2.7424
C9···H7C3.2132H10A···H7Aix2.8504
C9···H10B3.5830H10A···H13v3.3963
C9···H10C2.7631H10A···H14v3.2858
C9···H123.0307H10B···C4iv3.5725
C10···H122.8641H10B···C18iv3.0935
C10···H223.1218H10B···C19iv3.0662
C11···H43.3578H10B···H3iv3.0966
C11···H53.3952H10B···H4iv2.9426
C11···H10A2.9772H10B···H18iv2.9960
C11···H10C3.0888H10B···H19iv2.9537
C11···H133.2807H10C···C13v3.5690
C11···H153.2782H10C···C14v3.5888
C11···H222.8885H10C···H13v3.4564
C12···H10A3.2587H10C···H14v3.4887
C12···H10C3.0251H10C···H19iv3.1828
C12···H143.2652H12···C14v3.4638
C12···H163.2612H12···H7Aix3.3486
C13···H153.2590H12···H14v3.1961
C14···H123.2645H12···H15v3.5750
C14···H163.2543H12···H19vi3.3397
C15···H133.2571H13···O1x2.7191
C16···H42.9705H13···C6x3.5838
C16···H53.4489H13···H1x2.9263
C16···H123.2617H13···H2x3.4899
C16···H143.2587H13···H10Aviii3.3963
C16···H223.0519H13···H10Cviii3.4564
C17···H43.3421H13···H15v3.3619
C17···H10A2.9281H13···H19vi3.1440
C17···H10B3.0416H14···O1x2.6463
C17···H162.7176H14···C6x2.8981
C17···H193.2788H14···C7x2.9531
C17···H213.2819H14···H1xiv3.4470
C18···H33.5950H14···H7Ax2.7577
C18···H43.3290H14···H7Bx2.7710
C18···H163.5094H14···H10Aviii3.2858
C18···H203.2726H14···H10Cviii3.4887
C18···H223.2626H14···H12viii3.1961
C19···H213.2515H15···O2vii3.2645
C20···H183.2696H15···C1xiv3.2673
C20···H223.2584H15···C2xiv3.4187
C21···H193.2503H15···H1xiv2.8593
C22···H10A2.9516H15···H2xiv3.1778
C22···H162.9206H15···H12viii3.5750
C22···H183.2652H15···H13viii3.3619
C22···H203.2620H15···H21xiii3.0672
H1···H22.5988H16···O2vii2.4214
H1···H52.5882H16···C8vii3.5279
H2···H32.5706H16···H21xiii3.1651
H3···H42.5815H18···H2i3.5528
H3···H182.7676H18···H10Bvii2.9960
H4···H52.5829H19···O3xi3.1109
H4···H162.4631H19···C10vii3.4630
H4···H183.0675H19···C13xi3.5713
H7C···H10B3.5893H19···H5iv3.5945
H10A···H122.9819H19···H10Bvii2.9537
H10A···H222.5452H19···H10Cvii3.1828
H10C···H122.4015H19···H12xi3.3397
H12···H132.3407H19···H13xi3.1440
H13···H142.3348H20···O3xi2.8666
H14···H152.3309H20···C5iv3.5218
H15···H162.3400H20···C7vii3.3399
H16···H222.9569H20···H5iv3.4692
H18···H192.3505H20···H7Avii3.4250
H19···H202.3268H20···H7Bvii3.3394
H20···H212.3324H20···H7Cvii2.7456
H21···H222.3392H21···O2ix3.1448
O1···H3i2.4532H21···C2iv3.5742
O1···H10Aii2.4134H21···C15xiii3.2914
O1···H13iii2.7191H21···C16xiii3.3506
O1···H14iii2.6463H21···C22xiii3.5620
O1···H22ii3.2953H21···H7Cvii3.3995
O2···H2i3.1709H21···H15xiii3.0672
O2···H4iv3.3418H21···H16xiii3.1651
O2···H15iv3.2645H21···H21xiii3.4149
O2···H16iv2.4214H21···H22xiii3.2597
O2···H21ii3.1448H22···O1ix3.2953
O3···H5v2.6865H22···C6ix3.4551
O3···H19vi3.1109H22···C7ix3.0641
O3···H20vi2.8666H22···H3iv3.2696
C1···H15xii3.2673H22···H7Aix2.4989
C2···H2i3.4907H22···H7Cix2.9857
C2···H3i3.4843H22···H21xiii3.2597
C2···H15xii3.4187
P1—Mo1—C1132.06 (8)P1—C11—C16119.97 (17)
P1—Mo1—C2141.25 (8)C12—C11—C16118.7 (3)
P1—Mo1—C3108.32 (8)C11—C12—C13120.2 (3)
P1—Mo1—C484.99 (8)C12—C13—C14120.0 (3)
P1—Mo1—C597.15 (8)C13—C14—C15120.3 (3)
P1—Mo1—C6132.27 (7)C14—C15—C16119.7 (3)
P1—Mo1—C879.07 (7)C11—C16—C15121.0 (3)
P1—Mo1—C978.24 (7)P1—C17—C18121.40 (19)
C1—Mo1—C235.55 (11)P1—C17—C22119.70 (17)
C1—Mo1—C358.15 (11)C18—C17—C22118.8 (2)
C1—Mo1—C458.19 (11)C17—C18—C19120.0 (3)
C1—Mo1—C535.19 (11)C18—C19—C20120.4 (3)
C1—Mo1—C690.84 (10)C19—C20—C21120.1 (3)
C1—Mo1—C8144.62 (10)C20—C21—C22119.9 (3)
C1—Mo1—C997.72 (11)C17—C22—C21120.8 (3)
C2—Mo1—C334.29 (11)Mo1—C1—H1126.077
C2—Mo1—C457.45 (10)C2—C1—H1126.080
C2—Mo1—C558.26 (10)C5—C1—H1126.073
C2—Mo1—C685.01 (10)Mo1—C2—H2125.537
C2—Mo1—C8110.71 (11)C1—C2—H2125.531
C2—Mo1—C9129.45 (11)C3—C2—H2125.541
C3—Mo1—C434.38 (10)Mo1—C3—H3126.038
C3—Mo1—C557.76 (10)C2—C3—H3126.024
C3—Mo1—C6112.95 (10)C4—C3—H3126.038
C3—Mo1—C8100.46 (11)Mo1—C4—H4125.605
C3—Mo1—C9153.22 (10)C3—C4—H4125.604
C4—Mo1—C534.85 (10)C5—C4—H4125.610
C4—Mo1—C6142.42 (9)Mo1—C5—H5125.855
C4—Mo1—C8121.21 (10)C1—C5—H5125.863
C4—Mo1—C9125.13 (10)C4—C5—H5125.858
C5—Mo1—C6124.71 (10)C6—C7—H7A109.468
C5—Mo1—C8155.88 (10)C6—C7—H7B109.471
C5—Mo1—C996.06 (10)C6—C7—H7C109.470
C6—Mo1—C870.94 (9)H7A—C7—H7B109.475
C6—Mo1—C975.75 (9)H7A—C7—H7C109.467
C8—Mo1—C9106.30 (11)H7B—C7—H7C109.475
Mo1—P1—C10113.99 (8)P1—C10—H10A109.466
Mo1—P1—C11113.15 (8)P1—C10—H10B109.470
Mo1—P1—C17118.95 (8)P1—C10—H10C109.464
C10—P1—C11104.38 (11)H10A—C10—H10B109.472
C10—P1—C17102.14 (10)H10A—C10—H10C109.489
C11—P1—C17102.46 (11)H10B—C10—H10C109.467
Mo1—C1—C273.17 (16)C11—C12—H12119.888
Mo1—C1—C573.24 (16)C13—C12—H12119.863
C2—C1—C5107.2 (3)C12—C13—H13119.974
Mo1—C2—C171.28 (16)C14—C13—H13119.977
Mo1—C2—C374.69 (16)C13—C14—H14119.842
C1—C2—C3108.6 (3)C15—C14—H14119.849
Mo1—C3—C271.02 (16)C14—C15—H15120.161
Mo1—C3—C471.91 (15)C16—C15—H15120.160
C2—C3—C4107.8 (3)C11—C16—H16119.517
Mo1—C4—C373.71 (15)C15—C16—H16119.501
Mo1—C4—C571.53 (14)C17—C18—H18120.007
C3—C4—C5108.5 (3)C19—C18—H18120.002
Mo1—C5—C171.57 (15)C18—C19—H19119.816
Mo1—C5—C473.62 (14)C20—C19—H19119.814
C1—C5—C4107.9 (3)C19—C20—H20119.951
Mo1—C6—O1120.81 (19)C21—C20—H20119.945
Mo1—C6—C7122.44 (17)C20—C21—H21120.036
O1—C6—C7116.7 (3)C22—C21—H21120.032
Mo1—C8—O2177.0 (2)C17—C22—H22119.627
Mo1—C9—O3175.0 (2)C21—C22—H22119.622
P1—C11—C12121.15 (18)
P1—Mo1—C1—C2122.96 (9)C3—Mo1—C5—C179.16 (13)
P1—Mo1—C1—C58.48 (17)C3—Mo1—C5—C436.69 (11)
C1—Mo1—P1—C10141.40 (10)C5—Mo1—C3—C279.68 (13)
C1—Mo1—P1—C1122.32 (10)C5—Mo1—C3—C437.20 (11)
C1—Mo1—P1—C1797.99 (11)C3—Mo1—C6—O121.07 (19)
P1—Mo1—C2—C195.59 (15)C3—Mo1—C6—C7159.70 (13)
P1—Mo1—C2—C320.6 (2)C6—Mo1—C3—C237.97 (14)
C2—Mo1—P1—C10167.39 (13)C6—Mo1—C3—C4154.85 (10)
C2—Mo1—P1—C1173.54 (14)C8—Mo1—C3—C2111.56 (12)
C2—Mo1—P1—C1746.77 (13)C8—Mo1—C3—C4131.55 (12)
P1—Mo1—C3—C2166.59 (8)C9—Mo1—C3—C266.2 (3)
P1—Mo1—C3—C449.71 (12)C9—Mo1—C3—C450.6 (3)
C3—Mo1—P1—C10155.34 (7)C4—Mo1—C5—C1115.9 (2)
C3—Mo1—P1—C1185.58 (9)C4—Mo1—C5—C40.00 (12)
C3—Mo1—P1—C1734.73 (8)C5—Mo1—C4—C3116.5 (2)
P1—Mo1—C4—C3133.37 (11)C5—Mo1—C4—C50.00 (12)
P1—Mo1—C4—C5110.15 (10)C4—Mo1—C6—O12.1 (3)
C4—Mo1—P1—C10179.04 (7)C4—Mo1—C6—C7177.14 (12)
C4—Mo1—P1—C1159.96 (8)C6—Mo1—C4—C339.91 (19)
C4—Mo1—P1—C1760.34 (7)C6—Mo1—C4—C576.57 (17)
P1—Mo1—C5—C1173.66 (9)C8—Mo1—C4—C359.37 (15)
P1—Mo1—C5—C470.48 (11)C8—Mo1—C4—C5175.85 (10)
C5—Mo1—P1—C10146.31 (8)C9—Mo1—C4—C3154.79 (10)
C5—Mo1—P1—C1127.24 (7)C9—Mo1—C4—C538.31 (16)
C5—Mo1—P1—C1793.07 (8)C5—Mo1—C6—O144.6 (2)
P1—Mo1—C6—O1168.84 (11)C5—Mo1—C6—C7134.60 (14)
P1—Mo1—C6—C711.92 (18)C6—Mo1—C5—C117.96 (16)
C6—Mo1—P1—C106.49 (8)C6—Mo1—C5—C4133.81 (10)
C6—Mo1—P1—C11125.57 (8)C8—Mo1—C5—C1107.1 (3)
C6—Mo1—P1—C17114.13 (8)C8—Mo1—C5—C48.7 (3)
C8—Mo1—P1—C1057.82 (8)C9—Mo1—C5—C194.80 (12)
C8—Mo1—P1—C11176.90 (8)C9—Mo1—C5—C4149.35 (12)
C8—Mo1—P1—C1762.79 (8)C8—Mo1—C6—O1114.64 (18)
C9—Mo1—P1—C1051.58 (7)C8—Mo1—C6—C766.12 (15)
C9—Mo1—P1—C1167.50 (8)C9—Mo1—C6—O1132.15 (18)
C9—Mo1—P1—C17172.19 (8)C9—Mo1—C6—C747.08 (14)
C1—Mo1—C2—C10.00 (13)Mo1—P1—C11—C1283.56 (16)
C1—Mo1—C2—C3116.2 (2)Mo1—P1—C11—C1691.91 (15)
C2—Mo1—C1—C20.00 (12)Mo1—P1—C17—C189.41 (18)
C2—Mo1—C1—C5114.5 (2)Mo1—P1—C17—C22173.40 (10)
C1—Mo1—C3—C237.90 (11)C10—P1—C11—C1240.92 (18)
C1—Mo1—C3—C478.99 (13)C10—P1—C11—C16143.61 (15)
C3—Mo1—C1—C236.53 (11)C10—P1—C17—C18117.05 (16)
C3—Mo1—C1—C577.95 (13)C10—P1—C17—C2260.14 (17)
C1—Mo1—C4—C378.87 (14)C11—P1—C17—C18135.02 (15)
C1—Mo1—C4—C537.61 (11)C11—P1—C17—C2247.78 (17)
C4—Mo1—C1—C277.24 (13)C17—P1—C11—C12147.13 (15)
C4—Mo1—C1—C537.24 (11)C17—P1—C11—C1637.40 (18)
C1—Mo1—C5—C10.00 (13)Mo1—C1—C2—Mo10.0
C1—Mo1—C5—C4115.9 (2)Mo1—C1—C2—C365.93 (16)
C5—Mo1—C1—C2114.5 (2)Mo1—C1—C5—Mo10.0
C5—Mo1—C1—C50.00 (12)Mo1—C1—C5—C465.15 (14)
C1—Mo1—C6—O134.40 (17)C2—C1—C5—Mo165.80 (18)
C1—Mo1—C6—C7144.83 (15)C2—C1—C5—C40.6 (3)
C6—Mo1—C1—C280.21 (12)C5—C1—C2—Mo165.84 (19)
C6—Mo1—C1—C5165.32 (12)C5—C1—C2—C30.1 (3)
C8—Mo1—C1—C223.1 (3)Mo1—C2—C3—Mo10.0
C8—Mo1—C1—C5137.59 (14)Mo1—C2—C3—C462.93 (15)
C9—Mo1—C1—C2155.94 (12)C1—C2—C3—Mo163.71 (19)
C9—Mo1—C1—C589.59 (13)C1—C2—C3—C40.8 (3)
C2—Mo1—C3—C20.00 (13)Mo1—C3—C4—Mo10.0
C2—Mo1—C3—C4116.9 (2)Mo1—C3—C4—C563.53 (13)
C3—Mo1—C2—C1116.2 (2)C2—C3—C4—Mo162.35 (18)
C3—Mo1—C2—C30.00 (12)C2—C3—C4—C51.2 (3)
C2—Mo1—C4—C336.59 (12)Mo1—C4—C5—Mo10.0
C2—Mo1—C4—C579.89 (14)Mo1—C4—C5—C163.81 (14)
C4—Mo1—C2—C179.49 (13)C3—C4—C5—Mo164.94 (17)
C4—Mo1—C2—C336.69 (11)C3—C4—C5—C11.1 (3)
C2—Mo1—C5—C138.48 (12)P1—C11—C12—C13174.91 (15)
C2—Mo1—C5—C477.37 (14)P1—C11—C16—C15175.00 (15)
C5—Mo1—C2—C138.08 (11)C12—C11—C16—C150.6 (4)
C5—Mo1—C2—C378.10 (13)C16—C11—C12—C130.6 (4)
C2—Mo1—C6—O10.71 (17)C11—C12—C13—C140.3 (4)
C2—Mo1—C6—C7179.94 (16)C12—C13—C14—C150.1 (5)
C6—Mo1—C2—C198.48 (12)C13—C14—C15—C160.2 (5)
C6—Mo1—C2—C3145.34 (13)C14—C15—C16—C110.2 (5)
C8—Mo1—C2—C1165.94 (10)P1—C17—C18—C19176.91 (13)
C8—Mo1—C2—C377.89 (14)P1—C17—C22—C21177.60 (15)
C9—Mo1—C2—C131.55 (17)C18—C17—C22—C210.3 (4)
C9—Mo1—C2—C3147.72 (12)C22—C17—C18—C190.3 (3)
C3—Mo1—C4—C30.00 (12)C17—C18—C19—C200.5 (4)
C3—Mo1—C4—C5116.5 (2)C18—C19—C20—C210.1 (4)
C4—Mo1—C3—C2116.9 (2)C19—C20—C21—C220.6 (4)
C4—Mo1—C3—C40.00 (12)C20—C21—C22—C170.8 (4)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z; (iii) x, y1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x1/2, y+1/2, z; (viii) x1/2, y, z+1/2; (ix) x+1/2, y+1/2, z; (x) x, y+1/2, z+1/2; (xi) x, y+1/2, z1/2; (xii) x1/2, y1/2, z; (xiii) x, y+1, z; (xiv) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1ix0.982.413.346 (3)159
C16—H16···O2vii0.952.423.256 (3)147
C3—H3···O1i1.002.453.390 (4)156
Symmetry codes: (i) x, y, z; (vii) x1/2, y+1/2, z; (ix) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mo(C5H5)(C2H3O)(C13H13P)(CO)2]
Mr460.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)11.482 (7), 17.648 (10), 20.771 (12)
V3)4209 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.44 × 0.24 × 0.24
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.687, 0.842
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
40944, 4809, 4311
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.13
No. of reflections4809
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.67

Computer programs: CrystalClear (Rigaku Americas and Rigaku, 2011), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku Americas and Rigaku, 2010).

Selected bond lengths (Å) top
Mo1—P12.4619 (15)Mo1—C62.252 (3)
Mo1—C12.327 (3)Mo1—C81.974 (3)
Mo1—C22.352 (3)Mo1—C91.966 (3)
Mo1—C32.399 (3)O1—C61.216 (3)
Mo1—C42.375 (3)O2—C81.153 (4)
Mo1—C52.348 (3)O3—C91.160 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.982.413.346 (3)158.8
C16—H16···O2ii0.952.423.256 (3)146.6
C3—H3···O1iii1.002.453.390 (4)155.7
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x, y, z.
 

Acknowledgements

The authors gratefully acknowledge St Catherine University and NSF–MRI Award No. 1125975 `MRI Consortium: Acquisition of a Single-Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility'. Additional funding was provided by the Department of Chemistry at Carleton College.

References

First citationAdams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589–3598.  CSD CrossRef Web of Science Google Scholar
First citationBarnett, K. W., Pollman, T. G. & Solomon, T. W. (1972). J. Organomet. Chem. 36, C23–C26.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChurchill, M. R. & Fennessey, J. P. (1968). Inorg. Chem. 7, 953–959.  CSD CrossRef CAS Web of Science Google Scholar
First citationGladysz, J. A., Williams, G. M., Tam, W., Johnson, D. L., Parker, D. W. & Selover, J. C. (1979). Inorg. Chem. 18, 553–558.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1158-m1159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds