organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-phenyl-1,3-benzo­thia­zole

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 9 August 2012; accepted 16 August 2012; online 31 August 2012)

In the structure of the title compound, C13H8ClNS, the dihedral angle between the benzothia­zole ring system and the phenyl ring is 7.11 (8)°. In the crystal, mol­ecules are arranged parallel to the c axis.

Related literature

For biological activites of benzothia­zole compounds, see: Venkatesh & Pandeya (2009[Venkatesh, P. & Pandeya, S. N. (2009). Int. J. ChemTech. Res. 1, 1354-1358.]); Sreenivasa et al. (2009[Sreenivasa, M., Jaychand, E., Shivakumar, B., Jayrajkumar, K. & Vijaykumar, J. (2009). Arch. Pharm. Sci. Res. 1, 150-157.]); Kok et al. (2008[Kok, S. H. L., et al. (2008). Bioorg. Med. Chem. 16, 3626-3631.]); Siddiqui et al. (2007[Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255-259.]); Maharan et al. (2007[Maharan, M. A., William, S., Ramzy, F. & Sembel, A. M. (2007). Molecules, 12, 622-633.]); Pattan et al. (2005[Pattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Koti, B. C. (2005). Indian J. Chem. Sect. B, 44, 2404-2408.]); Hout et al. (2004[Hout, S., Azas, N., Darque, A., Robin, M., Di Giorgio, C., Gasquet, M., Galy, J. & David, P. (2004). Parasitology, 129, 525-542.]); Chohan et al. (2003[Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308-313.]); Bénéteau et al. (1999[Bénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053-1060.]). For the crystal structure of benzothia­zole derivatives, see: Lakshmanan et al. (2011[Lakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.]); Zhang et al. (2008[Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8ClNS

  • Mr = 245.71

  • Monoclinic, P 21 /c

  • a = 7.4057 (9) Å

  • b = 5.9100 (7) Å

  • c = 25.165 (3) Å

  • β = 93.402 (3)°

  • V = 1099.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 273 K

  • 0.36 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.956

  • 6221 measured reflections

  • 2013 independent reflections

  • 1706 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.04

  • 2013 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazoles represent an important class of heterocyclic compounds and are known to have numerous biological activities, including antimicrobial, antimalarial, anticancer, anti-inflamatory, antidiabetic, anticonvulsant, antitumor and anthelmintic properties (Venkatesh & Pandeya, 2009; Sreenivasa et al., 2009; Kok et al., 2008; Siddiqui et al., 2007; Maharan et al., 2007; Pattan et al., 2005; Hout et al., 2004; Chohan et al., 2003; Bénéteau et al., 1999). The title compound was prepared as part of an ongoing research effort to synthesize libraries of hetereocyclic compounds and evaluate thei different biological activities.

In the structure (Fig. 1) of the title compound, C13H8ClNS, the dihedral angle between the benzothiazole ring system and the phenyl ring is 7.11 (8)°. The bond lengths and angles are similar to those in structurally related benzothiazole compounds (Lakshmanan et al., 2011; Zhang et al., 2008). In the crystal structure the molecules are arranged parallel to the c-axis (Fig. 2).

Related literature top

For biological activites of benzothiazole compounds, see: Venkatesh & Pandeya (2009); Sreenivasa et al. (2009); Kok et al. (2008); Siddiqui et al. (2007); Maharan et al. (2007); Pattan et al. (2005); Hout et al. (2004); Chohan et al. (2003); Bénéteau et al. (1999). For the crystal structure of benzothiazole derivatives, see: Lakshmanan et al. (2011); Zhang et al. (2008).

Experimental top

In a 50 ml round-bottomed flask 2-amino-4-chlorobenzenethiol (0.159 g, 1 mmol), benzaldehyde (0.106 g, 1 mmol), N,N-dimethylformamide (10 ml), and sodium metabisulfite (0.2 g) were added with continuous stirring and allowed to reflux for 2 h. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was allowed to cool at room temperature and addition of cold water produced a solid precipitate. Crystallization from ethanol afforded pure crystals of the title compound (0.245 g, 91.8% yield); these were found to be suitable for single-crystal X-ray diffraction studies.

Refinement top

H atoms were positioned geometrically and constrained to ride on their parent atoms, with Csp2—H = 0.93 Å and Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2. The crystal packing of the title compound.
5-Chloro-2-phenyl-1,3-benzothiazole top
Crystal data top
C13H8ClNSF(000) = 504
Mr = 245.71Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4057 (9) ÅCell parameters from 2167 reflections
b = 5.9100 (7) Åθ = 3.1–28.2°
c = 25.165 (3) ŵ = 0.50 mm1
β = 93.402 (3)°T = 273 K
V = 1099.5 (2) Å3Plate, colorless
Z = 40.36 × 0.13 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2013 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.840, Tmax = 0.956k = 76
6221 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.1614P]
where P = (Fo2 + 2Fc2)/3
2013 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H8ClNSV = 1099.5 (2) Å3
Mr = 245.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4057 (9) ŵ = 0.50 mm1
b = 5.9100 (7) ÅT = 273 K
c = 25.165 (3) Å0.36 × 0.13 × 0.09 mm
β = 93.402 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1706 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.956Rint = 0.023
6221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2013 reflectionsΔρmin = 0.21 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26215 (9)0.18042 (11)0.02881 (2)0.0660 (2)
S10.33963 (7)0.39652 (8)0.234075 (19)0.04489 (18)
N10.19011 (19)0.0014 (3)0.22680 (5)0.0367 (4)
C10.2624 (3)0.3164 (3)0.35279 (8)0.0449 (5)
H1B0.31310.44790.33990.054*
C20.2426 (3)0.2922 (4)0.40663 (8)0.0519 (5)
H2A0.28000.40790.42980.062*
C30.1683 (3)0.0995 (4)0.42641 (8)0.0514 (5)
H3A0.15550.08460.46280.062*
C40.1123 (3)0.0732 (4)0.39196 (8)0.0484 (5)
H4A0.06170.20400.40520.058*
C50.1315 (2)0.0515 (3)0.33809 (7)0.0419 (4)
H5A0.09410.16810.31520.050*
C60.2067 (2)0.1442 (3)0.31764 (7)0.0361 (4)
C70.2333 (2)0.1595 (3)0.26047 (7)0.0349 (4)
C90.2440 (2)0.0541 (3)0.17678 (7)0.0353 (4)
C100.2208 (2)0.0858 (3)0.13211 (7)0.0395 (4)
H10A0.16390.22560.13400.047*
C110.2850 (3)0.0087 (3)0.08523 (7)0.0435 (5)
C120.3695 (3)0.2000 (4)0.08090 (8)0.0477 (5)
H12A0.41010.24590.04830.057*
C130.3932 (3)0.3391 (3)0.12465 (8)0.0457 (5)
H13A0.44980.47890.12220.055*
C140.3300 (2)0.2643 (3)0.17274 (7)0.0383 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0921 (5)0.0674 (4)0.0395 (3)0.0125 (3)0.0133 (3)0.0074 (2)
S10.0502 (3)0.0336 (3)0.0509 (3)0.0091 (2)0.0039 (2)0.0026 (2)
N10.0381 (9)0.0326 (9)0.0397 (8)0.0015 (6)0.0048 (6)0.0006 (6)
C10.0482 (12)0.0366 (11)0.0496 (11)0.0008 (9)0.0011 (8)0.0052 (8)
C20.0564 (13)0.0527 (14)0.0458 (11)0.0039 (10)0.0028 (9)0.0121 (9)
C30.0522 (12)0.0608 (14)0.0411 (10)0.0081 (10)0.0009 (9)0.0016 (9)
C40.0495 (13)0.0461 (12)0.0497 (11)0.0014 (9)0.0033 (9)0.0089 (9)
C50.0422 (11)0.0392 (11)0.0440 (10)0.0006 (8)0.0007 (8)0.0034 (8)
C60.0307 (10)0.0349 (10)0.0422 (10)0.0030 (7)0.0006 (7)0.0025 (7)
C70.0282 (9)0.0308 (10)0.0453 (10)0.0003 (7)0.0003 (7)0.0011 (7)
C90.0305 (9)0.0334 (10)0.0423 (9)0.0018 (7)0.0032 (7)0.0024 (7)
C100.0418 (11)0.0343 (10)0.0427 (10)0.0029 (8)0.0041 (8)0.0000 (8)
C110.0456 (12)0.0464 (12)0.0388 (10)0.0020 (9)0.0045 (8)0.0000 (8)
C120.0472 (12)0.0511 (13)0.0457 (11)0.0002 (9)0.0102 (8)0.0110 (9)
C130.0435 (11)0.0398 (11)0.0545 (11)0.0034 (9)0.0078 (9)0.0080 (9)
C140.0339 (10)0.0348 (10)0.0462 (10)0.0002 (8)0.0025 (7)0.0014 (8)
Geometric parameters (Å, º) top
Cl1—C111.7453 (19)C4—H4A0.9300
S1—C141.7279 (18)C5—C61.395 (3)
S1—C71.7566 (18)C5—H5A0.9300
N1—C71.301 (2)C6—C71.466 (2)
N1—C91.382 (2)C9—C101.398 (2)
C1—C21.379 (3)C9—C141.402 (2)
C1—C61.395 (3)C10—C111.376 (2)
C1—H1B0.9300C10—H10A0.9300
C2—C31.371 (3)C11—C121.390 (3)
C2—H2A0.9300C12—C131.377 (3)
C3—C41.386 (3)C12—H12A0.9300
C3—H3A0.9300C13—C141.395 (3)
C4—C51.377 (3)C13—H13A0.9300
C14—S1—C788.93 (8)N1—C7—S1115.77 (13)
C7—N1—C9110.29 (15)C6—C7—S1120.63 (13)
C2—C1—C6120.18 (19)N1—C9—C10124.31 (16)
C2—C1—H1B119.9N1—C9—C14115.66 (15)
C6—C1—H1B119.9C10—C9—C14120.02 (15)
C3—C2—C1120.75 (19)C11—C10—C9117.48 (18)
C3—C2—H2A119.6C11—C10—H10A121.3
C1—C2—H2A119.6C9—C10—H10A121.3
C2—C3—C4119.73 (18)C10—C11—C12122.76 (17)
C2—C3—H3A120.1C10—C11—Cl1118.90 (15)
C4—C3—H3A120.1C12—C11—Cl1118.33 (14)
C5—C4—C3120.16 (19)C13—C12—C11120.25 (17)
C5—C4—H4A119.9C13—C12—H12A119.9
C3—C4—H4A119.9C11—C12—H12A119.9
C4—C5—C6120.47 (18)C12—C13—C14118.07 (18)
C4—C5—H5A119.8C12—C13—H13A121.0
C6—C5—H5A119.8C14—C13—H13A121.0
C1—C6—C5118.72 (17)C13—C14—C9121.40 (17)
C1—C6—C7121.69 (17)C13—C14—S1129.28 (15)
C5—C6—C7119.52 (15)C9—C14—S1109.32 (12)
N1—C7—C6123.50 (16)
C6—C1—C2—C30.1 (3)C7—N1—C9—C140.3 (2)
C1—C2—C3—C40.0 (3)N1—C9—C10—C11178.70 (17)
C2—C3—C4—C50.1 (3)C14—C9—C10—C110.1 (3)
C3—C4—C5—C60.2 (3)C9—C10—C11—C120.4 (3)
C2—C1—C6—C50.1 (3)C9—C10—C11—Cl1178.89 (14)
C2—C1—C6—C7177.15 (17)C10—C11—C12—C130.5 (3)
C4—C5—C6—C10.2 (3)Cl1—C11—C12—C13178.86 (15)
C4—C5—C6—C7177.29 (16)C11—C12—C13—C140.2 (3)
C9—N1—C7—C6175.21 (15)C12—C13—C14—C90.2 (3)
C9—N1—C7—S11.28 (19)C12—C13—C14—S1179.72 (15)
C1—C6—C7—N1177.03 (17)N1—C9—C14—C13179.11 (17)
C5—C6—C7—N10.0 (3)C10—C9—C14—C130.2 (3)
C1—C6—C7—S10.7 (2)N1—C9—C14—S10.8 (2)
C5—C6—C7—S1176.27 (14)C10—C9—C14—S1179.71 (14)
C14—S1—C7—N11.50 (15)C7—S1—C14—C13178.71 (18)
C14—S1—C7—C6175.10 (14)C7—S1—C14—C91.20 (14)
C7—N1—C9—C10178.56 (17)

Experimental details

Crystal data
Chemical formulaC13H8ClNS
Mr245.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.4057 (9), 5.9100 (7), 25.165 (3)
β (°) 93.402 (3)
V3)1099.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.36 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.840, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
6221, 2013, 1706
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.04
No. of reflections2013
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank OPCW, The Netherlands, and the Higher Education Commission, Pakistan (project No. 1910), for their financial support.

References

First citationBénéteau, V., Besson, T., Guillard, J., Léonce, S. & Pfeiffer, B. (1999). Eur. J. Med. Chem. 34, 1053–1060.  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313.  CAS Google Scholar
First citationHout, S., Azas, N., Darque, A., Robin, M., Di Giorgio, C., Gasquet, M., Galy, J. & David, P. (2004). Parasitology, 129, 525–542.  CrossRef PubMed CAS Google Scholar
First citationKok, S. H. L., et al. (2008). Bioorg. Med. Chem. 16, 3626–3631.  CrossRef PubMed CAS Google Scholar
First citationLakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaharan, M. A., William, S., Ramzy, F. & Sembel, A. M. (2007). Molecules, 12, 622–633.  PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPattan, S. R., Suresh, C., Pujar, V. D., Reddy, V. V. K., Rasal, V. P. & Koti, B. C. (2005). Indian J. Chem. Sect. B, 44, 2404–2408.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, M., Jaychand, E., Shivakumar, B., Jayrajkumar, K. & Vijaykumar, J. (2009). Arch. Pharm. Sci. Res. 1, 150–157.  CAS Google Scholar
First citationVenkatesh, P. & Pandeya, S. N. (2009). Int. J. ChemTech. Res. 1, 1354–1358.  CAS Google Scholar
First citationZhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds