metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1162-m1163

Di­aqua­bis­­(2-iodo­benzoato-κO)bis­­(nicotinamide-κN1)copper(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 27 July 2012; accepted 3 August 2012; online 8 August 2012)

In the title complex, [Cu(C7H4IO2)2(C6H6N2O)2(H2O)2], the CuII cation is located on an inversion center and is coordinated by two monodentate 2-iodo­benzoate (IB) anions, two nicotinamide (NA) ligands and two water mol­ecules in a distorted octa­hedral coordination geometry. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 32.12 (14)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 82.02 (5)°. The coordinating water mol­ecule links with the carboxyl­ate group via an intra­molecular O—H⋯O hydrogen bond. In the crystal, N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network.

Related literature

For literature on niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Aydın et al. (2012[Aydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521-m522.]); Hökelek et al. (2009[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607-m608.]); Necefoğlu et al. (2011[Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m900-m901.]); Sertçelik et al. (2012a[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m946-m947.],b[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m1127-m1128.]); Sertçelik et al. (2009[Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324-m325.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4IO2)2(C6H6N2O)2(H2O)2]

  • Mr = 837.85

  • Monoclinic, P 21 /n

  • a = 8.1617 (2) Å

  • b = 18.3365 (4) Å

  • c = 9.7047 (3) Å

  • β = 103.573 (3)°

  • V = 1411.81 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 100 K

  • 0.39 × 0.36 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.528, Tmax = 0.661

  • 13216 measured reflections

  • 3531 independent reflections

  • 3337 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.058

  • S = 1.13

  • 3531 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9937 (14)
Cu1—O4 2.5078 (16)
Cu1—N1 1.9984 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O3i 0.84 (3) 2.17 (3) 2.942 (3) 154 (3)
N2—H22⋯O2ii 0.83 (3) 2.11 (3) 2.881 (2) 154 (3)
O4—H41⋯O2iii 0.87 (4) 1.87 (4) 2.720 (2) 165 (4)
O4—H42⋯O3iv 0.80 (4) 2.16 (4) 2.923 (2) 160 (4)
C10—H10⋯O2ii 0.93 2.49 3.368 (2) 158
Symmetry codes: (i) -x+1, -y+1, -z-1; (ii) x, y, z-1; (iii) -x, -y+1, -z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the title mononuclear complex, CuII cation is located on an inversion center and is coordinated by two 2-iodobenzoate (IB) anions, two nicotinamide (NA) ligands and two water molecules, all ligands coordinating in a monodentate manner (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012a), [Mn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009) and [Zn(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012b) have also been reported, where all the ligands coordinate to the metal atoms in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O4 and O4') in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.275 (2) Å] and C1—O2 [1.245 (2) Å] bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The Cu—O bond lengths are 1.9937 (14) Å (for benzoate oxygens) and 2.5078 (16) Å (for water oxygens), and the Cu—N bond length is 1.9984 (16) Å, close to standard values (Allen et al., 1987). The Cu atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.5995 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 32.12 (14)°. The benzene A (C2—C7) and the pyridine B (N1/C8—C12) rings are oriented at a dihedral angle of A/B = 82.02 (5)°. The coordinating water molecule links with the carboxylate group via an O—H···O hydrogen bond (Table 1).

In the crystal, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure.

Related literature top

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2012a,b); Sertçelik et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.248 g, 5 mmol) in H2O (200 ml) and NA (1.220 g, 200 mmol) in H2O (20 ml) with 2-iodobenzoic acid (2.700 g, 10 mmol) in H2O (20 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H21 and H22 (for NH2) and H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') -x, 1-y, -z].
Diaquabis(2-iodobenzoato-κO)bis(nicotinamide-κN1)copper(II) top
Crystal data top
[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2]F(000) = 814
Mr = 837.85Dx = 1.971 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7325 reflections
a = 8.1617 (2) Åθ = 2.8–28.3°
b = 18.3365 (4) ŵ = 3.02 mm1
c = 9.7047 (3) ÅT = 100 K
β = 103.573 (3)°Block, blue
V = 1411.81 (7) Å30.39 × 0.36 × 0.24 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3531 independent reflections
Radiation source: fine-focus sealed tube3337 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.528, Tmax = 0.661k = 2424
13216 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0285P)2 + 1.437P]
where P = (Fo2 + 2Fc2)/3
3531 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2]V = 1411.81 (7) Å3
Mr = 837.85Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.1617 (2) ŵ = 3.02 mm1
b = 18.3365 (4) ÅT = 100 K
c = 9.7047 (3) Å0.39 × 0.36 × 0.24 mm
β = 103.573 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3337 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 0.661Rint = 0.018
13216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.97 e Å3
3531 reflectionsΔρmin = 0.50 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.01102 (8)
I10.120179 (18)0.213804 (8)0.323774 (16)0.02225 (6)
O10.10863 (18)0.40869 (8)0.04600 (14)0.0137 (3)
O20.10292 (18)0.37645 (8)0.22737 (15)0.0163 (3)
O30.4441 (2)0.48850 (9)0.32723 (15)0.0195 (3)
O40.2967 (2)0.54420 (9)0.08965 (16)0.0174 (3)
H410.252 (5)0.571 (2)0.145 (4)0.045 (10)*
H420.369 (5)0.521 (2)0.140 (4)0.056 (12)*
N10.0134 (2)0.45775 (9)0.18686 (17)0.0116 (3)
N20.3517 (2)0.42184 (11)0.52508 (19)0.0191 (4)
H210.434 (4)0.4370 (16)0.555 (3)0.024 (7)*
H220.276 (4)0.3983 (16)0.578 (3)0.026 (8)*
C10.0459 (2)0.37253 (10)0.1582 (2)0.0116 (3)
C20.1668 (2)0.32473 (11)0.2144 (2)0.0117 (3)
C30.1182 (2)0.26188 (11)0.2949 (2)0.0120 (3)
C40.2309 (3)0.22441 (11)0.3571 (2)0.0162 (4)
H40.19580.18310.41160.019*
C50.3955 (3)0.24892 (12)0.3375 (2)0.0180 (4)
H50.47030.22470.38070.022*
C60.4487 (3)0.30965 (12)0.2535 (2)0.0177 (4)
H60.55990.32540.23820.021*
C70.3354 (3)0.34687 (11)0.1925 (2)0.0147 (4)
H70.37220.38730.13590.018*
C80.1566 (2)0.46254 (10)0.2307 (2)0.0119 (4)
H80.24950.48470.17170.014*
C90.1720 (2)0.43569 (10)0.36104 (19)0.0113 (3)
C100.0335 (3)0.40108 (11)0.4471 (2)0.0153 (4)
H100.04080.38150.53380.018*
C110.1159 (3)0.39604 (12)0.4024 (2)0.0164 (4)
H110.21010.37330.45850.020*
C120.1209 (3)0.42577 (11)0.2720 (2)0.0142 (4)
H120.22120.42350.24240.017*
C130.3339 (3)0.45019 (11)0.4031 (2)0.0140 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01365 (16)0.01161 (15)0.00929 (15)0.00216 (12)0.00570 (12)0.00079 (11)
I10.01407 (8)0.01936 (8)0.03321 (10)0.00596 (5)0.00532 (6)0.00443 (5)
O10.0148 (7)0.0151 (7)0.0114 (6)0.0026 (5)0.0036 (5)0.0004 (5)
O20.0112 (7)0.0219 (7)0.0152 (7)0.0038 (6)0.0019 (5)0.0012 (5)
O30.0158 (7)0.0289 (8)0.0142 (7)0.0075 (6)0.0046 (6)0.0058 (6)
O40.0148 (7)0.0222 (8)0.0150 (7)0.0012 (6)0.0028 (6)0.0021 (6)
N10.0112 (8)0.0128 (7)0.0115 (7)0.0007 (6)0.0044 (6)0.0003 (6)
N20.0149 (9)0.0301 (10)0.0146 (8)0.0072 (8)0.0082 (7)0.0074 (7)
C10.0119 (9)0.0124 (8)0.0112 (8)0.0013 (7)0.0042 (7)0.0025 (6)
C20.0115 (9)0.0128 (8)0.0115 (8)0.0014 (7)0.0041 (7)0.0010 (6)
C30.0088 (9)0.0132 (8)0.0139 (9)0.0005 (7)0.0020 (7)0.0011 (7)
C40.0185 (10)0.0138 (9)0.0163 (9)0.0032 (8)0.0042 (8)0.0020 (7)
C50.0153 (10)0.0195 (10)0.0211 (10)0.0053 (8)0.0083 (8)0.0003 (8)
C60.0111 (9)0.0190 (10)0.0235 (10)0.0000 (8)0.0052 (8)0.0006 (8)
C70.0142 (9)0.0136 (9)0.0160 (9)0.0006 (7)0.0030 (7)0.0008 (7)
C80.0113 (9)0.0135 (9)0.0113 (8)0.0013 (7)0.0037 (7)0.0001 (7)
C90.0103 (8)0.0136 (8)0.0109 (8)0.0011 (7)0.0044 (7)0.0002 (6)
C100.0148 (10)0.0195 (10)0.0121 (9)0.0026 (8)0.0039 (7)0.0033 (7)
C110.0138 (9)0.0202 (10)0.0150 (9)0.0058 (8)0.0028 (7)0.0037 (7)
C120.0129 (9)0.0150 (9)0.0158 (9)0.0026 (7)0.0053 (7)0.0008 (7)
C130.0111 (9)0.0183 (9)0.0128 (9)0.0006 (7)0.0033 (7)0.0002 (7)
Geometric parameters (Å, º) top
Cu1—O11.9937 (14)C3—C21.397 (3)
Cu1—O1i1.9937 (14)C4—C31.394 (3)
Cu1—O42.5078 (16)C4—C51.387 (3)
Cu1—O4i2.5078 (16)C4—H40.9300
Cu1—N11.9984 (16)C5—C61.388 (3)
Cu1—N1i1.9984 (16)C5—H50.9300
I1—C32.0942 (19)C6—H60.9300
O1—C11.275 (2)C7—C61.389 (3)
O2—C11.245 (2)C7—H70.9300
O3—C131.238 (3)C8—H80.9300
O4—H410.87 (4)C9—C81.390 (2)
O4—H420.80 (4)C9—C101.391 (3)
N1—C81.337 (2)C9—C131.496 (3)
N1—C121.343 (3)C10—C111.390 (3)
N2—C131.331 (3)C10—H100.9300
N2—H220.83 (3)C11—H110.9300
N2—H210.84 (3)C12—C111.387 (3)
C1—C21.513 (3)C12—H120.9300
C2—C71.403 (3)
O1i—Cu1—O1180.00 (7)C4—C5—C6119.99 (19)
O1—Cu1—N189.98 (6)C4—C5—H5120.0
O1i—Cu1—N190.02 (6)C6—C5—H5120.0
O1—Cu1—N1i90.02 (6)C5—C6—C7119.8 (2)
O1i—Cu1—N1i89.98 (6)C5—C6—H6120.1
O4—Cu1—O184.56 (6)C7—C6—H6120.1
O4—Cu1—N193.70 (6)C2—C7—H7119.3
N1—Cu1—N1i180.00 (9)C6—C7—C2121.42 (19)
H41—O4—H42106 (4)C6—C7—H7119.3
C1—O1—Cu1121.16 (13)N1—C8—C9122.62 (18)
C8—N1—Cu1120.11 (13)N1—C8—H8118.7
C12—N1—Cu1121.13 (13)C9—C8—H8118.7
C8—N1—C12118.74 (16)C8—C9—C10118.26 (18)
C13—N2—H21116 (2)C8—C9—C13117.39 (17)
C13—N2—H22122 (2)C10—C9—C13124.23 (17)
H22—N2—H21120 (3)C9—C10—H10120.3
O1—C1—C2116.35 (17)C11—C10—C9119.46 (18)
O2—C1—O1125.16 (18)C11—C10—H10120.3
O2—C1—C2118.39 (17)C10—C11—H11120.8
C3—C2—C1123.79 (18)C12—C11—C10118.33 (19)
C3—C2—C7117.57 (18)C12—C11—H11120.8
C7—C2—C1118.51 (17)N1—C12—C11122.56 (19)
C2—C3—I1123.71 (14)N1—C12—H12118.7
C4—C3—I1114.92 (15)C11—C12—H12118.7
C4—C3—C2121.30 (18)O3—C13—N2122.34 (19)
C3—C4—H4120.1O3—C13—C9120.19 (17)
C5—C4—C3119.83 (19)N2—C13—C9117.45 (18)
C5—C4—H4120.1
N1—Cu1—O1—C1123.90 (15)I1—C3—C2—C7173.86 (14)
N1i—Cu1—O1—C156.10 (15)C4—C3—C2—C1172.78 (18)
O1—Cu1—N1—C8133.41 (15)C4—C3—C2—C73.0 (3)
O1i—Cu1—N1—C846.59 (15)C5—C4—C3—I1176.15 (16)
O1—Cu1—N1—C1248.21 (16)C5—C4—C3—C21.0 (3)
O1i—Cu1—N1—C12131.79 (16)C3—C4—C5—C61.5 (3)
Cu1—O1—C1—O220.6 (3)C4—C5—C6—C71.8 (3)
Cu1—O1—C1—C2155.73 (13)C2—C7—C6—C50.4 (3)
Cu1—N1—C8—C9178.46 (15)C10—C9—C8—N11.5 (3)
C12—N1—C8—C90.0 (3)C13—C9—C8—N1174.79 (18)
Cu1—N1—C12—C11179.89 (16)C8—C9—C10—C111.6 (3)
C8—N1—C12—C111.5 (3)C13—C9—C10—C11174.41 (19)
O1—C1—C2—C3153.14 (18)C8—C9—C13—O34.3 (3)
O1—C1—C2—C731.1 (3)C8—C9—C13—N2177.18 (19)
O2—C1—C2—C330.3 (3)C10—C9—C13—O3171.8 (2)
O2—C1—C2—C7145.49 (19)C10—C9—C13—N26.8 (3)
C1—C2—C7—C6173.32 (18)C9—C10—C11—C120.3 (3)
C3—C2—C7—C62.7 (3)N1—C12—C11—C101.3 (3)
I1—C3—C2—C110.3 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3ii0.84 (3)2.17 (3)2.942 (3)154 (3)
N2—H22···O2iii0.83 (3)2.11 (3)2.881 (2)154 (3)
O4—H41···O2i0.87 (4)1.87 (4)2.720 (2)165 (4)
O4—H42···O3iv0.80 (4)2.16 (4)2.923 (2)160 (4)
C10—H10···O2iii0.932.493.368 (2)158
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z1; (iii) x, y, z1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2]
Mr837.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.1617 (2), 18.3365 (4), 9.7047 (3)
β (°) 103.573 (3)
V3)1411.81 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.39 × 0.36 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.528, 0.661
No. of measured, independent and
observed [I > 2σ(I)] reflections
13216, 3531, 3337
Rint0.018
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.13
No. of reflections3531
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O11.9937 (14)Cu1—N11.9984 (16)
Cu1—O42.5078 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3i0.84 (3)2.17 (3)2.942 (3)154 (3)
N2—H22···O2ii0.83 (3)2.11 (3)2.881 (2)154 (3)
O4—H41···O2iii0.87 (4)1.87 (4)2.720 (2)165 (4)
O4—H42···O3iv0.80 (4)2.16 (4)2.923 (2)160 (4)
C10—H10···O2ii0.932.493.368 (2)158
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y, z1; (iii) x, y+1, z; (iv) x1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521–m522.  CSD CrossRef IUCr Journals Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m900–m901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m946–m947.  CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m1127–m1128.  CSD CrossRef IUCr Journals Google Scholar
First citationSertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324–m325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1162-m1163
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds