metal-organic compounds
Diaquabis(2-iodobenzoato-κO)bis(nicotinamide-κN1)copper(II)
aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title complex, [Cu(C7H4IO2)2(C6H6N2O)2(H2O)2], the CuII cation is located on an inversion center and is coordinated by two monodentate 2-iodobenzoate (IB) anions, two nicotinamide (NA) ligands and two water molecules in a distorted octahedral coordination geometry. The dihedral angle between the carboxylate group and the adjacent benzene ring is 32.12 (14)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 82.02 (5)°. The coordinating water molecule links with the carboxylate group via an intramolecular O—H⋯O hydrogen bond. In the crystal, N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds link the molecules into a three-dimensional supramolecular network.
Related literature
For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2012a,b); Sertçelik et al. (2009). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812034587/xu5599sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812034587/xu5599Isup2.hkl
The title compound was prepared by the reaction of CuSO4.5H2O (1.248 g, 5 mmol) in H2O (200 ml) and NA (1.220 g, 200 mmol) in H2O (20 ml) with 2-iodobenzoic acid (2.700 g, 10 mmol) in H2O (20 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.
Atoms H21 and H22 (for NH2) and H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') -x, 1-y, -z]. |
[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2] | F(000) = 814 |
Mr = 837.85 | Dx = 1.971 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7325 reflections |
a = 8.1617 (2) Å | θ = 2.8–28.3° |
b = 18.3365 (4) Å | µ = 3.02 mm−1 |
c = 9.7047 (3) Å | T = 100 K |
β = 103.573 (3)° | Block, blue |
V = 1411.81 (7) Å3 | 0.39 × 0.36 × 0.24 mm |
Z = 2 |
Bruker Kappa APEXII CCD area-detector diffractometer | 3531 independent reflections |
Radiation source: fine-focus sealed tube | 3337 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→10 |
Tmin = 0.528, Tmax = 0.661 | k = −24→24 |
13216 measured reflections | l = −10→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0285P)2 + 1.437P] where P = (Fo2 + 2Fc2)/3 |
3531 reflections | (Δ/σ)max = 0.001 |
203 parameters | Δρmax = 0.97 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
[Cu(C7H4IO2)2(C6H6N2O)2(H2O)2] | V = 1411.81 (7) Å3 |
Mr = 837.85 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.1617 (2) Å | µ = 3.02 mm−1 |
b = 18.3365 (4) Å | T = 100 K |
c = 9.7047 (3) Å | 0.39 × 0.36 × 0.24 mm |
β = 103.573 (3)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 3531 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3337 reflections with I > 2σ(I) |
Tmin = 0.528, Tmax = 0.661 | Rint = 0.018 |
13216 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.97 e Å−3 |
3531 reflections | Δρmin = −0.50 e Å−3 |
203 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.5000 | 0.0000 | 0.01102 (8) | |
I1 | 0.120179 (18) | 0.213804 (8) | 0.323774 (16) | 0.02225 (6) | |
O1 | −0.10863 (18) | 0.40869 (8) | 0.04600 (14) | 0.0137 (3) | |
O2 | 0.10292 (18) | 0.37645 (8) | 0.22737 (15) | 0.0163 (3) | |
O3 | 0.4441 (2) | 0.48850 (9) | −0.32723 (15) | 0.0195 (3) | |
O4 | −0.2967 (2) | 0.54420 (9) | −0.08965 (16) | 0.0174 (3) | |
H41 | −0.252 (5) | 0.571 (2) | −0.145 (4) | 0.045 (10)* | |
H42 | −0.369 (5) | 0.521 (2) | −0.140 (4) | 0.056 (12)* | |
N1 | 0.0134 (2) | 0.45775 (9) | −0.18686 (17) | 0.0116 (3) | |
N2 | 0.3517 (2) | 0.42184 (11) | −0.52508 (19) | 0.0191 (4) | |
H21 | 0.434 (4) | 0.4370 (16) | −0.555 (3) | 0.024 (7)* | |
H22 | 0.276 (4) | 0.3983 (16) | −0.578 (3) | 0.026 (8)* | |
C1 | −0.0459 (2) | 0.37253 (10) | 0.1582 (2) | 0.0116 (3) | |
C2 | −0.1668 (2) | 0.32473 (11) | 0.2144 (2) | 0.0117 (3) | |
C3 | −0.1182 (2) | 0.26188 (11) | 0.2949 (2) | 0.0120 (3) | |
C4 | −0.2309 (3) | 0.22441 (11) | 0.3571 (2) | 0.0162 (4) | |
H4 | −0.1958 | 0.1831 | 0.4116 | 0.019* | |
C5 | −0.3955 (3) | 0.24892 (12) | 0.3375 (2) | 0.0180 (4) | |
H5 | −0.4703 | 0.2247 | 0.3807 | 0.022* | |
C6 | −0.4487 (3) | 0.30965 (12) | 0.2535 (2) | 0.0177 (4) | |
H6 | −0.5599 | 0.3254 | 0.2382 | 0.021* | |
C7 | −0.3354 (3) | 0.34687 (11) | 0.1925 (2) | 0.0147 (4) | |
H7 | −0.3722 | 0.3873 | 0.1359 | 0.018* | |
C8 | 0.1566 (2) | 0.46254 (10) | −0.2307 (2) | 0.0119 (4) | |
H8 | 0.2495 | 0.4847 | −0.1717 | 0.014* | |
C9 | 0.1720 (2) | 0.43569 (10) | −0.36104 (19) | 0.0113 (3) | |
C10 | 0.0335 (3) | 0.40108 (11) | −0.4471 (2) | 0.0153 (4) | |
H10 | 0.0408 | 0.3815 | −0.5338 | 0.018* | |
C11 | −0.1159 (3) | 0.39604 (12) | −0.4024 (2) | 0.0164 (4) | |
H11 | −0.2101 | 0.3733 | −0.4585 | 0.020* | |
C12 | −0.1209 (3) | 0.42577 (11) | −0.2720 (2) | 0.0142 (4) | |
H12 | −0.2212 | 0.4235 | −0.2424 | 0.017* | |
C13 | 0.3339 (3) | 0.45019 (11) | −0.4031 (2) | 0.0140 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01365 (16) | 0.01161 (15) | 0.00929 (15) | −0.00216 (12) | 0.00570 (12) | −0.00079 (11) |
I1 | 0.01407 (8) | 0.01936 (8) | 0.03321 (10) | 0.00596 (5) | 0.00532 (6) | 0.00443 (5) |
O1 | 0.0148 (7) | 0.0151 (7) | 0.0114 (6) | −0.0026 (5) | 0.0036 (5) | 0.0004 (5) |
O2 | 0.0112 (7) | 0.0219 (7) | 0.0152 (7) | −0.0038 (6) | 0.0019 (5) | 0.0012 (5) |
O3 | 0.0158 (7) | 0.0289 (8) | 0.0142 (7) | −0.0075 (6) | 0.0046 (6) | −0.0058 (6) |
O4 | 0.0148 (7) | 0.0222 (8) | 0.0150 (7) | −0.0012 (6) | 0.0028 (6) | 0.0021 (6) |
N1 | 0.0112 (8) | 0.0128 (7) | 0.0115 (7) | −0.0007 (6) | 0.0044 (6) | 0.0003 (6) |
N2 | 0.0149 (9) | 0.0301 (10) | 0.0146 (8) | −0.0072 (8) | 0.0082 (7) | −0.0074 (7) |
C1 | 0.0119 (9) | 0.0124 (8) | 0.0112 (8) | −0.0013 (7) | 0.0042 (7) | −0.0025 (6) |
C2 | 0.0115 (9) | 0.0128 (8) | 0.0115 (8) | −0.0014 (7) | 0.0041 (7) | −0.0010 (6) |
C3 | 0.0088 (9) | 0.0132 (8) | 0.0139 (9) | 0.0005 (7) | 0.0020 (7) | −0.0011 (7) |
C4 | 0.0185 (10) | 0.0138 (9) | 0.0163 (9) | −0.0032 (8) | 0.0042 (8) | 0.0020 (7) |
C5 | 0.0153 (10) | 0.0195 (10) | 0.0211 (10) | −0.0053 (8) | 0.0083 (8) | 0.0003 (8) |
C6 | 0.0111 (9) | 0.0190 (10) | 0.0235 (10) | 0.0000 (8) | 0.0052 (8) | −0.0006 (8) |
C7 | 0.0142 (9) | 0.0136 (9) | 0.0160 (9) | 0.0006 (7) | 0.0030 (7) | 0.0008 (7) |
C8 | 0.0113 (9) | 0.0135 (9) | 0.0113 (8) | −0.0013 (7) | 0.0037 (7) | −0.0001 (7) |
C9 | 0.0103 (8) | 0.0136 (8) | 0.0109 (8) | −0.0011 (7) | 0.0044 (7) | 0.0002 (6) |
C10 | 0.0148 (10) | 0.0195 (10) | 0.0121 (9) | −0.0026 (8) | 0.0039 (7) | −0.0033 (7) |
C11 | 0.0138 (9) | 0.0202 (10) | 0.0150 (9) | −0.0058 (8) | 0.0028 (7) | −0.0037 (7) |
C12 | 0.0129 (9) | 0.0150 (9) | 0.0158 (9) | −0.0026 (7) | 0.0053 (7) | −0.0008 (7) |
C13 | 0.0111 (9) | 0.0183 (9) | 0.0128 (9) | −0.0006 (7) | 0.0033 (7) | 0.0002 (7) |
Cu1—O1 | 1.9937 (14) | C3—C2 | 1.397 (3) |
Cu1—O1i | 1.9937 (14) | C4—C3 | 1.394 (3) |
Cu1—O4 | 2.5078 (16) | C4—C5 | 1.387 (3) |
Cu1—O4i | 2.5078 (16) | C4—H4 | 0.9300 |
Cu1—N1 | 1.9984 (16) | C5—C6 | 1.388 (3) |
Cu1—N1i | 1.9984 (16) | C5—H5 | 0.9300 |
I1—C3 | 2.0942 (19) | C6—H6 | 0.9300 |
O1—C1 | 1.275 (2) | C7—C6 | 1.389 (3) |
O2—C1 | 1.245 (2) | C7—H7 | 0.9300 |
O3—C13 | 1.238 (3) | C8—H8 | 0.9300 |
O4—H41 | 0.87 (4) | C9—C8 | 1.390 (2) |
O4—H42 | 0.80 (4) | C9—C10 | 1.391 (3) |
N1—C8 | 1.337 (2) | C9—C13 | 1.496 (3) |
N1—C12 | 1.343 (3) | C10—C11 | 1.390 (3) |
N2—C13 | 1.331 (3) | C10—H10 | 0.9300 |
N2—H22 | 0.83 (3) | C11—H11 | 0.9300 |
N2—H21 | 0.84 (3) | C12—C11 | 1.387 (3) |
C1—C2 | 1.513 (3) | C12—H12 | 0.9300 |
C2—C7 | 1.403 (3) | ||
O1i—Cu1—O1 | 180.00 (7) | C4—C5—C6 | 119.99 (19) |
O1—Cu1—N1 | 89.98 (6) | C4—C5—H5 | 120.0 |
O1i—Cu1—N1 | 90.02 (6) | C6—C5—H5 | 120.0 |
O1—Cu1—N1i | 90.02 (6) | C5—C6—C7 | 119.8 (2) |
O1i—Cu1—N1i | 89.98 (6) | C5—C6—H6 | 120.1 |
O4—Cu1—O1 | 84.56 (6) | C7—C6—H6 | 120.1 |
O4—Cu1—N1 | 93.70 (6) | C2—C7—H7 | 119.3 |
N1—Cu1—N1i | 180.00 (9) | C6—C7—C2 | 121.42 (19) |
H41—O4—H42 | 106 (4) | C6—C7—H7 | 119.3 |
C1—O1—Cu1 | 121.16 (13) | N1—C8—C9 | 122.62 (18) |
C8—N1—Cu1 | 120.11 (13) | N1—C8—H8 | 118.7 |
C12—N1—Cu1 | 121.13 (13) | C9—C8—H8 | 118.7 |
C8—N1—C12 | 118.74 (16) | C8—C9—C10 | 118.26 (18) |
C13—N2—H21 | 116 (2) | C8—C9—C13 | 117.39 (17) |
C13—N2—H22 | 122 (2) | C10—C9—C13 | 124.23 (17) |
H22—N2—H21 | 120 (3) | C9—C10—H10 | 120.3 |
O1—C1—C2 | 116.35 (17) | C11—C10—C9 | 119.46 (18) |
O2—C1—O1 | 125.16 (18) | C11—C10—H10 | 120.3 |
O2—C1—C2 | 118.39 (17) | C10—C11—H11 | 120.8 |
C3—C2—C1 | 123.79 (18) | C12—C11—C10 | 118.33 (19) |
C3—C2—C7 | 117.57 (18) | C12—C11—H11 | 120.8 |
C7—C2—C1 | 118.51 (17) | N1—C12—C11 | 122.56 (19) |
C2—C3—I1 | 123.71 (14) | N1—C12—H12 | 118.7 |
C4—C3—I1 | 114.92 (15) | C11—C12—H12 | 118.7 |
C4—C3—C2 | 121.30 (18) | O3—C13—N2 | 122.34 (19) |
C3—C4—H4 | 120.1 | O3—C13—C9 | 120.19 (17) |
C5—C4—C3 | 119.83 (19) | N2—C13—C9 | 117.45 (18) |
C5—C4—H4 | 120.1 | ||
N1—Cu1—O1—C1 | 123.90 (15) | I1—C3—C2—C7 | 173.86 (14) |
N1i—Cu1—O1—C1 | −56.10 (15) | C4—C3—C2—C1 | 172.78 (18) |
O1—Cu1—N1—C8 | −133.41 (15) | C4—C3—C2—C7 | −3.0 (3) |
O1i—Cu1—N1—C8 | 46.59 (15) | C5—C4—C3—I1 | −176.15 (16) |
O1—Cu1—N1—C12 | 48.21 (16) | C5—C4—C3—C2 | 1.0 (3) |
O1i—Cu1—N1—C12 | −131.79 (16) | C3—C4—C5—C6 | 1.5 (3) |
Cu1—O1—C1—O2 | −20.6 (3) | C4—C5—C6—C7 | −1.8 (3) |
Cu1—O1—C1—C2 | 155.73 (13) | C2—C7—C6—C5 | −0.4 (3) |
Cu1—N1—C8—C9 | −178.46 (15) | C10—C9—C8—N1 | −1.5 (3) |
C12—N1—C8—C9 | 0.0 (3) | C13—C9—C8—N1 | 174.79 (18) |
Cu1—N1—C12—C11 | 179.89 (16) | C8—C9—C10—C11 | 1.6 (3) |
C8—N1—C12—C11 | 1.5 (3) | C13—C9—C10—C11 | −174.41 (19) |
O1—C1—C2—C3 | 153.14 (18) | C8—C9—C13—O3 | −4.3 (3) |
O1—C1—C2—C7 | −31.1 (3) | C8—C9—C13—N2 | 177.18 (19) |
O2—C1—C2—C3 | −30.3 (3) | C10—C9—C13—O3 | 171.8 (2) |
O2—C1—C2—C7 | 145.49 (19) | C10—C9—C13—N2 | −6.8 (3) |
C1—C2—C7—C6 | −173.32 (18) | C9—C10—C11—C12 | −0.3 (3) |
C3—C2—C7—C6 | 2.7 (3) | N1—C12—C11—C10 | −1.3 (3) |
I1—C3—C2—C1 | −10.3 (3) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O3ii | 0.84 (3) | 2.17 (3) | 2.942 (3) | 154 (3) |
N2—H22···O2iii | 0.83 (3) | 2.11 (3) | 2.881 (2) | 154 (3) |
O4—H41···O2i | 0.87 (4) | 1.87 (4) | 2.720 (2) | 165 (4) |
O4—H42···O3iv | 0.80 (4) | 2.16 (4) | 2.923 (2) | 160 (4) |
C10—H10···O2iii | 0.93 | 2.49 | 3.368 (2) | 158 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z−1; (iii) x, y, z−1; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H4IO2)2(C6H6N2O)2(H2O)2] |
Mr | 837.85 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 8.1617 (2), 18.3365 (4), 9.7047 (3) |
β (°) | 103.573 (3) |
V (Å3) | 1411.81 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.02 |
Crystal size (mm) | 0.39 × 0.36 × 0.24 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.528, 0.661 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13216, 3531, 3337 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.058, 1.13 |
No. of reflections | 3531 |
No. of parameters | 203 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.97, −0.50 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O3i | 0.84 (3) | 2.17 (3) | 2.942 (3) | 154 (3) |
N2—H22···O2ii | 0.83 (3) | 2.11 (3) | 2.881 (2) | 154 (3) |
O4—H41···O2iii | 0.87 (4) | 1.87 (4) | 2.720 (2) | 165 (4) |
O4—H42···O3iv | 0.80 (4) | 2.16 (4) | 2.923 (2) | 160 (4) |
C10—H10···O2ii | 0.93 | 2.49 | 3.368 (2) | 158 |
Symmetry codes: (i) −x+1, −y+1, −z−1; (ii) x, y, z−1; (iii) −x, −y+1, −z; (iv) x−1, y, z. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Aydın, Ö., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m521–m522. CSD CrossRef IUCr Journals Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m607–m608. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CAS PubMed Web of Science Google Scholar
Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m900–m901. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012a). Acta Cryst. E68, m946–m947. CSD CrossRef IUCr Journals Google Scholar
Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012b). Acta Cryst. E68, m1127–m1128. CSD CrossRef IUCr Journals Google Scholar
Sertçelik, M., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m324–m325. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.
In the title mononuclear complex, CuII cation is located on an inversion center and is coordinated by two 2-iodobenzoate (IB) anions, two nicotinamide (NA) ligands and two water molecules, all ligands coordinating in a monodentate manner (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012a), [Mn(C8H5O3)2(C10H14N2O)2(H2O)2] (Sertçelik et al., 2009), [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009) and [Zn(C8H5O3)2(C6H6N2O)2(H2O)2] (Sertçelik et al., 2012b) have also been reported, where all the ligands coordinate to the metal atoms in a monodentate manner.
In the title complex, the four symmetry related O atoms (O1, O1', O4 and O4') in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.275 (2) Å] and C1—O2 [1.245 (2) Å] bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The Cu—O bond lengths are 1.9937 (14) Å (for benzoate oxygens) and 2.5078 (16) Å (for water oxygens), and the Cu—N bond length is 1.9984 (16) Å, close to standard values (Allen et al., 1987). The Cu atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.5995 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 32.12 (14)°. The benzene A (C2—C7) and the pyridine B (N1/C8—C12) rings are oriented at a dihedral angle of A/B = 82.02 (5)°. The coordinating water molecule links with the carboxylate group via an O—H···O hydrogen bond (Table 1).
In the crystal, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure.