organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,3-Tri­methyl-1-[4-(2,3,3-tri­methyl-3H-indol-1-ium-1-yl)but­yl]-3H-indol-1-ium diiodide

aCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 31 July 2012; accepted 9 August 2012; online 15 August 2012)

In the crystal of the title salt, C26H34N22+·2I, the dication lies on a center of inversion that exists along the mid-point of the butyl chain; its five-membered ring is approximately planar (r.m.s. deviation = 0.011 Å). In the crystal, the iodide anion is disordered over two positions in a 1:1 ratio.

Related literature

For the synthesis, see: Yang et al. (2005[Yang, Z.-F., An, J., Yang, Y.-M. & Cheng, W. (2005). Changchun Gongye Daxue Xuebao, Ziran Kexueban, 26, 8-10.]). For industrial applications of Mannich products, see: Su et al. (2005[Su, J.-H., Meng, F.-S., Tian, H., Li, C., Wang, H.-L. & Chen, K.-C. (2005). Faming Zhuanli Shenqing (Chin. Patent) 1563201 A 20050112.]).

[Scheme 1]

Experimental

Crystal data
  • C26H34N22+·2I

  • Mr = 628.35

  • Monoclinic, P 21 /c

  • a = 13.9414 (14) Å

  • b = 7.6013 (8) Å

  • c = 13.8261 (15) Å

  • β = 113.011 (2)°

  • V = 1348.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.494, Tmax = 0.592

  • 8426 measured reflections

  • 3077 independent reflections

  • 2602 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.087

  • S = 1.04

  • 3077 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The salt (Scheme I) can be synthesized in several steps from benzohydrazine, methyl isopropyl ketone and 1,4-diiodobutane, and is an intermediate in the synthesis of a bis-spironaphthoxazine (Yang et al., 2005). It is available commercially in milligram quantities. The methyl group on the carbon atom adjacent to the quarternary nitrogen is acidic, and the methyl group undergoes a Mannich-type of reaction to yield compounds that have been patented for use as high-density recording media (Su et al., 2005).

In the salt, C26H34N2+ 2I-, the dicationic species lies on a center-of-inversion that exists along the mid-point of the butyl chain; its five-membered ring is planar (r.m.s. deviation 0.011 Å). The iodide anion is disordered over two positions in a 1:1 ratio (Fig. 1).

Related literature top

For the synthesis, see: Yang et al. (2005). For industrial applications of Mannich products, see: Su et al. (2005).

Experimental top

3,3-Dimethyl-3H-indole (40 mmol, 5.81 g), 1,4-dibromobutane (20 mmol, 4.32 g) and potassium iodide (50 mmol, 8.310) were added to acetonitrile (40 ml). The mixture was heated under reflux for 4 days. The mixture was collected and the yellow solid recrystallized from a methanol-ether mixture; yield 40%. The salt is soluble in most organic solvents.

Refinement top

Carbon-, nitrogen- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.93 to 0.97, N–H 0.88, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C,N,O).

The iodine atom is disordered over two positions; as the disorder refined to a nearly 1:1 ratio, the occupancy was then fixed as exactly 0.5.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Thermal ellipsoid plot (Barbour, 2001) of C26H34N22+ 2I- at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the iodine atom is not shown.
2,3,3-Trimethyl-1-[4-(2,3,3-trimethyl-3H-indol-1-ium-1-yl)butyl]- 3H-indol-1-ium diiodide top
Crystal data top
C26H34N22+·2IF(000) = 620
Mr = 628.35Dx = 1.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3950 reflections
a = 13.9414 (14) Åθ = 3.0–28.3°
b = 7.6013 (8) ŵ = 2.35 mm1
c = 13.8261 (15) ÅT = 293 K
β = 113.011 (2)°Prism, colorless
V = 1348.6 (2) Å30.35 × 0.30 × 0.25 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3077 independent reflections
Radiation source: fine-focus sealed tube2602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1317
Tmin = 0.494, Tmax = 0.592k = 89
8426 measured reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.3658P]
where P = (Fo2 + 2Fc2)/3
3077 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C26H34N22+·2IV = 1348.6 (2) Å3
Mr = 628.35Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.9414 (14) ŵ = 2.35 mm1
b = 7.6013 (8) ÅT = 293 K
c = 13.8261 (15) Å0.35 × 0.30 × 0.25 mm
β = 113.011 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3077 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2602 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.592Rint = 0.017
8426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.94 e Å3
3077 reflectionsΔρmin = 0.37 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.3111 (2)0.6289 (3)0.77695 (19)0.0536 (2)0.50
I1'0.3220 (2)0.6038 (3)0.7930 (2)0.0800 (6)0.50
N20.31190 (14)0.3641 (2)0.55053 (14)0.0382 (4)
C10.3943 (2)0.1407 (5)0.6859 (3)0.0789 (11)
H1A0.37720.02080.69430.118*
H1B0.40810.20390.75010.118*
H1C0.45500.14350.66930.118*
C20.30596 (17)0.2235 (3)0.59984 (18)0.0437 (5)
C30.19566 (18)0.1564 (3)0.56180 (19)0.0398 (5)
C40.1613 (2)0.1429 (3)0.6543 (2)0.0514 (6)
H4A0.16690.25620.68670.077*
H4B0.20510.06040.70490.077*
H4C0.09020.10350.62920.077*
C50.1875 (3)0.0238 (4)0.5086 (2)0.0621 (7)
H5A0.20920.01310.45100.093*
H5B0.11660.06400.48300.093*
H5C0.23160.10670.55860.093*
C60.13926 (16)0.2961 (3)0.48332 (16)0.0358 (4)
C70.03506 (19)0.3190 (3)0.4208 (2)0.0484 (5)
H70.01470.24020.42390.058*
C80.0064 (2)0.4603 (4)0.3539 (2)0.0585 (7)
H80.06350.47730.31120.070*
C90.0803 (3)0.5787 (4)0.3488 (2)0.0585 (7)
H90.05900.67310.30250.070*
C100.1846 (2)0.5586 (3)0.41111 (19)0.0475 (5)
H100.23450.63750.40840.057*
C110.21086 (17)0.4165 (3)0.47728 (16)0.0352 (4)
C120.40689 (18)0.4695 (4)0.56978 (19)0.0491 (6)
H120.45930.43840.63800.059*
H12B0.39040.59310.57190.059*
C130.45182 (18)0.4435 (3)0.48771 (18)0.0435 (5)
H130.40010.47470.41910.052*
H13B0.46990.32060.48580.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0481 (5)0.0585 (3)0.0626 (3)0.0023 (3)0.0307 (3)0.0126 (3)
I1'0.0531 (7)0.0987 (14)0.1030 (14)0.0154 (8)0.0466 (9)0.0430 (8)
N20.0294 (9)0.0511 (10)0.0395 (9)0.0101 (7)0.0193 (7)0.0044 (7)
C10.0413 (16)0.107 (3)0.083 (2)0.0150 (15)0.0190 (15)0.0413 (18)
C20.0320 (11)0.0575 (14)0.0466 (12)0.0011 (9)0.0206 (9)0.0075 (10)
C30.0342 (11)0.0396 (11)0.0514 (12)0.0026 (8)0.0230 (9)0.0066 (9)
C40.0516 (15)0.0559 (14)0.0590 (15)0.0019 (11)0.0348 (12)0.0082 (11)
C50.0748 (19)0.0467 (14)0.0763 (19)0.0018 (13)0.0420 (16)0.0007 (13)
C60.0317 (10)0.0376 (10)0.0406 (10)0.0031 (8)0.0168 (8)0.0027 (8)
C70.0343 (12)0.0543 (13)0.0556 (14)0.0054 (10)0.0166 (10)0.0083 (11)
C80.0460 (15)0.0679 (17)0.0498 (14)0.0172 (13)0.0058 (11)0.0049 (12)
C90.075 (2)0.0531 (14)0.0478 (14)0.0189 (13)0.0246 (13)0.0090 (11)
C100.0623 (15)0.0396 (11)0.0493 (12)0.0011 (11)0.0313 (11)0.0025 (10)
C110.0354 (11)0.0383 (10)0.0365 (10)0.0052 (8)0.0191 (8)0.0036 (8)
C120.0368 (12)0.0683 (16)0.0487 (12)0.0237 (11)0.0237 (10)0.0136 (11)
C130.0343 (11)0.0568 (13)0.0459 (12)0.0135 (10)0.0226 (9)0.0053 (10)
Geometric parameters (Å, º) top
N2—C21.287 (3)C6—C111.381 (3)
N2—C111.433 (3)C6—C71.381 (3)
N2—C121.480 (3)C7—C81.371 (4)
C1—C21.478 (4)C7—H70.9300
C1—H1A0.9600C8—C91.390 (4)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.378 (4)
C2—C31.507 (3)C9—H90.9300
C3—C61.502 (3)C10—C111.370 (3)
C3—C41.535 (3)C10—H100.9300
C3—C51.538 (4)C12—C131.508 (3)
C4—H4A0.9600C12—H120.9700
C4—H4B0.9600C12—H12B0.9700
C4—H4C0.9600C13—C13i1.517 (4)
C5—H5A0.9600C13—H130.9700
C5—H5B0.9600C13—H13B0.9700
C5—H5C0.9600
C2—N2—C11110.85 (18)C11—C6—C7119.1 (2)
C2—N2—C12126.3 (2)C11—C6—C3109.00 (19)
C11—N2—C12122.67 (19)C7—C6—C3131.9 (2)
C2—C1—H1A109.5C8—C7—C6118.6 (2)
C2—C1—H1B109.5C8—C7—H7120.7
H1A—C1—H1B109.5C6—C7—H7120.7
C2—C1—H1C109.5C7—C8—C9121.0 (2)
H1A—C1—H1C109.5C7—C8—H8119.5
H1B—C1—H1C109.5C9—C8—H8119.5
N2—C2—C1125.0 (2)C10—C9—C8121.2 (2)
N2—C2—C3111.39 (19)C10—C9—H9119.4
C1—C2—C3123.5 (2)C8—C9—H9119.4
C6—C3—C2100.79 (17)C11—C10—C9116.5 (2)
C6—C3—C4113.8 (2)C11—C10—H10121.8
C2—C3—C4109.9 (2)C9—C10—H10121.8
C6—C3—C5111.4 (2)C10—C11—C6123.5 (2)
C2—C3—C5110.1 (2)C10—C11—N2128.6 (2)
C4—C3—C5110.5 (2)C6—C11—N2107.90 (18)
C3—C4—H4A109.5N2—C12—C13113.52 (18)
C3—C4—H4B109.5N2—C12—H12108.9
H4A—C4—H4B109.5C13—C12—H12108.9
C3—C4—H4C109.5N2—C12—H12B108.9
H4A—C4—H4C109.5C13—C12—H12B108.9
H4B—C4—H4C109.5H12—C12—H12B107.7
C3—C5—H5A109.5C12—C13—C13i110.4 (2)
C3—C5—H5B109.5C12—C13—H13109.6
H5A—C5—H5B109.5C13i—C13—H13109.6
C3—C5—H5C109.5C12—C13—H13B109.6
H5A—C5—H5C109.5C13i—C13—H13B109.6
H5B—C5—H5C109.5H13—C13—H13B108.1
C11—N2—C2—C1175.6 (3)C3—C6—C7—C8178.7 (2)
C12—N2—C2—C10.1 (4)C6—C7—C8—C90.1 (4)
C11—N2—C2—C32.1 (3)C7—C8—C9—C100.4 (4)
C12—N2—C2—C3177.6 (2)C8—C9—C10—C110.2 (4)
N2—C2—C3—C62.7 (3)C9—C10—C11—C60.3 (4)
C1—C2—C3—C6175.0 (3)C9—C10—C11—N2179.6 (2)
N2—C2—C3—C4123.1 (2)C7—C6—C11—C100.7 (3)
C1—C2—C3—C454.6 (3)C3—C6—C11—C10178.7 (2)
N2—C2—C3—C5114.9 (2)C7—C6—C11—N2179.17 (19)
C1—C2—C3—C567.3 (3)C3—C6—C11—N21.4 (2)
C2—C3—C6—C112.4 (2)C2—N2—C11—C10179.5 (2)
C4—C3—C6—C11120.0 (2)C12—N2—C11—C103.7 (3)
C5—C3—C6—C11114.4 (2)C2—N2—C11—C60.4 (3)
C2—C3—C6—C7178.3 (2)C12—N2—C11—C6176.17 (19)
C4—C3—C6—C760.7 (3)C2—N2—C12—C13104.5 (3)
C5—C3—C6—C765.0 (3)C11—N2—C12—C1380.5 (3)
C11—C6—C7—C80.6 (4)N2—C12—C13—C13i179.6 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H34N22+·2I
Mr628.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.9414 (14), 7.6013 (8), 13.8261 (15)
β (°) 113.011 (2)
V3)1348.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.494, 0.592
No. of measured, independent and
observed [I > 2σ(I)] reflections
8426, 3077, 2602
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.087, 1.04
No. of reflections3077
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the National Natural Science Foundation of China (No. J1103309), the Students' Innovative Undertaking Training Project of Zhengzhou University (No. 121045919) and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-H., Meng, F.-S., Tian, H., Li, C., Wang, H.-L. & Chen, K.-C. (2005). Faming Zhuanli Shenqing (Chin. Patent) 1563201 A 20050112.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Z.-F., An, J., Yang, Y.-M. & Cheng, W. (2005). Changchun Gongye Daxue Xuebao, Ziran Kexueban, 26, 8–10.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds