organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2792-o2793

Bis(di­cyclo­hexyl­aminium) 2-carb­­oxy­methyl-2-hy­dr­oxy­succinate ethanol monosolvate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran, cDrug Design & Development Research Center, Tehran, University of Medical Sciences, Tehran, Iran, and dNeuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
*Correspondence e-mail: aforoumadi@yahoo.com

(Received 31 July 2012; accepted 13 August 2012; online 25 August 2012)

In the title compound, 2C12H24N+·C6H6O72−·C2H6O, the cyclo­hexane rings of the cations adopt chair conformations. In the anion, intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, the cations link with the anions via N—H⋯O hydrogen bonds. Weak C—H⋯O hydrogen bonds are also observed. The hy­droxy group of the ethanol solvent mol­ecule is disordered over two sets of sites with an occupancy ratio of 0.766 (5):0.234 (5).

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related structures, see: Aghabozorg et al. (2011a[Aghabozorg, H., Bayan, M., Mirzaei, M. & Notash, B. (2011a). Acta Cryst. E67, o610.],b[Aghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011b). Acta Cryst. E67, o54.],c[Aghabozorg, H., Saemi, M., Khazaei, Z., Amani, V. & Notash, B. (2011c). Acta Cryst. E67, o292.]); Foroughian et al. (2011[Foroughian, M., Foroumadi, A., Notash, B., Bruno, G., Amiri Rudbari, H. & Aghabozorg, H. (2011). Acta Cryst. E67, o3325.]); Sharif et al. (2010[Sharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.]). For similar proton-transfer structures, see: Jin et al. (2004[Jin, Z.-M., Li, M.-C., Wang, P., Li, L. & Hu, M.-L. (2004). Acta Cryst. E60, o1633-o1635.]); Chen et al. (2003[Chen, C.-Y., Wei, Z.-B., Zhou, Z.-H. & Ng, S. W. (2003). Acta Cryst. E59, o1030-o1032.]).

[Scheme 1]

Experimental

Crystal data
  • 2C12H24N+·C6H6O72−·C2H6O

  • Mr = 600.82

  • Triclinic, [P \overline 1]

  • a = 10.054 (2) Å

  • b = 12.329 (3) Å

  • c = 13.908 (3) Å

  • α = 99.77 (3)°

  • β = 92.17 (3)°

  • γ = 95.98 (3)°

  • V = 1687.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.34 × 0.32 × 0.30 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 18454 measured reflections

  • 9009 independent reflections

  • 6897 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.136

  • S = 1.09

  • 9009 reflections

  • 420 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.93 (2) 1.84 (2) 2.7651 (19) 170 (2)
N1—H1B⋯O7 0.87 (2) 2.31 (2) 3.033 (2) 140.8 (19)
N1—H1B⋯O4 0.87 (2) 2.07 (2) 2.8390 (19) 146 (2)
N2—H2C⋯O6ii 0.90 (2) 1.90 (2) 2.794 (2) 170.3 (19)
N2—H2D⋯O5 0.93 (2) 1.86 (2) 2.751 (2) 160 (2)
O2—H2⋯O3 0.94 (3) 1.56 (3) 2.499 (2) 174 (3)
O7—H5⋯O5 0.86 (3) 1.92 (3) 2.6678 (19) 145 (2)
C18—H18A⋯O2iii 0.99 2.51 3.405 (2) 150
C20—H20A⋯O1iii 0.99 2.47 3.457 (2) 172
C32—H32A⋯O8Aiv 0.99 2.56 3.458 (4) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z; (iv) -x+1, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Proton transfer compounds are important in chemistry, biochemistry and medicinal chemistry. Our research group focus on synthesis of new proton transfer compounds especially from pyridine dicarboxcylic acids (Aghabozorg et al. 2008) and different organic bases with nitrogen donor sites such as propane-1,3-diamine (Aghabozorg et al., 2011a), diethylenetriamine (Aghabozorg et al., 2011c), 2-amino-4-methylpyridine (Aghabozorg et al., 2011b; Sharif et al., 2010) and 2,3-diaminopyridine (Foroughian et al., 2011). There are also several proton transfer compound have been reported in which citrate exist as anion (Chen et al., 2003) and dicyclohexylamine as cation (Jin et al., 2004).

The asymmetric unit of the title compound consist of two protonated cyclohexylamine as cation, one deprotonated citrate as anion, and one ethanol molecule. The asymmetric unit of the title compound is shown in Fig.1. In the crystal structure of the title compound, there are extensive O—H···O, N—H···O and weak intermolecular C—H···O hydrogen bonds. These hydrogen bonds play important role in the stabilization of crystal packing of the title compound (Table 1 & Fig. 2).

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg et al. (2011a,b,c); Foroughian et al. (2011); Sharif et al. (2010). For similar proton-transfer structures, see: Jin et al. (2004); Chen et al. (2003).

Experimental top

The solution of citric acid monohydrate (0.334 g, 1 mmol) in 5 ml ethanol was added to solution of dicyclohexylamine (0.6 ml, 3 mmol) in 10 ml ethanol in 1:3 molar ratios. The reaction mixture was stirred for 3 h at 298 K. The colorless crystals of the title compound appeared after slow evaporation of solvent at room temperature in darkness.

Refinement top

The hydrogen atoms bonded to O and N atoms were found in difference Fourier map and refined isotropically. The hydroxyl hydrogen atom (H8BB) was refined with Uiso(H) = 1.2 Ueq(O) and distance restraints of O—H 0.89 (2) and also C32—H8BB = 1.93 (4) Å. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for CH2 groups, C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl group. Hydroxyl group of ethanol solvent molecule was disordered over two sites with relative occupancies of 0.766 (5) and 0.234 (5).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
Figure 1.The molecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level.

Figure 2. The packing diagram of the title compound showing intermolecular hydrogen bonding as blue dash lines.
Bis(dicyclohexylaminium) 2-carboxymethyl-2-hydroxysuccinate ethanol monosolvate top
Crystal data top
2C12H24N+·C6H6O72·C2H6OZ = 2
Mr = 600.82F(000) = 660
Triclinic, P1Dx = 1.183 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.054 (2) ÅCell parameters from 9009 reflections
b = 12.329 (3) Åθ = 2.4–29.1°
c = 13.908 (3) ŵ = 0.08 mm1
α = 99.77 (3)°T = 120 K
β = 92.17 (3)°Block, colorless
γ = 95.98 (3)°0.34 × 0.32 × 0.30 mm
V = 1687.0 (7) Å3
Data collection top
Stoe IPDS 2T
diffractometer
6897 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 29.1°, θmin = 2.4°
rotation method scansh = 1312
18454 measured reflectionsk = 1616
9009 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.9825P]
where P = (Fo2 + 2Fc2)/3
9009 reflections(Δ/σ)max < 0.001
420 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
2C12H24N+·C6H6O72·C2H6Oγ = 95.98 (3)°
Mr = 600.82V = 1687.0 (7) Å3
Triclinic, P1Z = 2
a = 10.054 (2) ÅMo Kα radiation
b = 12.329 (3) ŵ = 0.08 mm1
c = 13.908 (3) ÅT = 120 K
α = 99.77 (3)°0.34 × 0.32 × 0.30 mm
β = 92.17 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
6897 reflections with I > 2σ(I)
18454 measured reflectionsRint = 0.046
9009 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0631 restraint
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.36 e Å3
9009 reflectionsΔρmin = 0.37 e Å3
420 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.92627 (13)0.99218 (11)0.75222 (10)0.0263 (3)
O20.96806 (13)0.82764 (12)0.67635 (11)0.0297 (3)
O30.82351 (13)0.66771 (12)0.57673 (11)0.0303 (3)
O40.60847 (12)0.60824 (10)0.54461 (9)0.0188 (2)
O50.54560 (12)0.90464 (11)0.81394 (9)0.0226 (3)
O60.66502 (13)0.84223 (11)0.92729 (9)0.0218 (3)
O70.52666 (11)0.79006 (10)0.63220 (9)0.0171 (2)
N10.32477 (13)0.59787 (11)0.53775 (10)0.0137 (3)
N20.33629 (13)1.00067 (11)0.90248 (10)0.0136 (3)
C10.25681 (16)0.64627 (13)0.45948 (11)0.0154 (3)
H10.16920.60050.43850.019*
C20.34569 (18)0.63827 (15)0.37245 (12)0.0210 (3)
H2A0.35760.55970.34880.025*
H2B0.43510.67900.39330.025*
C30.2835 (2)0.68686 (16)0.28926 (13)0.0263 (4)
H3A0.34560.68530.23560.032*
H3B0.19900.64080.26330.032*
C40.2548 (2)0.80575 (16)0.32435 (14)0.0290 (4)
H4A0.20970.83350.27040.035*
H4B0.34020.85350.34380.035*
C50.1658 (2)0.81167 (16)0.41111 (14)0.0271 (4)
H5A0.07770.76860.39010.033*
H5B0.15060.88970.43410.033*
C60.22998 (18)0.76555 (14)0.49538 (12)0.0202 (3)
H6A0.31510.81150.51970.024*
H6B0.16920.76800.54990.024*
C70.25759 (16)0.59934 (13)0.63255 (11)0.0150 (3)
H70.26410.67760.66780.018*
C80.33355 (17)0.53250 (15)0.69423 (12)0.0191 (3)
H8B0.42910.56300.70290.023*
H8C0.32800.45460.66040.023*
C90.27399 (19)0.53693 (17)0.79390 (13)0.0264 (4)
H9A0.28740.61410.82990.032*
H9B0.32130.49040.83220.032*
C100.1245 (2)0.49606 (19)0.78365 (14)0.0297 (4)
H10A0.11190.41600.75590.036*
H10B0.08720.50610.84900.036*
C110.04926 (18)0.55885 (17)0.71777 (13)0.0240 (4)
H11A0.05240.63730.74960.029*
H11B0.04580.52690.70870.029*
C120.10981 (16)0.55305 (14)0.61780 (12)0.0180 (3)
H12A0.10110.47530.58340.022*
H12B0.06140.59680.57740.022*
C130.28519 (16)1.06479 (13)0.82796 (11)0.0153 (3)
H130.19821.09100.84880.018*
C140.38706 (19)1.16572 (14)0.82771 (13)0.0219 (3)
H14A0.47451.14120.80860.026*
H14B0.39971.21070.89420.026*
C150.3375 (2)1.23593 (16)0.75567 (14)0.0282 (4)
H15A0.25401.26540.77830.034*
H15B0.40551.29960.75410.034*
C160.3108 (2)1.16857 (17)0.65307 (14)0.0289 (4)
H16A0.39621.14660.62710.035*
H16B0.27271.21460.60950.035*
C170.2137 (2)1.06527 (16)0.65413 (14)0.0265 (4)
H17A0.20301.02010.58770.032*
H17B0.12491.08760.67220.032*
C180.26265 (17)0.99487 (14)0.72644 (12)0.0189 (3)
H18A0.19520.93070.72770.023*
H18B0.34730.96640.70530.023*
C190.25200 (15)0.89738 (13)0.91880 (11)0.0144 (3)
H190.24830.84010.85820.017*
C200.10990 (16)0.92061 (14)0.94244 (13)0.0182 (3)
H20A0.06550.94470.88620.022*
H20B0.11260.98110.99950.022*
C210.03013 (18)0.81608 (15)0.96495 (13)0.0223 (3)
H21A0.06200.83190.98040.027*
H21B0.02400.75690.90660.027*
C220.09666 (18)0.77620 (15)1.05125 (13)0.0222 (3)
H22A0.04470.70761.06340.027*
H22B0.09740.83321.11070.027*
C230.24032 (18)0.75376 (14)1.02973 (13)0.0217 (3)
H23A0.23850.69030.97530.026*
H23B0.28420.73351.08810.026*
C240.32186 (16)0.85492 (14)1.00240 (12)0.0178 (3)
H24A0.33560.91471.06030.021*
H24B0.41100.83500.98270.021*
C250.88918 (16)0.90695 (14)0.69607 (12)0.0190 (3)
C260.75014 (16)0.88667 (13)0.64500 (12)0.0164 (3)
H26A0.76010.88590.57440.020*
H26B0.70080.95020.66970.020*
C270.66314 (15)0.77906 (13)0.65679 (11)0.0130 (3)
C280.70082 (16)0.67714 (13)0.58628 (11)0.0149 (3)
C290.67698 (16)0.75552 (13)0.76197 (11)0.0149 (3)
H29A0.62710.68250.76410.018*
H29B0.77260.75050.77830.018*
C300.62628 (15)0.84224 (13)0.84065 (12)0.0153 (3)
C310.2132 (3)0.4472 (2)0.0602 (2)0.0539 (7)
H31A0.18190.36790.04550.081*
H31B0.18900.48200.00470.081*
H31C0.17120.48150.11840.081*
C320.3590 (3)0.4624 (2)0.0782 (2)0.0530 (7)
H32A0.39510.52740.05040.064*0.766 (5)
H32B0.37920.48020.14970.064*0.766 (5)
H32C0.37580.42910.13600.064*0.234 (5)
H32D0.39440.41320.02460.064*0.234 (5)
H2C0.344 (2)1.0483 (18)0.9596 (16)0.019 (5)*
H1A0.337 (2)0.5254 (19)0.5112 (16)0.023 (5)*
H2D0.419 (2)0.9799 (19)0.8832 (16)0.025 (6)*
H1B0.407 (2)0.6300 (19)0.5486 (16)0.024 (5)*
H50.503 (2)0.835 (2)0.6806 (19)0.035 (6)*
H20.919 (3)0.767 (3)0.636 (2)0.065 (9)*
O8A0.4261 (3)0.3748 (2)0.0413 (2)0.0558 (8)0.766 (5)
O8B0.4416 (8)0.5459 (7)0.1016 (6)0.049 (2)0.234 (5)
H8AA0.383 (4)0.312 (4)0.052 (3)0.068 (13)*0.766 (5)
H8BB0.502 (12)0.568 (13)0.062 (9)0.082*0.234 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (6)0.0215 (6)0.0289 (7)0.0006 (5)0.0063 (5)0.0028 (5)
O20.0155 (6)0.0259 (7)0.0420 (8)0.0025 (5)0.0027 (5)0.0095 (6)
O30.0170 (6)0.0287 (7)0.0384 (8)0.0066 (5)0.0003 (5)0.0154 (6)
O40.0185 (6)0.0143 (5)0.0208 (6)0.0015 (4)0.0002 (4)0.0041 (4)
O50.0212 (6)0.0278 (7)0.0190 (6)0.0126 (5)0.0017 (5)0.0014 (5)
O60.0260 (6)0.0249 (6)0.0139 (5)0.0063 (5)0.0013 (5)0.0001 (5)
O70.0118 (5)0.0188 (6)0.0191 (6)0.0052 (4)0.0030 (4)0.0027 (5)
N10.0129 (6)0.0136 (6)0.0140 (6)0.0023 (5)0.0007 (5)0.0003 (5)
N20.0138 (6)0.0144 (6)0.0125 (6)0.0030 (5)0.0006 (5)0.0013 (5)
C10.0171 (7)0.0152 (7)0.0141 (7)0.0033 (6)0.0010 (6)0.0024 (6)
C20.0274 (9)0.0209 (8)0.0168 (8)0.0079 (7)0.0054 (6)0.0050 (6)
C30.0408 (11)0.0239 (9)0.0162 (8)0.0078 (8)0.0019 (7)0.0067 (7)
C40.0412 (11)0.0228 (9)0.0249 (9)0.0084 (8)0.0038 (8)0.0083 (7)
C50.0334 (10)0.0212 (9)0.0275 (9)0.0119 (7)0.0066 (8)0.0027 (7)
C60.0249 (8)0.0181 (8)0.0179 (8)0.0088 (6)0.0015 (6)0.0005 (6)
C70.0164 (7)0.0168 (7)0.0113 (7)0.0030 (6)0.0010 (5)0.0001 (5)
C80.0186 (8)0.0236 (8)0.0155 (7)0.0046 (6)0.0007 (6)0.0031 (6)
C90.0292 (9)0.0364 (10)0.0149 (8)0.0076 (8)0.0005 (7)0.0061 (7)
C100.0288 (10)0.0413 (11)0.0226 (9)0.0061 (8)0.0093 (7)0.0128 (8)
C110.0205 (8)0.0318 (10)0.0206 (8)0.0056 (7)0.0066 (6)0.0043 (7)
C120.0149 (7)0.0213 (8)0.0172 (7)0.0024 (6)0.0011 (6)0.0012 (6)
C130.0159 (7)0.0174 (7)0.0137 (7)0.0046 (6)0.0003 (5)0.0042 (6)
C140.0280 (9)0.0168 (8)0.0201 (8)0.0012 (6)0.0030 (7)0.0042 (6)
C150.0375 (11)0.0205 (9)0.0269 (9)0.0007 (7)0.0027 (8)0.0085 (7)
C160.0349 (10)0.0301 (10)0.0234 (9)0.0007 (8)0.0019 (7)0.0134 (8)
C170.0305 (10)0.0287 (10)0.0203 (8)0.0006 (7)0.0073 (7)0.0085 (7)
C180.0214 (8)0.0192 (8)0.0154 (7)0.0000 (6)0.0035 (6)0.0030 (6)
C190.0157 (7)0.0135 (7)0.0135 (7)0.0012 (5)0.0011 (5)0.0008 (5)
C200.0147 (7)0.0187 (8)0.0219 (8)0.0030 (6)0.0006 (6)0.0048 (6)
C210.0195 (8)0.0216 (8)0.0246 (9)0.0016 (6)0.0022 (6)0.0030 (7)
C220.0268 (9)0.0202 (8)0.0194 (8)0.0009 (7)0.0055 (7)0.0043 (6)
C230.0299 (9)0.0182 (8)0.0186 (8)0.0051 (7)0.0030 (7)0.0063 (6)
C240.0179 (8)0.0190 (8)0.0177 (7)0.0042 (6)0.0008 (6)0.0056 (6)
C250.0165 (7)0.0193 (8)0.0203 (8)0.0006 (6)0.0006 (6)0.0027 (6)
C260.0164 (7)0.0151 (7)0.0174 (7)0.0019 (6)0.0011 (6)0.0024 (6)
C270.0119 (7)0.0136 (7)0.0126 (7)0.0031 (5)0.0010 (5)0.0013 (5)
C280.0176 (7)0.0149 (7)0.0120 (7)0.0048 (6)0.0001 (5)0.0002 (5)
C290.0171 (7)0.0132 (7)0.0141 (7)0.0035 (5)0.0005 (5)0.0004 (5)
C300.0131 (7)0.0153 (7)0.0161 (7)0.0002 (5)0.0025 (5)0.0008 (6)
C310.0615 (17)0.0422 (14)0.0572 (16)0.0106 (12)0.0016 (13)0.0174 (12)
C320.0617 (17)0.0301 (12)0.0684 (18)0.0043 (11)0.0048 (14)0.0201 (12)
O8A0.0669 (17)0.0281 (12)0.0749 (19)0.0023 (11)0.0341 (14)0.0115 (11)
O8B0.052 (5)0.048 (5)0.041 (4)0.006 (4)0.001 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C251.213 (2)C14—C151.532 (3)
O2—C251.322 (2)C14—H14A0.9900
O2—H20.94 (3)C14—H14B0.9900
O3—C281.261 (2)C15—C161.523 (3)
O4—C281.244 (2)C15—H15A0.9900
O5—C301.262 (2)C15—H15B0.9900
O6—C301.252 (2)C16—C171.525 (3)
O7—C271.4273 (18)C16—H16A0.9900
O7—H50.86 (3)C16—H16B0.9900
N1—C71.502 (2)C17—C181.535 (2)
N1—C11.502 (2)C17—H17A0.9900
N1—H1A0.93 (2)C17—H17B0.9900
N1—H1B0.87 (2)C18—H18A0.9900
N2—C191.510 (2)C18—H18B0.9900
N2—C131.512 (2)C19—C201.523 (2)
N2—H2C0.90 (2)C19—C241.530 (2)
N2—H2D0.93 (2)C19—H191.0000
C1—C61.526 (2)C20—C211.531 (2)
C1—C21.527 (2)C20—H20A0.9900
C1—H11.0000C20—H20B0.9900
C2—C31.532 (2)C21—C221.529 (3)
C2—H2A0.9900C21—H21A0.9900
C2—H2B0.9900C21—H21B0.9900
C3—C41.525 (3)C22—C231.530 (3)
C3—H3A0.9900C22—H22A0.9900
C3—H3B0.9900C22—H22B0.9900
C4—C51.526 (3)C23—C241.531 (2)
C4—H4A0.9900C23—H23A0.9900
C4—H4B0.9900C23—H23B0.9900
C5—C61.536 (2)C24—H24A0.9900
C5—H5A0.9900C24—H24B0.9900
C5—H5B0.9900C25—C261.521 (2)
C6—H6A0.9900C26—C271.547 (2)
C6—H6B0.9900C26—H26A0.9900
C7—C81.523 (2)C26—H26B0.9900
C7—C121.528 (2)C27—C291.543 (2)
C7—H71.0000C27—C281.547 (2)
C8—C91.526 (2)C29—C301.536 (2)
C8—H8B0.9900C29—H29A0.9900
C8—H8C0.9900C29—H29B0.9900
C9—C101.528 (3)C31—C321.465 (4)
C9—H9A0.9900C31—H31A0.9800
C9—H9B0.9900C31—H31B0.9800
C10—C111.524 (3)C31—H31C0.9800
C10—H10A0.9900C32—O8B1.243 (8)
C10—H10B0.9900C32—O8A1.369 (4)
C11—C121.532 (2)C32—H32A0.9900
C11—H11A0.9900C32—H32B0.9900
C11—H11B0.9900C32—H32C0.9794
C12—H12A0.9900C32—H32D0.9806
C12—H12B0.9900O8A—H32D0.6660
C13—C181.520 (2)O8A—H8AA0.89 (5)
C13—C141.528 (2)O8B—H8BB0.89 (2)
C13—H131.0000
C25—O2—H2108.3 (19)C17—C16—H16B109.5
C27—O7—H5104.4 (16)H16A—C16—H16B108.1
C7—N1—C1117.54 (12)C16—C17—C18111.90 (15)
C7—N1—H1A109.4 (14)C16—C17—H17A109.2
C1—N1—H1A107.4 (13)C18—C17—H17A109.2
C7—N1—H1B110.1 (15)C16—C17—H17B109.2
C1—N1—H1B108.7 (15)C18—C17—H17B109.2
H1A—N1—H1B102.7 (19)H17A—C17—H17B107.9
C19—N2—C13118.47 (12)C13—C18—C17109.69 (14)
C19—N2—H2C107.1 (14)C13—C18—H18A109.7
C13—N2—H2C105.4 (13)C17—C18—H18A109.7
C19—N2—H2D107.2 (14)C13—C18—H18B109.7
C13—N2—H2D107.1 (14)C17—C18—H18B109.7
H2C—N2—H2D111.5 (19)H18A—C18—H18B108.2
N1—C1—C6112.10 (13)N2—C19—C20111.40 (13)
N1—C1—C2107.64 (13)N2—C19—C24107.24 (13)
C6—C1—C2111.36 (14)C20—C19—C24111.22 (13)
N1—C1—H1108.5N2—C19—H19109.0
C6—C1—H1108.5C20—C19—H19109.0
C2—C1—H1108.5C24—C19—H19109.0
C1—C2—C3110.90 (14)C19—C20—C21109.94 (14)
C1—C2—H2A109.5C19—C20—H20A109.7
C3—C2—H2A109.5C21—C20—H20A109.7
C1—C2—H2B109.5C19—C20—H20B109.7
C3—C2—H2B109.5C21—C20—H20B109.7
H2A—C2—H2B108.0H20A—C20—H20B108.2
C4—C3—C2111.19 (15)C22—C21—C20111.01 (14)
C4—C3—H3A109.4C22—C21—H21A109.4
C2—C3—H3A109.4C20—C21—H21A109.4
C4—C3—H3B109.4C22—C21—H21B109.4
C2—C3—H3B109.4C20—C21—H21B109.4
H3A—C3—H3B108.0H21A—C21—H21B108.0
C3—C4—C5110.55 (16)C21—C22—C23110.24 (14)
C3—C4—H4A109.5C21—C22—H22A109.6
C5—C4—H4A109.5C23—C22—H22A109.6
C3—C4—H4B109.5C21—C22—H22B109.6
C5—C4—H4B109.5C23—C22—H22B109.6
H4A—C4—H4B108.1H22A—C22—H22B108.1
C4—C5—C6111.25 (15)C22—C23—C24111.66 (14)
C4—C5—H5A109.4C22—C23—H23A109.3
C6—C5—H5A109.4C24—C23—H23A109.3
C4—C5—H5B109.4C22—C23—H23B109.3
C6—C5—H5B109.4C24—C23—H23B109.3
H5A—C5—H5B108.0H23A—C23—H23B107.9
C1—C6—C5109.55 (14)C19—C24—C23111.84 (14)
C1—C6—H6A109.8C19—C24—H24A109.2
C5—C6—H6A109.8C23—C24—H24A109.2
C1—C6—H6B109.8C19—C24—H24B109.2
C5—C6—H6B109.8C23—C24—H24B109.2
H6A—C6—H6B108.2H24A—C24—H24B107.9
N1—C7—C8107.98 (13)O1—C25—O2121.43 (16)
N1—C7—C12112.60 (13)O1—C25—C26121.54 (15)
C8—C7—C12110.47 (14)O2—C25—C26117.04 (15)
N1—C7—H7108.6C25—C26—C27116.61 (13)
C8—C7—H7108.6C25—C26—H26A108.1
C12—C7—H7108.6C27—C26—H26A108.1
C7—C8—C9110.04 (14)C25—C26—H26B108.1
C7—C8—H8B109.7C27—C26—H26B108.1
C9—C8—H8B109.7H26A—C26—H26B107.3
C7—C8—H8C109.7O7—C27—C29109.82 (13)
C9—C8—H8C109.7O7—C27—C28106.75 (12)
H8B—C8—H8C108.2C29—C27—C28108.06 (12)
C8—C9—C10111.31 (15)O7—C27—C26108.57 (13)
C8—C9—H9A109.4C29—C27—C26111.65 (13)
C10—C9—H9A109.4C28—C27—C26111.88 (13)
C8—C9—H9B109.4O4—C28—O3124.12 (15)
C10—C9—H9B109.4O4—C28—C27118.05 (14)
H9A—C9—H9B108.0O3—C28—C27117.80 (14)
C11—C10—C9111.24 (16)C30—C29—C27114.95 (13)
C11—C10—H10A109.4C30—C29—H29A108.5
C9—C10—H10A109.4C27—C29—H29A108.5
C11—C10—H10B109.4C30—C29—H29B108.5
C9—C10—H10B109.4C27—C29—H29B108.5
H10A—C10—H10B108.0H29A—C29—H29B107.5
C10—C11—C12111.51 (15)O6—C30—O5125.15 (15)
C10—C11—H11A109.3O6—C30—C29116.73 (14)
C12—C11—H11A109.3O5—C30—C29118.06 (14)
C10—C11—H11B109.3C32—C31—H31A109.5
C12—C11—H11B109.3C32—C31—H31B109.5
H11A—C11—H11B108.0H31A—C31—H31B109.5
C7—C12—C11109.03 (14)C32—C31—H31C109.5
C7—C12—H12A109.9H31A—C31—H31C109.5
C11—C12—H12A109.9H31B—C31—H31C109.5
C7—C12—H12B109.9O8B—C32—O8A108.5 (5)
C11—C12—H12B109.9O8B—C32—C31132.9 (5)
H12A—C12—H12B108.3O8A—C32—C31116.5 (3)
N2—C13—C18112.31 (13)O8B—C32—H32A41.3
N2—C13—C14107.71 (13)O8A—C32—H32A108.2
C18—C13—C14110.85 (14)C31—C32—H32A108.2
N2—C13—H13108.6O8B—C32—H32B68.1
C18—C13—H13108.6O8A—C32—H32B108.2
C14—C13—H13108.6C31—C32—H32B108.2
C13—C14—C15109.80 (14)H32A—C32—H32B107.3
C13—C14—H14A109.7O8B—C32—H32C97.0
C15—C14—H14A109.7O8A—C32—H32C77.6
C13—C14—H14B109.7C31—C32—H32C105.2
C15—C14—H14B109.7H32A—C32—H32C138.2
H14A—C14—H14B108.2H32B—C32—H32C36.9
C16—C15—C14111.54 (16)O8B—C32—H32D107.9
C16—C15—H15A109.3O8A—C32—H32D27.0
C14—C15—H15A109.3C31—C32—H32D105.9
C16—C15—H15B109.3H32A—C32—H32D89.9
C14—C15—H15B109.3H32B—C32—H32D134.1
H15A—C15—H15B108.0H32C—C32—H32D104.5
C15—C16—C17110.67 (16)C32—O8A—H32D42.0
C15—C16—H16A109.5C32—O8A—H8AA110 (3)
C17—C16—H16A109.5H32D—O8A—H8AA122.2
C15—C16—H16B109.5C32—O8B—H8BB123 (10)
C7—N1—C1—C655.53 (19)C14—C13—C18—C1758.33 (18)
C7—N1—C1—C2178.33 (13)C16—C17—C18—C1356.5 (2)
N1—C1—C2—C3179.63 (14)C13—N2—C19—C2053.92 (17)
C6—C1—C2—C356.38 (19)C13—N2—C19—C24175.83 (13)
C1—C2—C3—C455.4 (2)N2—C19—C20—C21176.37 (13)
C2—C3—C4—C555.8 (2)C24—C19—C20—C2156.79 (18)
C3—C4—C5—C657.3 (2)C19—C20—C21—C2258.96 (18)
N1—C1—C6—C5177.73 (15)C20—C21—C22—C2357.82 (19)
C2—C1—C6—C557.06 (19)C21—C22—C23—C2454.74 (19)
C4—C5—C6—C157.6 (2)N2—C19—C24—C23176.47 (13)
C1—N1—C7—C8172.29 (13)C20—C19—C24—C2354.44 (18)
C1—N1—C7—C1250.06 (18)C22—C23—C24—C1953.39 (19)
N1—C7—C8—C9176.78 (14)O1—C25—C26—C27125.72 (18)
C12—C7—C8—C959.69 (18)O2—C25—C26—C2754.4 (2)
C7—C8—C9—C1056.4 (2)C25—C26—C27—O7161.88 (13)
C8—C9—C10—C1154.1 (2)C25—C26—C27—C2940.67 (19)
C9—C10—C11—C1254.9 (2)C25—C26—C27—C2880.58 (17)
N1—C7—C12—C11179.41 (14)O7—C27—C28—O419.87 (19)
C8—C7—C12—C1159.77 (18)C29—C27—C28—O498.20 (16)
C10—C11—C12—C757.4 (2)C26—C27—C28—O4138.50 (15)
C19—N2—C13—C1858.92 (18)O7—C27—C28—O3162.01 (15)
C19—N2—C13—C14178.74 (13)C29—C27—C28—O379.92 (18)
N2—C13—C14—C15178.05 (14)C26—C27—C28—O343.4 (2)
C18—C13—C14—C1558.71 (19)O7—C27—C29—C3056.54 (17)
C13—C14—C15—C1656.9 (2)C28—C27—C29—C30172.62 (13)
C14—C15—C16—C1755.0 (2)C26—C27—C29—C3063.94 (17)
C15—C16—C17—C1854.9 (2)C27—C29—C30—O6162.66 (14)
N2—C13—C18—C17178.87 (14)C27—C29—C30—O520.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.93 (2)1.84 (2)2.7651 (19)170 (2)
N1—H1B···O70.87 (2)2.31 (2)3.033 (2)140.8 (19)
N1—H1B···O40.87 (2)2.07 (2)2.8390 (19)146 (2)
N2—H2C···O6ii0.90 (2)1.90 (2)2.794 (2)170.3 (19)
N2—H2D···O50.93 (2)1.86 (2)2.751 (2)160 (2)
O2—H2···O30.94 (3)1.56 (3)2.499 (2)174 (3)
O7—H5···O50.86 (3)1.92 (3)2.6678 (19)145 (2)
C18—H18A···O2iii0.992.513.405 (2)150
C20—H20A···O1iii0.992.473.457 (2)172
C32—H32A···O8Aiv0.992.563.458 (4)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula2C12H24N+·C6H6O72·C2H6O
Mr600.82
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.054 (2), 12.329 (3), 13.908 (3)
α, β, γ (°)99.77 (3), 92.17 (3), 95.98 (3)
V3)1687.0 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.32 × 0.30
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18454, 9009, 6897
Rint0.046
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.136, 1.09
No. of reflections9009
No. of parameters420
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.37

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.93 (2)1.84 (2)2.7651 (19)170 (2)
N1—H1B···O70.87 (2)2.31 (2)3.033 (2)140.8 (19)
N1—H1B···O40.87 (2)2.07 (2)2.8390 (19)146 (2)
N2—H2C···O6ii0.90 (2)1.90 (2)2.794 (2)170.3 (19)
N2—H2D···O50.93 (2)1.86 (2)2.751 (2)160 (2)
O2—H2···O30.94 (3)1.56 (3)2.499 (2)174 (3)
O7—H5···O50.86 (3)1.92 (3)2.6678 (19)145 (2)
C18—H18A···O2iii0.992.513.405 (2)150.1
C20—H20A···O1iii0.992.473.457 (2)172.3
C32—H32A···O8Aiv0.992.563.458 (4)150.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x1, y, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank the Faculty of Chemistry, Islamic Azad University, North Tehran Branch, for supporting this work.

References

First citationAghabozorg, H., Bayan, M., Mirzaei, M. & Notash, B. (2011a). Acta Cryst. E67, o610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011b). Acta Cryst. E67, o54.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Saemi, M., Khazaei, Z., Amani, V. & Notash, B. (2011c). Acta Cryst. E67, o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, C.-Y., Wei, Z.-B., Zhou, Z.-H. & Ng, S. W. (2003). Acta Cryst. E59, o1030–o1032.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForoughian, M., Foroumadi, A., Notash, B., Bruno, G., Amiri Rudbari, H. & Aghabozorg, H. (2011). Acta Cryst. E67, o3325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Li, M.-C., Wang, P., Li, L. & Hu, M.-L. (2004). Acta Cryst. E60, o1633–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharif, M. A., Tabatabaee, M., Adinehloo, M. & Aghabozorg, H. (2010). Acta Cryst. E66, o3232.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2792-o2793
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds