organic compounds
Pyrrolidine-2,5-dione
aAgronomy College, Sichuan Agricultural University, No. 211, Huiming Road, Wenjiang Region, Chengdu 611130, People's Republic of China
*Correspondence e-mail: gaofeng@sicau.edu.cn
In the title compound, C4H5NO2, the non-H atoms are nearly coplanar, with a maximum deviation of 0.030 (1) Å. In the crystal, pairs of molecules are linked by N—H⋯O hydrogen bonds into inversion dimers.
Related literature
For the synthesis, see: Ilieva et al. (2012); Adib et al. (2010). For the bioactivity of pyrrolidine-2,5-dione derivatives, see: Obniska et al. (2012); Ha et al. (2011); Kaminski et al. (2011). For related structures, see: Khorasani & Fernandes (2012); Mayes et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812035672/xu5605sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035672/xu5605Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812035672/xu5605Isup3.cml
The single crystals of pyrrolidine-2,5-dione, C4H5NO2, were recrystallized from acetone at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction, mounted inert oil and transferred to the cold gas stream of the diffractometer
C and N bound-H (atoms were included in idealized positions and refined using a riding-model approximation, with C—H bond lengths fixed at 1.00 Å, 0.99 Å, for methine and methylene H atoms respectively. Uiso(H) values were fixed at 1.2Ueq of the parent atoms for all H atoms.
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. Fig. 2. Plane-to-plane stacking of alternate molecules parallel to the α axis. |
C4H5NO2 | F(000) = 416 |
Mr = 99.09 | Dx = 1.456 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 806 reflections |
a = 7.3661 (4) Å | θ = 3.2–28.9° |
b = 9.5504 (5) Å | µ = 0.12 mm−1 |
c = 12.8501 (7) Å | T = 135 K |
V = 904.00 (8) Å3 | Block, colourless |
Z = 8 | 0.40 × 0.35 × 0.30 mm |
Agilent Xcalibur Eos diffractometer | 915 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 732 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 16.0874 pixels mm-1 | θmax = 26.4°, θmin = 3.2° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −11→6 |
Tmin = 0.911, Tmax = 1.000 | l = −16→14 |
2022 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0457P)2 + 0.1774P] where P = (Fo2 + 2Fc2)/3 |
915 reflections | (Δ/σ)max < 0.001 |
64 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C4H5NO2 | V = 904.00 (8) Å3 |
Mr = 99.09 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.3661 (4) Å | µ = 0.12 mm−1 |
b = 9.5504 (5) Å | T = 135 K |
c = 12.8501 (7) Å | 0.40 × 0.35 × 0.30 mm |
Agilent Xcalibur Eos diffractometer | 915 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 732 reflections with I > 2σ(I) |
Tmin = 0.911, Tmax = 1.000 | Rint = 0.018 |
2022 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.15 e Å−3 |
915 reflections | Δρmin = −0.29 e Å−3 |
64 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.04477 (16) | 0.61457 (13) | 0.39506 (9) | 0.0197 (3) | |
H1 | 0.0772 | 0.5317 | 0.4135 | 0.024* | |
O1 | 0.19664 (16) | 0.61963 (11) | 0.23948 (8) | 0.0291 (3) | |
O2 | −0.13630 (16) | 0.66055 (12) | 0.53572 (8) | 0.0312 (3) | |
C2 | 0.0226 (2) | 0.82282 (15) | 0.30007 (12) | 0.0211 (4) | |
H2A | −0.0546 | 0.8346 | 0.2395 | 0.025* | |
H2B | 0.1184 | 0.8924 | 0.2979 | 0.025* | |
C1 | 0.10102 (19) | 0.67648 (15) | 0.30357 (12) | 0.0197 (4) | |
C4 | −0.0668 (2) | 0.69665 (16) | 0.45340 (11) | 0.0204 (4) | |
C3 | −0.0874 (2) | 0.83593 (16) | 0.40006 (11) | 0.0230 (4) | |
H3A | −0.0403 | 0.9108 | 0.4434 | 0.028* | |
H3B | −0.2139 | 0.8549 | 0.3847 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0206 (6) | 0.0160 (6) | 0.0226 (7) | 0.0026 (5) | −0.0004 (5) | 0.0014 (5) |
O1 | 0.0309 (6) | 0.0239 (6) | 0.0325 (6) | −0.0004 (5) | 0.0126 (5) | −0.0002 (5) |
O2 | 0.0430 (7) | 0.0274 (6) | 0.0232 (6) | 0.0118 (6) | 0.0087 (6) | 0.0049 (5) |
C2 | 0.0215 (7) | 0.0171 (7) | 0.0248 (8) | −0.0011 (6) | −0.0004 (6) | 0.0020 (6) |
C1 | 0.0173 (7) | 0.0186 (8) | 0.0231 (7) | −0.0044 (6) | 0.0000 (6) | 0.0002 (6) |
C4 | 0.0221 (7) | 0.0196 (7) | 0.0194 (8) | 0.0021 (6) | −0.0023 (6) | −0.0016 (6) |
C3 | 0.0301 (8) | 0.0167 (7) | 0.0222 (8) | 0.0015 (7) | 0.0003 (7) | −0.0012 (6) |
N1—H1 | 0.8600 | C2—H2B | 0.9700 |
N1—C1 | 1.3796 (19) | C2—C1 | 1.513 (2) |
N1—C4 | 1.3609 (19) | C2—C3 | 1.524 (2) |
O1—C1 | 1.2121 (17) | C4—C3 | 1.504 (2) |
O2—C4 | 1.2246 (18) | C3—H3A | 0.9700 |
C2—H2A | 0.9700 | C3—H3B | 0.9700 |
C1—N1—H1 | 123.1 | O1—C1—C2 | 127.99 (14) |
C4—N1—H1 | 123.1 | N1—C4—C3 | 108.61 (12) |
C4—N1—C1 | 113.83 (13) | O2—C4—N1 | 124.48 (14) |
H2A—C2—H2B | 108.9 | O2—C4—C3 | 126.91 (14) |
C1—C2—H2A | 110.8 | C2—C3—H3A | 110.8 |
C1—C2—H2B | 110.8 | C2—C3—H3B | 110.8 |
C1—C2—C3 | 104.70 (12) | C4—C3—C2 | 104.96 (12) |
C3—C2—H2A | 110.8 | C4—C3—H3A | 110.8 |
C3—C2—H2B | 110.8 | C4—C3—H3B | 110.8 |
N1—C1—C2 | 107.85 (12) | H3A—C3—H3B | 108.8 |
O1—C1—N1 | 124.16 (14) | ||
N1—C4—C3—C2 | 1.90 (16) | C4—N1—C1—O1 | −177.92 (14) |
O2—C4—C3—C2 | −178.47 (14) | C4—N1—C1—C2 | 2.11 (16) |
C1—N1—C4—O2 | 177.78 (14) | C3—C2—C1—N1 | −0.75 (15) |
C1—N1—C4—C3 | −2.58 (17) | C3—C2—C1—O1 | 179.29 (15) |
C1—C2—C3—C4 | −0.66 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.00 | 2.8548 (16) | 176 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H5NO2 |
Mr | 99.09 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 135 |
a, b, c (Å) | 7.3661 (4), 9.5504 (5), 12.8501 (7) |
V (Å3) | 904.00 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.40 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.911, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2022, 915, 732 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.097, 1.05 |
No. of reflections | 915 |
No. of parameters | 64 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.29 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.00 | 2.8548 (16) | 175.5 |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
This project was supported by the Students Research Interest Training Plan of Sichuan Agricultural University (No. 2011102 to MY).
References
Adib, M., Ansari, A., Fatemi, S., Bijanzadeh, H. R. & Zhu, L. G. (2010). Tetrahedron, 66, 2723–2727. CSD CrossRef CAS Google Scholar
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ha, Y. M., Kim, J., Parkl, Y. J., Park, D., Choi, Y. J., Kim, J. M., Chung, K. W., Han, Y. K., Park, J. Y., Lee, J. Y., Moon, H. R. & Chung, H. Y. (2011). Med. Chem. Commun. 2, 542–549. Web of Science CrossRef CAS Google Scholar
Ilieva, E. D., Petkova, N. I. & Nikolova, R. D. (2012). Molecules, 17, 4936–4949. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kaminski, K., Rzepka, S. & Obniska, J. (2011). Bioorg. Med. Chem. Lett. 21, 5800–5803. Web of Science CAS PubMed Google Scholar
Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1503. CSD CrossRef IUCr Journals Google Scholar
Mayes, B. A., McGarry, P., Moussa, A. & Watkin, D. J. (2008). Acta Cryst. E64, o1355. Web of Science CSD CrossRef IUCr Journals Google Scholar
Obniska, J., Rzepka, S. & Kamiński, K. (2012). Bioorg. Med. Chem. 20, 4872–4880. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrrolidine-2,5-diones derivates are an important class of heterocylic compounds with essential applications in the organic synthesis and medicinal chemistry. In the organic field, pyrrolidine-2,5-diones derivates, such as well known 1-bromopyrrolidine-2,5-dione (NBS), are the most commonly used halogenation reagents. Meanwhile, pyrrolidine-2,5-diones derivates exhibit numerous bioactivity, especially in anticonvulsant (Obniska et al., 2012; Kaminski et al., 2011) and tyrosinase inhibitory activity (Ha et al., 2011). Therefore, development of new and efficient strategies for the synthesis of multi-substituted pyrrolidine-2,5-diones is also the current hot in organic and medical chemistry (Ilieva et al., 2012; Adib et al.. 2010). Several crystal structures of title compound derivates have been reported (Khorasani and Fernandes 2012; Mayes et al., 2008), but crystal data of pyrrolidine-2,5-dione has not been investigated. Herein, we report the synthesis and completely crystal data of title compound.
The molecular structure of pyrrolidine-2,5-dione is shown in Fig. 1. The bond lengths and angles are within normal ranges. In the crystal, the molecules are connected through intermolecular N–H···O hydrogen bond (Table 1).