metal-organic compounds
Poly[(μ5-2,2′-bipyridine-5,5′-dicarboxylato)lead(II)]
aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, cDepartment of Chemistry, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title polymeric compound, [Pb(C12H6N2O4)]n, the PbII cation, located on a mirror plane, is N,N′-chelated by a 2-2′-bipyridine-5,5′-dicarboxylate (bpdc) anion and is further coordinated by six O atoms from four carboxyl groups of bpdc anions in an irregular N2O6 geometry. The carboxylate groups bridge the PbII cations, forming a three-dimensional polymeric structure. The carboxylate group is twisted away from the attached pyridine ring by 11.4 (3)°.
Related literature
For background to niacin, see: Krishnamachari (1974) and to N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d, 2010a,b, 2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812035647/xu5606sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035647/xu5606Isup2.hkl
The title compound was obtained after leaving a mixture of Pb(NO3)2 (0.33 g, 1 mmol), nicotinic acid, (NA), (0.24 g, 2 mmol), diethylnicotinamide, (DENA), (0.35 g, 2 mmol) and distilled water (5 ml) in a Teflon-lined autoclave at 433 K for 41 h.
The C-bound H-atoms were positioned geometrically with C—H = 0.95 Å, for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 × Ueq(C). The highest residual electron density was found 0.89 Å from Pb1 and the deepest hole 0.93 Å from Pb1.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).[Pb(C12H6N2O4)] | F(000) = 412 |
Mr = 449.39 | Dx = 2.558 Mg m−3 |
Orthorhombic, Pmn21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac -2 | Cell parameters from 8915 reflections |
a = 13.6224 (3) Å | θ = 2.5–28.5° |
b = 4.1923 (2) Å | µ = 14.47 mm−1 |
c = 10.2180 (3) Å | T = 100 K |
V = 583.54 (3) Å3 | Prism, colorless |
Z = 2 | 0.32 × 0.18 × 0.10 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 1542 independent reflections |
Radiation source: fine-focus sealed tube | 1511 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 28.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −18→17 |
Tmin = 0.055, Tmax = 0.235 | k = −5→5 |
9729 measured reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.019 | w = 1/[σ2(Fo2) + (0.0212P)2 + 3.443P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.055 | (Δ/σ)max < 0.001 |
S = 1.24 | Δρmax = 1.53 e Å−3 |
1542 reflections | Δρmin = −0.75 e Å−3 |
90 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0097 (6) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 728 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.497 (14) |
[Pb(C12H6N2O4)] | V = 583.54 (3) Å3 |
Mr = 449.39 | Z = 2 |
Orthorhombic, Pmn21 | Mo Kα radiation |
a = 13.6224 (3) Å | µ = 14.47 mm−1 |
b = 4.1923 (2) Å | T = 100 K |
c = 10.2180 (3) Å | 0.32 × 0.18 × 0.10 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 1542 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1511 reflections with I > 2σ(I) |
Tmin = 0.055, Tmax = 0.235 | Rint = 0.036 |
9729 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.055 | Δρmax = 1.53 e Å−3 |
S = 1.24 | Δρmin = −0.75 e Å−3 |
1542 reflections | Absolute structure: Flack (1983), 728 Friedel pairs |
90 parameters | Absolute structure parameter: 0.497 (14) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.0000 | 0.81379 (5) | 0.6243 | 0.00544 (10) | |
O1 | 0.3476 (4) | 0.2412 (13) | 0.9391 (5) | 0.0145 (9) | |
O2 | 0.3886 (3) | 0.6151 (12) | 1.0873 (4) | 0.0136 (9) | |
N1 | 0.0870 (4) | 0.7262 (14) | 0.8556 (5) | 0.0134 (11) | |
C1 | 0.1730 (4) | 0.5765 (15) | 0.8787 (5) | 0.0099 (11) | |
H1 | 0.1929 | 0.4075 | 0.8227 | 0.012* | |
C2 | 0.2338 (4) | 0.6648 (14) | 0.9835 (6) | 0.0091 (11) | |
C3 | 0.2044 (5) | 0.9052 (17) | 1.0680 (6) | 0.0138 (11) | |
H3 | 0.2446 | 0.9677 | 1.1395 | 0.017* | |
C4 | 0.1157 (5) | 1.0506 (17) | 1.0457 (6) | 0.0149 (12) | |
H4 | 0.0926 | 1.2117 | 1.1034 | 0.018* | |
C5 | 0.0596 (5) | 0.9597 (17) | 0.9373 (6) | 0.0160 (12) | |
C6 | 0.3296 (4) | 0.4896 (16) | 1.0016 (5) | 0.0127 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.00259 (13) | 0.00704 (13) | 0.00668 (12) | 0.000 | 0.000 | 0.00030 (19) |
O1 | 0.009 (2) | 0.022 (2) | 0.013 (2) | 0.0027 (19) | −0.0030 (18) | −0.0058 (18) |
O2 | 0.007 (2) | 0.018 (2) | 0.015 (2) | −0.0035 (17) | −0.0056 (13) | −0.0002 (15) |
N1 | 0.009 (3) | 0.022 (3) | 0.009 (2) | 0.000 (2) | −0.001 (2) | −0.002 (2) |
C1 | 0.009 (3) | 0.013 (3) | 0.008 (2) | 0.004 (2) | −0.0023 (19) | 0.004 (2) |
C2 | 0.003 (3) | 0.014 (3) | 0.011 (3) | −0.001 (2) | −0.002 (2) | 0.0008 (19) |
C3 | 0.010 (3) | 0.025 (3) | 0.006 (2) | 0.001 (3) | 0.000 (2) | 0.000 (3) |
C4 | 0.010 (3) | 0.018 (3) | 0.017 (3) | 0.003 (2) | −0.001 (2) | −0.004 (2) |
C5 | 0.012 (3) | 0.020 (3) | 0.016 (3) | 0.005 (2) | −0.002 (2) | 0.004 (2) |
C6 | 0.003 (2) | 0.029 (4) | 0.006 (2) | −0.004 (2) | −0.0017 (18) | 0.006 (2) |
Pb1—O1i | 2.819 (5) | C1—C2 | 1.403 (8) |
Pb1—O2i | 2.383 (5) | C1—H1 | 0.9500 |
Pb1—O2ii | 2.383 (5) | C2—C3 | 1.386 (9) |
Pb1—O2iii | 2.860 (5) | C2—C6 | 1.509 (8) |
Pb1—N1 | 2.669 (5) | C3—C4 | 1.373 (9) |
Pb1—N1iv | 2.669 (5) | C3—H3 | 0.9500 |
O1—C6 | 1.245 (8) | C4—C5 | 1.398 (9) |
O2—Pb1v | 2.383 (5) | C4—H4 | 0.9500 |
N1—C1 | 1.350 (8) | C5—C5iv | 1.623 (13) |
N1—C5 | 1.340 (9) | C6—O2 | 1.300 (7) |
O2ii—Pb1—O2i | 79.1 (2) | C3—C2—C1 | 119.8 (6) |
O2i—Pb1—N1iv | 108.61 (16) | C3—C2—C6 | 121.8 (5) |
O2ii—Pb1—N1 | 108.61 (17) | C2—C3—H3 | 120.9 |
O2i—Pb1—N1 | 75.73 (16) | C4—C3—C2 | 118.3 (6) |
O2ii—Pb1—N1iv | 75.73 (16) | C4—C3—H3 | 120.9 |
N1—Pb1—N1iv | 52.7 (3) | C3—C4—C5 | 119.4 (6) |
C6—O2—Pb1v | 101.2 (4) | C3—C4—H4 | 120.3 |
C1—N1—Pb1 | 127.2 (4) | C5—C4—H4 | 120.3 |
C5—N1—Pb1 | 109.1 (4) | N1—C5—C4 | 122.7 (6) |
C5—N1—C1 | 118.2 (6) | N1—C5—C5iv | 106.2 (4) |
N1—C1—C2 | 121.5 (6) | C4—C5—C5iv | 123.1 (4) |
N1—C1—H1 | 119.2 | O1—C6—O2 | 124.2 (6) |
C2—C1—H1 | 119.2 | O1—C6—C2 | 120.9 (5) |
C1—C2—C6 | 118.4 (5) | O2—C6—C2 | 114.8 (6) |
O2i—Pb1—N1—C1 | 19.7 (5) | N1—C1—C2—C6 | −179.0 (5) |
O2ii—Pb1—N1—C1 | 92.8 (5) | C1—C2—C3—C4 | −0.1 (10) |
O2i—Pb1—N1—C5 | 172.7 (5) | C6—C2—C3—C4 | −179.3 (6) |
O2ii—Pb1—N1—C5 | −114.2 (5) | C1—C2—C6—O1 | −11.3 (9) |
N1iv—Pb1—N1—C1 | 147.1 (5) | C1—C2—C6—O2 | 169.9 (5) |
N1iv—Pb1—N1—C5 | −59.9 (5) | C3—C2—C6—O1 | 167.9 (6) |
Pb1—N1—C1—C2 | 149.5 (5) | C3—C2—C6—O2 | −10.9 (8) |
C5—N1—C1—C2 | −1.3 (9) | C2—C3—C4—C5 | −1.9 (10) |
Pb1—N1—C5—C4 | −156.5 (5) | C3—C4—C5—N1 | 2.5 (11) |
Pb1—N1—C5—C5iv | 53.8 (3) | C3—C4—C5—C5iv | 147.0 (5) |
C1—N1—C5—C4 | −0.8 (10) | O1—C6—O2—Pb1v | −14.7 (7) |
C1—N1—C5—C5iv | −150.5 (5) | C2—C6—O2—Pb1v | 164.0 (4) |
N1—C1—C2—C3 | 1.8 (9) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x−1/2, −y+1, z−1/2; (iii) −x+1/2, −y+2, z−1/2; (iv) −x, y, z; (v) −x+1/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Pb(C12H6N2O4)] |
Mr | 449.39 |
Crystal system, space group | Orthorhombic, Pmn21 |
Temperature (K) | 100 |
a, b, c (Å) | 13.6224 (3), 4.1923 (2), 10.2180 (3) |
V (Å3) | 583.54 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 14.47 |
Crystal size (mm) | 0.32 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.055, 0.235 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9729, 1542, 1511 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.671 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.019, 0.055, 1.24 |
No. of reflections | 1542 |
No. of parameters | 90 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.53, −0.75 |
Absolute structure | Flack (1983), 728 Friedel pairs |
Absolute structure parameter | 0.497 (14) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).
Pb1—O1i | 2.819 (5) | Pb1—O2ii | 2.860 (5) |
Pb1—O2i | 2.383 (5) | Pb1—N1 | 2.669 (5) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x+1/2, −y+2, z−1/2. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.
References
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71. CSD CrossRef CAS Web of Science Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366. Web of Science CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Çimen, E. & Necefoğlu, H. (2010a). Acta Cryst. E66, m953–m954. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131. CSD CrossRef Web of Science IUCr Journals Google Scholar
Hökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2010b). Acta Cryst. E66, m782–m783. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Tercan, B., Şahin, E., Aktaş, V. & Necefoğlu, H. (2011). Acta Cryst. E67, m1057–m1058. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417. Web of Science CrossRef IUCr Journals Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972) the title compound was synthesized and its crystal structure is reported herein. In fact, in the synthesis we aimed to obtain a mixed complex of lead with nicotinic acid and DENA. But, the nicotinic acid molecules have been interacted to form 2-2'-bipyridine-5-5'-dicarboxylic (bpdc) acid in the hydrothermal synthesis media.
In the crystal structure of the polymeric title compound, (I), the PbII ion is chelated by the O atoms of the carboxylate groups and the nitrogen atoms from 2-2'-bipyridine-5,5'-dicarboxylato (bpdc)ligands (Fig. 1); the symmetry related PbII ions are bridged through the O atoms of the carboxyl groups and the nitrogen atoms of the bpdc ligands to form a 3-D polymeric structure (Fig. 2), in which the PbII ion is in an irregular eight-coordination geometry (Fig. 1).
The Pb–O bond lengths are ranged from 2.383 (5) and 2.860 (5) Å (Table 1) and the Pb atom is displaced out of the least-square plane of the carboxylate group (O1/C6/O2) by -1.5813 (1) Å. The Pb1···Pb1b distance [symmetry code: (b) x, 1 + y, z] is 4.1923 (3) Å (Fig. 1). In (I), the O1–Pb1–O2 and N1–Pb1–N1i [symmetry code: (i) -x, y, z] angles are 50.4 (2) and 52.7 (3) °, respectively.
The corresponding O–M–O (where M is a metal) angles are 51.10 (15)° and 51.95 (16)° in {[Pb(PEB)2(NA)].H2O}n (Hökelek et al., 2011), 51.09 (6)° and 51.71 (5)° in [Pb(PMB)2(NA)]n (Hökelek et al., 2010a), 55.96 (4)° and 53.78 (4)° in [Cd2(DMAB)4(NA)2(H2O)2] (Hökelek et al., 2010b), 52.91 (4)° and 53.96 (4)° in [Cd(FB)2(INA)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(MAB)2(INA)2].H2O (Hökelek et al., 2009d), 58.3 (3)° in [Zn2(DENA)2(HB)4].2H2O (Hökelek & Necefoğlu, 1996) [where NA, INA, DENA, HB, FB, MAB, PMB, PEB and DMAB are nicotinamide, isonicotinamide, N,N-diethylnicotinamide, 4-hydroxybenzoate, 4-formylbenzoate, 4-methylaminobenzoate, 4-methylbenzoate, 4-ethylbenzoate and 4-dimethylaminobenzoate, respectively] and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).
The dihedral angle between the planar carboxylate group and the adjacent pyridine ring A (N1/C1–C5) is 11.44 (31)°.