metal-organic compounds
Poly[[μ-(3-aminopyridine)-κ2N:N′-μ-chlorido-chlorido(N,N′-dimethylformamide-κO)nickel(II)] N,N′-dimethylformamide monosolvate]
aDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan, bDepartment of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan, cDepartment of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, and dDepartment of Applied Cosmetology, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan
*Correspondence e-mail: sun@tiit.edu.tw
The title compound, {[NiCl2(C5H6N2)(C3H7NO)]·C3H7NO}n, is a two-dimensional polymer in which the NiII atom is coordinated by two N atoms from two 3-aminopyridine ligands, one O atom from a dimethylformamide (DMF) group, one terminal Cl and two bridging Cl atoms in a distorted octahedral geometry. The NiII atoms are bridged by the 3-aminopyridine ligands [Ni⋯N = 6.7048 (3) Å] and Cl− atoms [Ni⋯N = 3.5698 (3) Å], forming (4,4) two-dimensional nets. The DMF solvent molecule and the non-bridged Cl− ions participate in N—H⋯O and N—H⋯Cl hydrogen bonds with the amino groups.
Related literature
For background to coordination polymers, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For related 3-aminopyridine complexes, see: Zhu & Kitagawa (2002); Lah & Leban (2005, 2006); Kochel (2006); Wu et al. (2005); Qian & Huang (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812036215/xu5609sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812036215/xu5609Isup2.hkl
An aquous solution (5.0 ml) of nickel chloride (1.0 mmol) was layered carefully over a mixed CH3OH/DMF solution (5.0 ml, 1:1) of 3-aminopyridine (1.0 mmol) in a tube. Green crystals were obtained after several weeks. These were washed with methanol and collected in 72.8% yield.
H atoms bound to C atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96 A, and with Uiso(H) = 1.2 or 1.5 Ueq(C). The amine hydrogen atoms (H2NA and H2NB) was freely refined.
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[NiCl2(C5H6N2)(C3H7NO)]·C3H7NO | F(000) = 768 |
Mr = 369.92 | Dx = 1.605 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4748 reflections |
a = 10.3684 (2) Å | θ = 3.2–29.0° |
b = 15.0571 (3) Å | µ = 1.62 mm−1 |
c = 10.0976 (2) Å | T = 293 K |
β = 103.832 (2)° | Plate, green |
V = 1530.70 (5) Å3 | 0.38 × 0.30 × 0.18 mm |
Z = 4 |
Bruker SMART APEXII diffractometer | 2748 independent reflections |
Radiation source: fine-focus sealed tube | 2333 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
phi and ω scans | θmax = 25.2°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −10→12 |
Tmin = 0.628, Tmax = 1.000 | k = −16→18 |
6140 measured reflections | l = −12→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0322P)2] where P = (Fo2 + 2Fc2)/3 |
2748 reflections | (Δ/σ)max = 0.001 |
193 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[NiCl2(C5H6N2)(C3H7NO)]·C3H7NO | V = 1530.70 (5) Å3 |
Mr = 369.92 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.3684 (2) Å | µ = 1.62 mm−1 |
b = 15.0571 (3) Å | T = 293 K |
c = 10.0976 (2) Å | 0.38 × 0.30 × 0.18 mm |
β = 103.832 (2)° |
Bruker SMART APEXII diffractometer | 2748 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2333 reflections with I > 2σ(I) |
Tmin = 0.628, Tmax = 1.000 | Rint = 0.021 |
6140 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.70 e Å−3 |
2748 reflections | Δρmin = −0.34 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.41415 (2) | 0.603502 (16) | 0.48905 (2) | 0.00775 (9) | |
C1 | 0.38923 (19) | 0.80038 (13) | 0.50209 (19) | 0.0102 (4) | |
H1A | 0.3489 | 0.7849 | 0.5718 | 0.012* | |
C2 | 0.4014 (2) | 0.88919 (13) | 0.4737 (2) | 0.0125 (4) | |
H2A | 0.3717 | 0.9325 | 0.5251 | 0.015* | |
C3 | 0.4579 (2) | 0.91299 (13) | 0.3683 (2) | 0.0120 (4) | |
H3A | 0.4655 | 0.9725 | 0.3466 | 0.014* | |
C4 | 0.50335 (19) | 0.84671 (13) | 0.29533 (19) | 0.0086 (4) | |
C5 | 0.49098 (19) | 0.75896 (13) | 0.33264 (19) | 0.0089 (4) | |
H5A | 0.5242 | 0.7146 | 0.2860 | 0.011* | |
C6 | 0.1441 (2) | 0.62218 (13) | 0.5369 (2) | 0.0127 (4) | |
H6A | 0.1190 | 0.5851 | 0.4614 | 0.015* | |
C7 | −0.0851 (2) | 0.61693 (15) | 0.5540 (3) | 0.0222 (5) | |
H7A | −0.0954 | 0.5838 | 0.4709 | 0.033* | |
H7B | −0.1451 | 0.6665 | 0.5390 | 0.033* | |
H7C | −0.1045 | 0.5793 | 0.6235 | 0.033* | |
C8 | 0.0852 (2) | 0.70808 (15) | 0.7160 (2) | 0.0185 (5) | |
H8A | 0.1524 | 0.7493 | 0.7047 | 0.028* | |
H8B | 0.1179 | 0.6734 | 0.7968 | 0.028* | |
H8C | 0.0074 | 0.7401 | 0.7241 | 0.028* | |
C9 | 0.2418 (2) | 1.14619 (14) | 0.3491 (3) | 0.0210 (5) | |
H9A | 0.2665 | 1.1173 | 0.2775 | 0.025* | |
C10 | 0.1142 (2) | 1.01507 (16) | 0.3680 (3) | 0.0342 (6) | |
H10A | 0.1512 | 0.9948 | 0.2949 | 0.051* | |
H10B | 0.0196 | 1.0210 | 0.3358 | 0.051* | |
H10C | 0.1338 | 0.9730 | 0.4414 | 0.051* | |
C11 | 0.1376 (3) | 1.13771 (16) | 0.5363 (2) | 0.0274 (6) | |
H11A | 0.1539 | 1.0943 | 0.6080 | 0.041* | |
H11B | 0.0455 | 1.1541 | 0.5146 | 0.041* | |
H11C | 0.1913 | 1.1893 | 0.5657 | 0.041* | |
N1 | 0.43323 (16) | 0.73532 (11) | 0.43310 (16) | 0.0090 (4) | |
N2 | 0.55335 (18) | 0.86856 (12) | 0.18049 (17) | 0.0093 (4) | |
H2NA | 0.596 (2) | 0.9204 (15) | 0.190 (2) | 0.010 (6)* | |
H2NB | 0.600 (2) | 0.8292 (16) | 0.160 (2) | 0.019 (7)* | |
N3 | 0.05143 (17) | 0.64924 (11) | 0.59758 (17) | 0.0140 (4) | |
N4 | 0.17122 (19) | 1.10045 (12) | 0.41599 (19) | 0.0212 (4) | |
O1 | 0.26235 (14) | 0.64348 (8) | 0.57502 (14) | 0.0120 (3) | |
O2 | 0.27851 (16) | 1.22267 (10) | 0.37064 (17) | 0.0267 (4) | |
Cl1 | 0.60647 (5) | 0.54783 (3) | 0.42042 (5) | 0.00949 (12) | |
Cl2 | 0.26678 (5) | 0.56642 (3) | 0.27259 (5) | 0.01240 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.00809 (14) | 0.00705 (14) | 0.00920 (14) | −0.00007 (11) | 0.00421 (10) | −0.00004 (10) |
C1 | 0.0088 (10) | 0.0124 (11) | 0.0097 (10) | 0.0003 (9) | 0.0028 (8) | −0.0004 (8) |
C2 | 0.0141 (11) | 0.0122 (11) | 0.0117 (10) | 0.0013 (9) | 0.0038 (9) | −0.0035 (9) |
C3 | 0.0148 (11) | 0.0082 (10) | 0.0124 (10) | −0.0016 (9) | 0.0021 (9) | 0.0005 (8) |
C4 | 0.0061 (10) | 0.0118 (10) | 0.0076 (9) | −0.0013 (8) | 0.0008 (8) | 0.0007 (8) |
C5 | 0.0065 (10) | 0.0109 (10) | 0.0091 (9) | 0.0014 (8) | 0.0015 (8) | −0.0007 (8) |
C6 | 0.0148 (11) | 0.0097 (10) | 0.0144 (10) | −0.0005 (9) | 0.0052 (9) | 0.0022 (9) |
C7 | 0.0140 (12) | 0.0201 (12) | 0.0347 (13) | −0.0027 (10) | 0.0104 (10) | −0.0025 (11) |
C8 | 0.0163 (12) | 0.0195 (12) | 0.0228 (12) | 0.0017 (10) | 0.0110 (10) | −0.0030 (10) |
C9 | 0.0066 (10) | 0.0182 (13) | 0.0414 (14) | −0.0015 (10) | 0.0121 (10) | −0.0117 (11) |
C10 | 0.0259 (14) | 0.0224 (14) | 0.0514 (17) | −0.0045 (11) | 0.0036 (13) | −0.0057 (13) |
C11 | 0.0332 (14) | 0.0287 (14) | 0.0242 (13) | 0.0007 (12) | 0.0145 (11) | 0.0035 (11) |
N1 | 0.0074 (8) | 0.0099 (8) | 0.0090 (8) | 0.0008 (7) | 0.0008 (7) | 0.0002 (7) |
N2 | 0.0117 (9) | 0.0057 (9) | 0.0118 (9) | 0.0007 (8) | 0.0055 (7) | −0.0001 (7) |
N3 | 0.0098 (9) | 0.0136 (9) | 0.0208 (10) | −0.0002 (8) | 0.0079 (8) | −0.0010 (8) |
N4 | 0.0225 (11) | 0.0159 (10) | 0.0262 (10) | 0.0018 (9) | 0.0075 (9) | 0.0009 (8) |
O1 | 0.0110 (7) | 0.0116 (7) | 0.0148 (7) | −0.0002 (6) | 0.0059 (6) | 0.0004 (6) |
O2 | 0.0270 (10) | 0.0195 (9) | 0.0385 (10) | −0.0038 (8) | 0.0174 (8) | 0.0034 (8) |
Cl1 | 0.0099 (2) | 0.0079 (2) | 0.0125 (2) | −0.0002 (2) | 0.00632 (19) | 0.00006 (19) |
Cl2 | 0.0128 (3) | 0.0128 (3) | 0.0116 (2) | −0.0007 (2) | 0.0029 (2) | −0.0008 (2) |
Ni—O1 | 2.0607 (13) | C7—H7B | 0.9600 |
Ni—N1 | 2.0860 (16) | C7—H7C | 0.9600 |
Ni—N2i | 2.1593 (17) | C8—N3 | 1.462 (3) |
Ni—Cl1 | 2.4124 (5) | C8—H8A | 0.9600 |
Ni—Cl2 | 2.4139 (5) | C8—H8B | 0.9600 |
Ni—Cl1ii | 2.4833 (5) | C8—H8C | 0.9600 |
C1—N1 | 1.343 (2) | C9—O2 | 1.216 (2) |
C1—C2 | 1.380 (3) | C9—N4 | 1.305 (3) |
C1—H1A | 0.9300 | C9—H9A | 0.9300 |
C2—C3 | 1.380 (3) | C10—N4 | 1.449 (3) |
C2—H2A | 0.9300 | C10—H10A | 0.9600 |
C3—C4 | 1.388 (3) | C10—H10B | 0.9600 |
C3—H3A | 0.9300 | C10—H10C | 0.9600 |
C4—C5 | 1.388 (3) | C11—N4 | 1.454 (3) |
C4—N2 | 1.417 (2) | C11—H11A | 0.9600 |
C5—N1 | 1.343 (2) | C11—H11B | 0.9600 |
C5—H5A | 0.9300 | C11—H11C | 0.9600 |
C6—O1 | 1.236 (2) | N2—Niiii | 2.1593 (17) |
C6—N3 | 1.322 (3) | N2—H2NA | 0.89 (2) |
C6—H6A | 0.9300 | N2—H2NB | 0.82 (2) |
C7—N3 | 1.462 (3) | Cl1—Niii | 2.4833 (5) |
C7—H7A | 0.9600 | ||
O1—Ni—N1 | 88.14 (6) | N3—C8—H8A | 109.5 |
O1—Ni—N2i | 88.87 (6) | N3—C8—H8B | 109.5 |
N1—Ni—N2i | 88.32 (7) | H8A—C8—H8B | 109.5 |
O1—Ni—Cl1 | 171.70 (4) | N3—C8—H8C | 109.5 |
N1—Ni—Cl1 | 96.57 (5) | H8A—C8—H8C | 109.5 |
N2i—Ni—Cl1 | 84.46 (5) | H8B—C8—H8C | 109.5 |
O1—Ni—Cl2 | 93.85 (4) | O2—C9—N4 | 126.7 (2) |
N1—Ni—Cl2 | 93.17 (5) | O2—C9—H9A | 116.7 |
N2i—Ni—Cl2 | 176.93 (5) | N4—C9—H9A | 116.7 |
Cl1—Ni—Cl2 | 92.710 (18) | N4—C10—H10A | 109.5 |
O1—Ni—Cl1ii | 88.36 (4) | N4—C10—H10B | 109.5 |
N1—Ni—Cl1ii | 174.19 (4) | H10A—C10—H10B | 109.5 |
N2i—Ni—Cl1ii | 86.97 (5) | N4—C10—H10C | 109.5 |
Cl1—Ni—Cl1ii | 86.372 (17) | H10A—C10—H10C | 109.5 |
Cl2—Ni—Cl1ii | 91.690 (18) | H10B—C10—H10C | 109.5 |
N1—C1—C2 | 122.69 (18) | N4—C11—H11A | 109.5 |
N1—C1—H1A | 118.7 | N4—C11—H11B | 109.5 |
C2—C1—H1A | 118.7 | H11A—C11—H11B | 109.5 |
C1—C2—C3 | 119.24 (19) | N4—C11—H11C | 109.5 |
C1—C2—H2A | 120.4 | H11A—C11—H11C | 109.5 |
C3—C2—H2A | 120.4 | H11B—C11—H11C | 109.5 |
C2—C3—C4 | 118.92 (19) | C5—N1—C1 | 117.80 (17) |
C2—C3—H3A | 120.5 | C5—N1—Ni | 123.02 (13) |
C4—C3—H3A | 120.5 | C1—N1—Ni | 119.17 (13) |
C3—C4—C5 | 118.36 (18) | C4—N2—Niiii | 118.73 (13) |
C3—C4—N2 | 120.29 (18) | C4—N2—H2NA | 112.6 (13) |
C5—C4—N2 | 121.23 (18) | Niiii—N2—H2NA | 97.6 (14) |
N1—C5—C4 | 122.94 (18) | C4—N2—H2NB | 112.8 (16) |
N1—C5—H5A | 118.5 | Niiii—N2—H2NB | 102.9 (16) |
C4—C5—H5A | 118.5 | H2NA—N2—H2NB | 111 (2) |
O1—C6—N3 | 123.51 (19) | C6—N3—C7 | 121.13 (18) |
O1—C6—H6A | 118.2 | C6—N3—C8 | 120.52 (18) |
N3—C6—H6A | 118.2 | C7—N3—C8 | 118.24 (17) |
N3—C7—H7A | 109.5 | C9—N4—C10 | 122.0 (2) |
N3—C7—H7B | 109.5 | C9—N4—C11 | 120.33 (19) |
H7A—C7—H7B | 109.5 | C10—N4—C11 | 117.48 (19) |
N3—C7—H7C | 109.5 | C6—O1—Ni | 126.39 (13) |
H7A—C7—H7C | 109.5 | Ni—Cl1—Niii | 93.628 (17) |
H7B—C7—H7C | 109.5 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2NA···Cl2iv | 0.89 (2) | 2.60 (2) | 3.4869 (16) | 176.4 (1) |
N2—H2NB···O2v | 0.84 (2) | 2.11 (2) | 2.925 (2) | 173.3 (1) |
Symmetry codes: (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [NiCl2(C5H6N2)(C3H7NO)]·C3H7NO |
Mr | 369.92 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.3684 (2), 15.0571 (3), 10.0976 (2) |
β (°) | 103.832 (2) |
V (Å3) | 1530.70 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.62 |
Crystal size (mm) | 0.38 × 0.30 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.628, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6140, 2748, 2333 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.058, 1.04 |
No. of reflections | 2748 |
No. of parameters | 193 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.70, −0.34 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2NA···Cl2i | 0.89 (2) | 2.60 (2) | 3.4869 (16) | 176.4 (1) |
N2—H2NB···O2ii | 0.84 (2) | 2.11 (2) | 2.925 (2) | 173.3 (1) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
We are grateful to the Taoyuan Innovation Institute of Technology for supporting this work.
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477. Web of Science CSD CrossRef CAS Google Scholar
Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176. Web of Science CSD CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Kochel, A. (2006). Acta Cryst. E62, m1740–m1742. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lah, N. & Leban, I. (2005). Acta Cryst. E61, m1708–m1710. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lah, N. & Leban, I. (2006). Acta Cryst. C62, m550–m552. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Qian, H.-F. & Huang, W. (2006). Acta Cryst. C62, m349–m351. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, J.-Y., Feng, D.-M., He, H.-Y., Wang, Q.-X. & Zhu, L.-G. (2005). Acta Cryst. E61, m1779–m1781. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603. Web of Science CSD CrossRef CAS Google Scholar
Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618. Web of Science CSD CrossRef CAS Google Scholar
Zhu, L.-G. & Kitagawa, S. (2002). Z. Kristallogr. New Cryst. Struct. 217, 579–580. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). In the past, the 3-aminopyridine ligands have been subjected to many studies of its coordination ability to structure chemistry (Zhu et al., 2002; Lah & Leban, 2005; Lah & Leban, 2006; Kochel, 2006; Wu et al., 2005; Qian et al., 2006). The Ni2+ cations are coordinated with two N atoms from two 3-aminopyridine (L) ligands, one O atom from dimethylformamide group, one terminal Cl and two bridging Cl atoms (Fig. 1). The Ni···Ni distances separated by the bridging Cl- anions and L groups are 3.5698 (3) and 6.7048 (3) Å, while the unit of dinuclear [Ni2Cl2] cores are forming (4,4) polymeric nets (Fig. 2). The co-crystallized DMF molecules and terminal Cl- ions are interacted with the amino hydrogen atoms forming N—H···O and N—H···Cl inter– and intra–molecular hydrogen bonds (Tab. 1).