metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1204-m1205

Poly[[μ-(3-amino­pyridine)-κ2N:N′-μ-chlorido-chlorido(N,N′-di­methyl­formamide-κO)nickel(II)] N,N′-di­methyl­formamide monosolvate]

aDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan, bDepartment of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan, cDepartment of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, and dDepartment of Applied Cosmetology, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan
*Correspondence e-mail: sun@tiit.edu.tw

(Received 13 August 2012; accepted 19 August 2012; online 25 August 2012)

The title compound, {[NiCl2(C5H6N2)(C3H7NO)]·C3H7NO}n, is a two-dimensional polymer in which the NiII atom is coordinated by two N atoms from two 3-amino­pyridine ligands, one O atom from a dimethyl­formamide (DMF) group, one terminal Cl and two bridging Cl atoms in a distorted octa­hedral geometry. The NiII atoms are bridged by the 3-amino­pyridine ligands [Ni⋯N = 6.7048 (3) Å] and Cl atoms [Ni⋯N = 3.5698 (3) Å], forming (4,4) two-dimensional nets. The DMF solvent mol­ecule and the non-bridged Cl ions participate in N—H⋯O and N—H⋯Cl hydrogen bonds with the amino groups.

Related literature

For background to coordination polymers, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Chiang et al. (2008[Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470-477.]); Yeh et al. (2008[Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611-3618.], 2009[Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595-2603.]); Hsu et al. (2009[Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168-176.]). For related 3-amino­pyridine complexes, see: Zhu & Kitagawa (2002[Zhu, L.-G. & Kitagawa, S. (2002). Z. Kristallogr. New Cryst. Struct. 217, 579-580.]); Lah & Leban (2005[Lah, N. & Leban, I. (2005). Acta Cryst. E61, m1708-m1710.], 2006[Lah, N. & Leban, I. (2006). Acta Cryst. C62, m550-m552.]); Kochel (2006[Kochel, A. (2006). Acta Cryst. E62, m1740-m1742.]); Wu et al. (2005[Wu, J.-Y., Feng, D.-M., He, H.-Y., Wang, Q.-X. & Zhu, L.-G. (2005). Acta Cryst. E61, m1779-m1781.]); Qian & Huang (2006[Qian, H.-F. & Huang, W. (2006). Acta Cryst. C62, m349-m351.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C5H6N2)(C3H7NO)]·C3H7NO

  • Mr = 369.92

  • Monoclinic, P 21 /c

  • a = 10.3684 (2) Å

  • b = 15.0571 (3) Å

  • c = 10.0976 (2) Å

  • β = 103.832 (2)°

  • V = 1530.70 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.18 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.628, Tmax = 1.000

  • 6140 measured reflections

  • 2748 independent reflections

  • 2333 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.04

  • 2748 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2NA⋯Cl2i 0.89 (2) 2.60 (2) 3.4869 (16) 176.4 (1)
N2—H2NB⋯O2ii 0.84 (2) 2.11 (2) 2.925 (2) 173.3 (1)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa et al., 2004). Roles of anion, solvent and ligand comformations in self-assembly of coordination complexes containing polydentate nitrogen ligands are very intersting (Chiang et al., 2008; Yeh et al., 2008; Hsu et al., 2009; Yeh et al., 2009). In the past, the 3-aminopyridine ligands have been subjected to many studies of its coordination ability to structure chemistry (Zhu et al., 2002; Lah & Leban, 2005; Lah & Leban, 2006; Kochel, 2006; Wu et al., 2005; Qian et al., 2006). The Ni2+ cations are coordinated with two N atoms from two 3-aminopyridine (L) ligands, one O atom from dimethylformamide group, one terminal Cl and two bridging Cl atoms (Fig. 1). The Ni···Ni distances separated by the bridging Cl- anions and L groups are 3.5698 (3) and 6.7048 (3) Å, while the unit of dinuclear [Ni2Cl2] cores are forming (4,4) polymeric nets (Fig. 2). The co-crystallized DMF molecules and terminal Cl- ions are interacted with the amino hydrogen atoms forming N—H···O and N—H···Cl inter– and intra–molecular hydrogen bonds (Tab. 1).

Related literature top

For background to coordination polymers, see: Kitagawa et al. (2004); Chiang et al. (2008); Yeh et al. (2008, 2009); Hsu et al. (2009). For related 3-aminopyridine complexes, see: Zhu et al. (2002); Lah & Leban (2005, 2006); Kochel (2006); Wu et al. (2005); Qian et al. (2006).

Experimental top

An aquous solution (5.0 ml) of nickel chloride (1.0 mmol) was layered carefully over a mixed CH3OH/DMF solution (5.0 ml, 1:1) of 3-aminopyridine (1.0 mmol) in a tube. Green crystals were obtained after several weeks. These were washed with methanol and collected in 72.8% yield.

Refinement top

H atoms bound to C atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96 A, and with Uiso(H) = 1.2 or 1.5 Ueq(C). The amine hydrogen atoms (H2NA and H2NB) was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the two-dimensional grid. Ellipsoids are drawn at 30% probability level. [Symmetry codes: (i) x,-y + 3/2,z + 1/2;(ii) -x + 1,-y + 1,-z + 1; (iii) x,-y + 3/2,z - 1/2.]
[Figure 2] Fig. 2. The view shows the two-dimensional pleated (4,4) net.
Poly[[µ-(3-aminopyridine)-κ2N:N'-µ-chlorido- chlorido(N,N'-dimethylformamide-κO)nickel(II)] N,N'-dimethylformamide monosolvate] top
Crystal data top
[NiCl2(C5H6N2)(C3H7NO)]·C3H7NOF(000) = 768
Mr = 369.92Dx = 1.605 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4748 reflections
a = 10.3684 (2) Åθ = 3.2–29.0°
b = 15.0571 (3) ŵ = 1.62 mm1
c = 10.0976 (2) ÅT = 293 K
β = 103.832 (2)°Plate, green
V = 1530.70 (5) Å30.38 × 0.30 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
2748 independent reflections
Radiation source: fine-focus sealed tube2333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.2°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1012
Tmin = 0.628, Tmax = 1.000k = 1618
6140 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
2748 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[NiCl2(C5H6N2)(C3H7NO)]·C3H7NOV = 1530.70 (5) Å3
Mr = 369.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3684 (2) ŵ = 1.62 mm1
b = 15.0571 (3) ÅT = 293 K
c = 10.0976 (2) Å0.38 × 0.30 × 0.18 mm
β = 103.832 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
2748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2333 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 1.000Rint = 0.021
6140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.70 e Å3
2748 reflectionsΔρmin = 0.34 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.41415 (2)0.603502 (16)0.48905 (2)0.00775 (9)
C10.38923 (19)0.80038 (13)0.50209 (19)0.0102 (4)
H1A0.34890.78490.57180.012*
C20.4014 (2)0.88919 (13)0.4737 (2)0.0125 (4)
H2A0.37170.93250.52510.015*
C30.4579 (2)0.91299 (13)0.3683 (2)0.0120 (4)
H3A0.46550.97250.34660.014*
C40.50335 (19)0.84671 (13)0.29533 (19)0.0086 (4)
C50.49098 (19)0.75896 (13)0.33264 (19)0.0089 (4)
H5A0.52420.71460.28600.011*
C60.1441 (2)0.62218 (13)0.5369 (2)0.0127 (4)
H6A0.11900.58510.46140.015*
C70.0851 (2)0.61693 (15)0.5540 (3)0.0222 (5)
H7A0.09540.58380.47090.033*
H7B0.14510.66650.53900.033*
H7C0.10450.57930.62350.033*
C80.0852 (2)0.70808 (15)0.7160 (2)0.0185 (5)
H8A0.15240.74930.70470.028*
H8B0.11790.67340.79680.028*
H8C0.00740.74010.72410.028*
C90.2418 (2)1.14619 (14)0.3491 (3)0.0210 (5)
H9A0.26651.11730.27750.025*
C100.1142 (2)1.01507 (16)0.3680 (3)0.0342 (6)
H10A0.15120.99480.29490.051*
H10B0.01961.02100.33580.051*
H10C0.13380.97300.44140.051*
C110.1376 (3)1.13771 (16)0.5363 (2)0.0274 (6)
H11A0.15391.09430.60800.041*
H11B0.04551.15410.51460.041*
H11C0.19131.18930.56570.041*
N10.43323 (16)0.73532 (11)0.43310 (16)0.0090 (4)
N20.55335 (18)0.86856 (12)0.18049 (17)0.0093 (4)
H2NA0.596 (2)0.9204 (15)0.190 (2)0.010 (6)*
H2NB0.600 (2)0.8292 (16)0.160 (2)0.019 (7)*
N30.05143 (17)0.64924 (11)0.59758 (17)0.0140 (4)
N40.17122 (19)1.10045 (12)0.41599 (19)0.0212 (4)
O10.26235 (14)0.64348 (8)0.57502 (14)0.0120 (3)
O20.27851 (16)1.22267 (10)0.37064 (17)0.0267 (4)
Cl10.60647 (5)0.54783 (3)0.42042 (5)0.00949 (12)
Cl20.26678 (5)0.56642 (3)0.27259 (5)0.01240 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.00809 (14)0.00705 (14)0.00920 (14)0.00007 (11)0.00421 (10)0.00004 (10)
C10.0088 (10)0.0124 (11)0.0097 (10)0.0003 (9)0.0028 (8)0.0004 (8)
C20.0141 (11)0.0122 (11)0.0117 (10)0.0013 (9)0.0038 (9)0.0035 (9)
C30.0148 (11)0.0082 (10)0.0124 (10)0.0016 (9)0.0021 (9)0.0005 (8)
C40.0061 (10)0.0118 (10)0.0076 (9)0.0013 (8)0.0008 (8)0.0007 (8)
C50.0065 (10)0.0109 (10)0.0091 (9)0.0014 (8)0.0015 (8)0.0007 (8)
C60.0148 (11)0.0097 (10)0.0144 (10)0.0005 (9)0.0052 (9)0.0022 (9)
C70.0140 (12)0.0201 (12)0.0347 (13)0.0027 (10)0.0104 (10)0.0025 (11)
C80.0163 (12)0.0195 (12)0.0228 (12)0.0017 (10)0.0110 (10)0.0030 (10)
C90.0066 (10)0.0182 (13)0.0414 (14)0.0015 (10)0.0121 (10)0.0117 (11)
C100.0259 (14)0.0224 (14)0.0514 (17)0.0045 (11)0.0036 (13)0.0057 (13)
C110.0332 (14)0.0287 (14)0.0242 (13)0.0007 (12)0.0145 (11)0.0035 (11)
N10.0074 (8)0.0099 (8)0.0090 (8)0.0008 (7)0.0008 (7)0.0002 (7)
N20.0117 (9)0.0057 (9)0.0118 (9)0.0007 (8)0.0055 (7)0.0001 (7)
N30.0098 (9)0.0136 (9)0.0208 (10)0.0002 (8)0.0079 (8)0.0010 (8)
N40.0225 (11)0.0159 (10)0.0262 (10)0.0018 (9)0.0075 (9)0.0009 (8)
O10.0110 (7)0.0116 (7)0.0148 (7)0.0002 (6)0.0059 (6)0.0004 (6)
O20.0270 (10)0.0195 (9)0.0385 (10)0.0038 (8)0.0174 (8)0.0034 (8)
Cl10.0099 (2)0.0079 (2)0.0125 (2)0.0002 (2)0.00632 (19)0.00006 (19)
Cl20.0128 (3)0.0128 (3)0.0116 (2)0.0007 (2)0.0029 (2)0.0008 (2)
Geometric parameters (Å, º) top
Ni—O12.0607 (13)C7—H7B0.9600
Ni—N12.0860 (16)C7—H7C0.9600
Ni—N2i2.1593 (17)C8—N31.462 (3)
Ni—Cl12.4124 (5)C8—H8A0.9600
Ni—Cl22.4139 (5)C8—H8B0.9600
Ni—Cl1ii2.4833 (5)C8—H8C0.9600
C1—N11.343 (2)C9—O21.216 (2)
C1—C21.380 (3)C9—N41.305 (3)
C1—H1A0.9300C9—H9A0.9300
C2—C31.380 (3)C10—N41.449 (3)
C2—H2A0.9300C10—H10A0.9600
C3—C41.388 (3)C10—H10B0.9600
C3—H3A0.9300C10—H10C0.9600
C4—C51.388 (3)C11—N41.454 (3)
C4—N21.417 (2)C11—H11A0.9600
C5—N11.343 (2)C11—H11B0.9600
C5—H5A0.9300C11—H11C0.9600
C6—O11.236 (2)N2—Niiii2.1593 (17)
C6—N31.322 (3)N2—H2NA0.89 (2)
C6—H6A0.9300N2—H2NB0.82 (2)
C7—N31.462 (3)Cl1—Niii2.4833 (5)
C7—H7A0.9600
O1—Ni—N188.14 (6)N3—C8—H8A109.5
O1—Ni—N2i88.87 (6)N3—C8—H8B109.5
N1—Ni—N2i88.32 (7)H8A—C8—H8B109.5
O1—Ni—Cl1171.70 (4)N3—C8—H8C109.5
N1—Ni—Cl196.57 (5)H8A—C8—H8C109.5
N2i—Ni—Cl184.46 (5)H8B—C8—H8C109.5
O1—Ni—Cl293.85 (4)O2—C9—N4126.7 (2)
N1—Ni—Cl293.17 (5)O2—C9—H9A116.7
N2i—Ni—Cl2176.93 (5)N4—C9—H9A116.7
Cl1—Ni—Cl292.710 (18)N4—C10—H10A109.5
O1—Ni—Cl1ii88.36 (4)N4—C10—H10B109.5
N1—Ni—Cl1ii174.19 (4)H10A—C10—H10B109.5
N2i—Ni—Cl1ii86.97 (5)N4—C10—H10C109.5
Cl1—Ni—Cl1ii86.372 (17)H10A—C10—H10C109.5
Cl2—Ni—Cl1ii91.690 (18)H10B—C10—H10C109.5
N1—C1—C2122.69 (18)N4—C11—H11A109.5
N1—C1—H1A118.7N4—C11—H11B109.5
C2—C1—H1A118.7H11A—C11—H11B109.5
C1—C2—C3119.24 (19)N4—C11—H11C109.5
C1—C2—H2A120.4H11A—C11—H11C109.5
C3—C2—H2A120.4H11B—C11—H11C109.5
C2—C3—C4118.92 (19)C5—N1—C1117.80 (17)
C2—C3—H3A120.5C5—N1—Ni123.02 (13)
C4—C3—H3A120.5C1—N1—Ni119.17 (13)
C3—C4—C5118.36 (18)C4—N2—Niiii118.73 (13)
C3—C4—N2120.29 (18)C4—N2—H2NA112.6 (13)
C5—C4—N2121.23 (18)Niiii—N2—H2NA97.6 (14)
N1—C5—C4122.94 (18)C4—N2—H2NB112.8 (16)
N1—C5—H5A118.5Niiii—N2—H2NB102.9 (16)
C4—C5—H5A118.5H2NA—N2—H2NB111 (2)
O1—C6—N3123.51 (19)C6—N3—C7121.13 (18)
O1—C6—H6A118.2C6—N3—C8120.52 (18)
N3—C6—H6A118.2C7—N3—C8118.24 (17)
N3—C7—H7A109.5C9—N4—C10122.0 (2)
N3—C7—H7B109.5C9—N4—C11120.33 (19)
H7A—C7—H7B109.5C10—N4—C11117.48 (19)
N3—C7—H7C109.5C6—O1—Ni126.39 (13)
H7A—C7—H7C109.5Ni—Cl1—Niii93.628 (17)
H7B—C7—H7C109.5
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NA···Cl2iv0.89 (2)2.60 (2)3.4869 (16)176.4 (1)
N2—H2NB···O2v0.84 (2)2.11 (2)2.925 (2)173.3 (1)
Symmetry codes: (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[NiCl2(C5H6N2)(C3H7NO)]·C3H7NO
Mr369.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.3684 (2), 15.0571 (3), 10.0976 (2)
β (°) 103.832 (2)
V3)1530.70 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.38 × 0.30 × 0.18
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.628, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6140, 2748, 2333
Rint0.021
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.04
No. of reflections2748
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.34

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NA···Cl2i0.89 (2)2.60 (2)3.4869 (16)176.4 (1)
N2—H2NB···O2ii0.84 (2)2.11 (2)2.925 (2)173.3 (1)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the Taoyuan Innovation Institute of Technology for supporting this work.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). Cryst. Growth Des. 8, 470–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationHsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). CrystEngComm, 11, 168–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKochel, A. (2006). Acta Cryst. E62, m1740–m1742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLah, N. & Leban, I. (2005). Acta Cryst. E61, m1708–m1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLah, N. & Leban, I. (2006). Acta Cryst. C62, m550–m552.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationQian, H.-F. & Huang, W. (2006). Acta Cryst. C62, m349–m351.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J.-Y., Feng, D.-M., He, H.-Y., Wang, Q.-X. & Zhu, L.-G. (2005). Acta Cryst. E61, m1779–m1781.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.  Web of Science CSD CrossRef CAS Google Scholar
First citationYeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, L.-G. & Kitagawa, S. (2002). Z. Kristallogr. New Cryst. Struct. 217, 579–580.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1204-m1205
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds