metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(2-Carbamoylhydrazin-1-yl­­idene)methyl-κ2N1,O]-5-meth­­oxy­phenolato-κO1}chloridocopper(II)

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 August 2012; accepted 14 August 2012; online 23 August 2012)

The asymmetric unit of the title compound, [Cu(C9H10N3O3)Cl], contains two independent mol­ecules with similar structures. The CuII cation is N,O,O′-chelated by the deprotonated Schiff base ligand and is further coordinated by a Cl anion in a distorted ClNO2 square-planar geometry. In the crystal, adjacent mol­ecules are linked by N—H⋯O and N—H⋯Cl hydrogen bonds, forming a two-dimensional network parallel to [100].

Related literature

For similar copper(II) complexes, see: Wang et al. (2008[Wang, J.-L., Liu, B., Yang, B.-S. & Huang, S.-P. (2008). J. Struct. Chem. 49, 570-574.]); Patole et al. (2001[Patole, J., Dutta, S., Padhye, S. & SInn, E. (2001). Inorg. Chim. Acta, 318, 207-211.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H10N3O3)Cl]

  • Mr = 307.19

  • Monoclinic, P 21 /n

  • a = 11.8413 (6) Å

  • b = 14.2791 (7) Å

  • c = 13.5751 (6) Å

  • β = 102.501 (2)°

  • V = 2240.90 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.560, Tmax = 0.669

  • 20852 measured reflections

  • 5562 independent reflections

  • 3809 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.02

  • 5562 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl2 0.88 2.42 3.203 (3) 149
N3—H2⋯O2i 0.88 2.01 2.824 (4) 153
N3—H3⋯Cl2 0.88 2.51 3.297 (3) 149
N5—H4⋯Cl1ii 0.88 2.40 3.212 (3) 154
N6—H5⋯O5iii 0.88 2.09 2.897 (3) 152
N6—H6⋯Cl1ii 0.88 2.56 3.351 (3) 149
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salicylaldehyde thiosemicarbazone and its subsituted derivatives are Schiff bases that are capable of N,N',O-chelation to transition metal ions, a feature that has been documented in a plethora of metal derivatives. Several copper derivatives have been reported (Wang et al., 2008; Patole et al., 2001). The CuII atom in CuCl(C9H10N3O3) (Scheme I) is N,N',O-chelated by the deprotonated Schiff base, and it exists in a square planar environment in the two independent molecules (Fig. 1). Adjacent molecules are linked by N–H···O and N–H···Cl hydrogen bonds to form a two-dimensional network (Table 1).

Related literature top

For similar copper(II) complexes, see: Wang et al. (2008); Patole et al. (2001).

Experimental top

The Schiff base was prepared by heating 2-hydroxy-4-methoxybenzaldehyde (0.152 g,1 mmol) and semicarbazide hydrochloride (0.111 g,1 mmol) for 3 h. Copper(II) dichloride dihydrate (0.170 g, 1 mmol) was added to the solution and reflux was continued for another 2 h. Dark green colored crystals were isolated from the cool solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H-atoms were similarly treated (N–H 0.88 Å).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of CuCl(C9H10N3O3) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
{2-[(2-Carbamoylhydrazin-1-ylidene)methyl-κ2N1,O]- 5-methoxyphenolato-κO1}chloridocopper(II) top
Crystal data top
[Cu(C9H10N3O3)Cl]F(000) = 1240
Mr = 307.19Dx = 1.821 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5495 reflections
a = 11.8413 (6) Åθ = 2.3–27.0°
b = 14.2791 (7) ŵ = 2.19 mm1
c = 13.5751 (6) ÅT = 295 K
β = 102.501 (2)°Prism, dark green
V = 2240.90 (19) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII
diffractometer
5562 independent reflections
Radiation source: fine-focus sealed tube3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.560, Tmax = 0.669k = 1719
20852 measured reflectionsl = 1118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0443P)2 + 2.0625P]
where P = (Fo2 + 2Fc2)/3
5562 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C9H10N3O3)Cl]V = 2240.90 (19) Å3
Mr = 307.19Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.8413 (6) ŵ = 2.19 mm1
b = 14.2791 (7) ÅT = 295 K
c = 13.5751 (6) Å0.30 × 0.25 × 0.20 mm
β = 102.501 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
5562 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3809 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.669Rint = 0.047
20852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.57 e Å3
5562 reflectionsΔρmin = 0.37 e Å3
307 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29935 (3)0.85386 (3)0.32124 (3)0.03357 (12)
Cu20.79752 (3)0.56618 (3)0.33325 (3)0.03219 (12)
Cl10.11883 (7)0.88631 (6)0.33195 (7)0.0418 (2)
Cl20.61629 (7)0.53124 (6)0.33804 (8)0.0509 (3)
O10.6111 (2)1.23052 (19)0.4410 (2)0.0569 (7)
O20.35126 (19)0.97847 (15)0.33806 (18)0.0365 (5)
O30.25915 (19)0.72346 (16)0.2833 (2)0.0446 (6)
O41.1173 (2)0.19137 (16)0.4510 (2)0.0488 (6)
O50.85178 (17)0.44138 (14)0.35581 (17)0.0334 (5)
O60.75675 (19)0.69642 (15)0.29078 (18)0.0380 (5)
N10.4534 (2)0.80675 (18)0.3315 (2)0.0324 (6)
N20.4528 (2)0.71236 (19)0.3109 (2)0.0396 (7)
H10.51680.68020.31320.048*
N30.3391 (3)0.58301 (19)0.2679 (3)0.0495 (8)
H20.27090.55590.25220.059*
H30.40230.54970.27100.059*
N40.9510 (2)0.61509 (17)0.34674 (18)0.0276 (5)
N50.9498 (2)0.70935 (17)0.3251 (2)0.0330 (6)
H41.01360.74250.33140.040*
N60.8360 (2)0.83611 (18)0.2675 (2)0.0400 (7)
H50.76780.86250.24710.048*
H60.89930.86920.27060.048*
C10.5869 (3)1.1399 (2)0.4154 (3)0.0409 (8)
C20.4767 (3)1.1034 (2)0.3879 (2)0.0357 (7)
H2A0.41321.14260.38430.043*
C30.4589 (3)1.0082 (2)0.3654 (2)0.0310 (7)
C40.5574 (3)0.9494 (2)0.3722 (2)0.0325 (7)
C50.6682 (3)0.9899 (3)0.3998 (3)0.0414 (8)
H5A0.73290.95190.40400.050*
C60.6834 (3)1.0825 (3)0.4205 (3)0.0459 (9)
H6A0.75761.10750.43800.055*
C70.5192 (4)1.2946 (3)0.4323 (3)0.0632 (12)
H7A0.54931.35550.45350.095*
H7B0.46791.27460.47410.095*
H7C0.47761.29740.36330.095*
C80.5499 (3)0.8510 (2)0.3526 (2)0.0340 (7)
H80.61790.81760.35520.041*
C90.3466 (3)0.6727 (2)0.2867 (3)0.0366 (7)
C101.0904 (3)0.2828 (2)0.4312 (2)0.0349 (7)
C110.9796 (3)0.3175 (2)0.4037 (2)0.0326 (7)
H110.91710.27700.39880.039*
C120.9595 (2)0.4135 (2)0.3829 (2)0.0268 (6)
C131.0564 (3)0.4741 (2)0.3919 (2)0.0291 (6)
C141.1674 (3)0.4347 (2)0.4214 (3)0.0376 (8)
H141.23130.47400.42790.045*
C151.1859 (3)0.3423 (2)0.4406 (3)0.0412 (8)
H151.26070.31880.45980.049*
C161.0267 (3)0.1256 (2)0.4431 (3)0.0516 (10)
H16A1.05870.06430.45930.077*
H16B0.98110.12570.37540.077*
H16C0.97880.14210.48910.077*
C171.0479 (3)0.5715 (2)0.3717 (2)0.0311 (7)
H171.11580.60560.37670.037*
C180.8432 (3)0.7473 (2)0.2934 (2)0.0322 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0244 (2)0.0258 (2)0.0503 (3)0.00060 (15)0.00748 (16)0.00107 (17)
Cu20.0229 (2)0.0211 (2)0.0503 (3)0.00078 (14)0.00288 (16)0.00072 (16)
Cl10.0258 (4)0.0332 (4)0.0670 (6)0.0013 (3)0.0116 (4)0.0007 (4)
Cl20.0247 (4)0.0293 (4)0.0961 (8)0.0006 (3)0.0073 (4)0.0012 (4)
O10.0594 (18)0.0400 (16)0.0694 (19)0.0185 (13)0.0099 (14)0.0094 (13)
O20.0285 (12)0.0257 (12)0.0548 (15)0.0006 (9)0.0081 (10)0.0012 (10)
O30.0277 (12)0.0296 (13)0.0749 (18)0.0020 (10)0.0079 (11)0.0087 (12)
O40.0478 (16)0.0282 (13)0.0696 (18)0.0131 (11)0.0107 (12)0.0097 (12)
O50.0226 (11)0.0229 (11)0.0524 (14)0.0008 (8)0.0031 (9)0.0013 (9)
O60.0301 (12)0.0244 (12)0.0585 (15)0.0019 (9)0.0074 (10)0.0048 (10)
N10.0311 (14)0.0290 (14)0.0372 (15)0.0004 (11)0.0075 (11)0.0017 (11)
N20.0329 (15)0.0260 (14)0.0595 (19)0.0039 (11)0.0092 (13)0.0029 (13)
N30.0340 (17)0.0280 (16)0.085 (2)0.0026 (12)0.0091 (15)0.0099 (15)
N40.0266 (13)0.0216 (13)0.0342 (14)0.0005 (10)0.0056 (10)0.0025 (10)
N50.0277 (14)0.0197 (13)0.0507 (17)0.0001 (10)0.0068 (11)0.0050 (11)
N60.0308 (15)0.0249 (14)0.0628 (19)0.0023 (11)0.0072 (13)0.0098 (13)
C10.048 (2)0.037 (2)0.0372 (19)0.0124 (16)0.0101 (15)0.0028 (15)
C20.0386 (19)0.0313 (18)0.0373 (18)0.0030 (14)0.0085 (14)0.0019 (14)
C30.0302 (17)0.0312 (17)0.0322 (17)0.0043 (13)0.0081 (12)0.0009 (13)
C40.0277 (16)0.0359 (18)0.0348 (17)0.0039 (13)0.0086 (12)0.0009 (13)
C50.0289 (18)0.047 (2)0.048 (2)0.0052 (15)0.0064 (14)0.0006 (16)
C60.0335 (19)0.052 (2)0.050 (2)0.0151 (16)0.0043 (15)0.0052 (17)
C70.086 (3)0.041 (2)0.060 (3)0.006 (2)0.011 (2)0.0008 (19)
C80.0242 (16)0.0371 (19)0.0413 (19)0.0014 (13)0.0081 (13)0.0018 (14)
C90.0308 (18)0.0292 (17)0.049 (2)0.0027 (13)0.0069 (14)0.0014 (15)
C100.0394 (19)0.0269 (17)0.0378 (19)0.0088 (13)0.0071 (13)0.0021 (13)
C110.0319 (17)0.0275 (17)0.0374 (18)0.0013 (12)0.0058 (13)0.0003 (13)
C120.0248 (15)0.0261 (16)0.0287 (16)0.0025 (11)0.0042 (11)0.0012 (12)
C130.0258 (16)0.0264 (16)0.0346 (17)0.0034 (12)0.0052 (12)0.0008 (12)
C140.0257 (17)0.0343 (19)0.051 (2)0.0021 (13)0.0044 (14)0.0026 (15)
C150.0286 (18)0.038 (2)0.056 (2)0.0098 (14)0.0055 (15)0.0082 (16)
C160.060 (3)0.0251 (18)0.070 (3)0.0024 (17)0.015 (2)0.0074 (17)
C170.0242 (16)0.0297 (17)0.0392 (18)0.0005 (12)0.0063 (12)0.0002 (13)
C180.0305 (17)0.0270 (16)0.0397 (18)0.0024 (13)0.0087 (13)0.0001 (13)
Geometric parameters (Å, º) top
Cu1—O21.880 (2)N6—H60.8800
Cu1—N11.920 (3)C1—C21.380 (5)
Cu1—O31.963 (2)C1—C61.396 (5)
Cu1—Cl12.2225 (9)C2—C31.398 (4)
Cu2—O51.897 (2)C2—H2A0.9300
Cu2—N41.918 (2)C3—C41.424 (4)
Cu2—O61.976 (2)C4—C51.408 (4)
Cu2—Cl22.2179 (9)C4—C81.429 (4)
O1—C11.354 (4)C5—C61.356 (5)
O1—C71.408 (5)C5—H5A0.9300
O2—C31.319 (4)C6—H6A0.9300
O3—C91.257 (4)C7—H7A0.9600
O4—C101.357 (4)C7—H7B0.9600
O4—C161.412 (4)C7—H7C0.9600
O5—C121.311 (3)C8—H80.9300
O6—C181.250 (4)C10—C111.376 (4)
N1—C81.283 (4)C10—C151.398 (5)
N1—N21.376 (4)C11—C121.409 (4)
N2—C91.353 (4)C11—H110.9300
N2—H10.8800C12—C131.422 (4)
N3—C91.305 (4)C13—C141.406 (4)
N3—H20.8800C13—C171.417 (4)
N3—H30.8800C14—C151.354 (4)
N4—C171.284 (4)C14—H140.9300
N4—N51.377 (3)C15—H150.9300
N5—C181.355 (4)C16—H16A0.9600
N5—H40.8800C16—H16B0.9600
N6—C181.314 (4)C16—H16C0.9600
N6—H50.8800C17—H170.9300
O2—Cu1—N192.42 (10)C6—C5—C4122.0 (3)
O2—Cu1—O3169.71 (10)C6—C5—H5A119.0
N1—Cu1—O381.91 (10)C4—C5—H5A119.0
O2—Cu1—Cl195.08 (7)C5—C6—C1119.5 (3)
N1—Cu1—Cl1168.53 (8)C5—C6—H6A120.3
O3—Cu1—Cl191.89 (7)C1—C6—H6A120.3
O5—Cu2—N492.63 (10)O1—C7—H7A109.5
O5—Cu2—O6169.86 (10)O1—C7—H7B109.5
N4—Cu2—O681.48 (10)H7A—C7—H7B109.5
O5—Cu2—Cl294.59 (7)O1—C7—H7C109.5
N4—Cu2—Cl2169.05 (8)H7A—C7—H7C109.5
O6—Cu2—Cl292.49 (7)H7B—C7—H7C109.5
C1—O1—C7118.8 (3)N1—C8—C4122.8 (3)
C3—O2—Cu1127.6 (2)N1—C8—H8118.6
C9—O3—Cu1112.7 (2)C4—C8—H8118.6
C10—O4—C16118.8 (3)O3—C9—N3122.5 (3)
C12—O5—Cu2127.32 (19)O3—C9—N2118.8 (3)
C18—O6—Cu2113.1 (2)N3—C9—N2118.6 (3)
C8—N1—N2119.5 (3)O4—C10—C11124.7 (3)
C8—N1—Cu1129.0 (2)O4—C10—C15114.6 (3)
N2—N1—Cu1111.46 (19)C11—C10—C15120.7 (3)
C9—N2—N1115.0 (3)C10—C11—C12120.9 (3)
C9—N2—H1122.5C10—C11—H11119.5
N1—N2—H1122.5C12—C11—H11119.5
C9—N3—H2120.0O5—C12—C11117.6 (3)
C9—N3—H3120.0O5—C12—C13123.9 (3)
H2—N3—H3120.0C11—C12—C13118.5 (3)
C17—N4—N5119.8 (3)C14—C13—C17118.1 (3)
C17—N4—Cu2128.5 (2)C14—C13—C12117.9 (3)
N5—N4—Cu2111.69 (18)C17—C13—C12124.0 (3)
C18—N5—N4115.1 (2)C15—C14—C13123.2 (3)
C18—N5—H4122.4C15—C14—H14118.4
N4—N5—H4122.4C13—C14—H14118.4
C18—N6—H5120.0C14—C15—C10118.7 (3)
C18—N6—H6120.0C14—C15—H15120.6
H5—N6—H6120.0C10—C15—H15120.6
O1—C1—C2124.5 (3)O4—C16—H16A109.5
O1—C1—C6115.0 (3)O4—C16—H16B109.5
C2—C1—C6120.5 (3)H16A—C16—H16B109.5
C1—C2—C3121.0 (3)O4—C16—H16C109.5
C1—C2—H2A119.5H16A—C16—H16C109.5
C3—C2—H2A119.5H16B—C16—H16C109.5
O2—C3—C2117.7 (3)N4—C17—C13123.3 (3)
O2—C3—C4123.8 (3)N4—C17—H17118.3
C2—C3—C4118.5 (3)C13—C17—H17118.3
C5—C4—C3118.5 (3)O6—C18—N6123.2 (3)
C5—C4—C8118.0 (3)O6—C18—N5118.5 (3)
C3—C4—C8123.4 (3)N6—C18—N5118.2 (3)
N1—Cu1—O2—C310.5 (3)C2—C3—C4—C8179.0 (3)
O3—Cu1—O2—C366.8 (7)C3—C4—C5—C60.5 (5)
Cl1—Cu1—O2—C3160.8 (2)C8—C4—C5—C6179.5 (3)
O2—Cu1—O3—C959.4 (7)C4—C5—C6—C10.5 (5)
N1—Cu1—O3—C92.3 (2)O1—C1—C6—C5177.6 (3)
Cl1—Cu1—O3—C9168.0 (2)C2—C1—C6—C51.0 (5)
N4—Cu2—O5—C127.3 (3)N2—N1—C8—C4178.3 (3)
O6—Cu2—O5—C1261.4 (6)Cu1—N1—C8—C40.6 (5)
Cl2—Cu2—O5—C12164.5 (2)C5—C4—C8—N1176.7 (3)
O5—Cu2—O6—C1855.8 (6)C3—C4—C8—N13.2 (5)
N4—Cu2—O6—C180.9 (2)Cu1—O3—C9—N3177.4 (3)
Cl2—Cu2—O6—C18169.9 (2)Cu1—O3—C9—N22.5 (4)
O2—Cu1—N1—C85.9 (3)N1—N2—C9—O31.1 (5)
O3—Cu1—N1—C8177.3 (3)N1—N2—C9—N3178.8 (3)
Cl1—Cu1—N1—C8124.9 (4)C16—O4—C10—C110.3 (5)
O2—Cu1—N1—N2173.0 (2)C16—O4—C10—C15179.7 (3)
O3—Cu1—N1—N21.7 (2)O4—C10—C11—C12179.0 (3)
Cl1—Cu1—N1—N256.1 (5)C15—C10—C11—C121.0 (5)
C8—N1—N2—C9178.2 (3)Cu2—O5—C12—C11174.7 (2)
Cu1—N1—N2—C90.9 (3)Cu2—O5—C12—C135.6 (4)
O5—Cu2—N4—C175.5 (3)C10—C11—C12—O5179.1 (3)
O6—Cu2—N4—C17177.2 (3)C10—C11—C12—C130.7 (4)
Cl2—Cu2—N4—C17125.8 (4)O5—C12—C13—C14179.8 (3)
O5—Cu2—N4—N5174.17 (19)C11—C12—C13—C140.1 (4)
O6—Cu2—N4—N52.46 (19)O5—C12—C13—C170.7 (5)
Cl2—Cu2—N4—N554.6 (5)C11—C12—C13—C17179.0 (3)
C17—N4—N5—C18175.9 (3)C17—C13—C14—C15178.6 (3)
Cu2—N4—N5—C183.7 (3)C12—C13—C14—C150.5 (5)
C7—O1—C1—C25.1 (5)C13—C14—C15—C100.2 (5)
C7—O1—C1—C6176.3 (3)O4—C10—C15—C14179.4 (3)
O1—C1—C2—C3178.0 (3)C11—C10—C15—C140.6 (5)
C6—C1—C2—C30.5 (5)N5—N4—C17—C13177.9 (3)
Cu1—O2—C3—C2170.5 (2)Cu2—N4—C17—C131.7 (5)
Cu1—O2—C3—C410.1 (4)C14—C13—C17—N4178.2 (3)
C1—C2—C3—O2178.9 (3)C12—C13—C17—N42.7 (5)
C1—C2—C3—C40.5 (5)Cu2—O6—C18—N6179.5 (3)
O2—C3—C4—C5178.4 (3)Cu2—O6—C18—N51.0 (4)
C2—C3—C4—C51.0 (4)N4—N5—C18—O63.2 (4)
O2—C3—C4—C81.6 (5)N4—N5—C18—N6177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl20.882.423.203 (3)149
N3—H2···O2i0.882.012.824 (4)153
N3—H3···Cl20.882.513.297 (3)149
N5—H4···Cl1ii0.882.403.212 (3)154
N6—H5···O5iii0.882.092.897 (3)152
N6—H6···Cl1ii0.882.563.351 (3)149
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C9H10N3O3)Cl]
Mr307.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.8413 (6), 14.2791 (7), 13.5751 (6)
β (°) 102.501 (2)
V3)2240.90 (19)
Z8
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.560, 0.669
No. of measured, independent and
observed [I > 2σ(I)] reflections
20852, 5562, 3809
Rint0.047
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.02
No. of reflections5562
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.37

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl20.882.423.203 (3)148.5
N3—H2···O2i0.882.012.824 (4)153.0
N3—H3···Cl20.882.513.297 (3)148.6
N5—H4···Cl1ii0.882.403.212 (3)153.5
N6—H5···O5iii0.882.092.897 (3)152.2
N6—H6···Cl1ii0.882.563.351 (3)149.4
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatole, J., Dutta, S., Padhye, S. & SInn, E. (2001). Inorg. Chim. Acta, 318, 207–211.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-L., Liu, B., Yang, B.-S. & Huang, S.-P. (2008). J. Struct. Chem. 49, 570–574.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds