metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-azido-κ4N1:N1′-bis­­({1-[(E)-phen­yl(pyridin-2-yl-κN)methyl­­idene]thio­semi­carbazidato-κ2N1,S}copper(II))

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 August 2012; accepted 14 August 2012; online 23 August 2012)

In the title compound, [Cu2(C13H11N4S)2(N3)2], the CuII cation is N,N′,S-chelated by the deprotonated Schiff base ligand and is coordinated by the azide anion, while an N atom from an adjacent azide anion bridges the CuII cation at the apical position with a longer Cu—N distance of 2.533 (3) Å, completing the distorted N4S square-pyramidal coordination geometry. A pair of azide anions bridge the two CuII cations, forming a centrosymmetric binuclear mol­ecule. In the crystal, the binuclear mol­ecules are linked by an N—H⋯N hydrogen bond into a ribbon running along the a axis.

Related literature

For the structure of the parent Schiff base, see: Casas et al. (2003[Casas, J. S., Castellano, E. E., Ellena, J., Tasende, M. S. G., Sánchez, A., Sordo, J. & Vidarte, M. J. (2003). Inorg. Chem. 42, 2584-2595.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H11N4S)2(N3)2]

  • Mr = 721.78

  • Monoclinic, P 21 /c

  • a = 11.2462 (12) Å

  • b = 7.2344 (10) Å

  • c = 18.519 (2) Å

  • β = 96.653 (5)°

  • V = 1496.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.604, Tmax = 0.690

  • 13614 measured reflections

  • 3747 independent reflections

  • 2973 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.134

  • S = 1.04

  • 3747 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N2i 0.87 (1) 2.22 (1) 3.075 (3) 168 (4)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Benzoylpyridine thiosemicarbazone (Casas et al., 2003) is a Schiff base that is capable of N,N',S-chelation to metal ions. The CuII atom in [Cu(N3)(C13H11N4S)]2 (Scheme I) is N,N',S-chelated by the deprotonated Schiff base, and it exists in a square pyramidal environment (Fig. 1). Two molecules are disposed about a center-of-inversion and the distance between the copper atom and their apical nitrogen atom of the other azide is 2.533 (3) Å. Adjacent inversion-related pairs of molecules are linked by an N–H···N hydrogen bond to form a ribbon running along the a-axis (Table 1).

Related literature top

For the structure of the parent Schiff base, see: Casas et al. (2003).

Experimental top

The Schiff base ligand by heating 2-benzoylpyridine (0.183 g,1 mmol) and thiosemicarbazide (0.091 g,1 mmol) for 3 h. Copper acetate hydrate (0.199 g,1 mmol) and sodium azide (0.065 g,1 mmol) was added and the solution heated for another 2 h. Dark green colored crystals were obtained from the cool solution.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms were located in a difference Fouier and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors tied by a factor of 1.2 times.

Omitted owing interference from the beam stop was (1 0 0).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Cu(N3)(C13H11N4S)]2 at the 570% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-µ-azido-κ4N1:N1'-bis({1-[(E)-phenyl(pyridin- 2-yl-κN)methylidene]thiosemicarbazidato- κ2N1,S}copper(II)) top
Crystal data top
[Cu2(C13H11N4S)2(N3)2]F(000) = 732
Mr = 721.78Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4663 reflections
a = 11.2462 (12) Åθ = 3.0–28.3°
b = 7.2344 (10) ŵ = 1.61 mm1
c = 18.519 (2) ÅT = 295 K
β = 96.653 (5)°Prism, dark green
V = 1496.5 (3) Å30.35 × 0.30 × 0.25 mm
Z = 2
Data collection top
Bruker Kappa APEXII
diffractometer
3747 independent reflections
Radiation source: fine-focus sealed tube2973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.604, Tmax = 0.690k = 99
13614 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1161P]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu2(C13H11N4S)2(N3)2]V = 1496.5 (3) Å3
Mr = 721.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.2462 (12) ŵ = 1.61 mm1
b = 7.2344 (10) ÅT = 295 K
c = 18.519 (2) Å0.35 × 0.30 × 0.25 mm
β = 96.653 (5)°
Data collection top
Bruker Kappa APEXII
diffractometer
3747 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2973 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.690Rint = 0.075
13614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.54 e Å3
3747 reflectionsΔρmin = 0.66 e Å3
205 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40816 (2)0.66511 (5)0.521018 (15)0.03737 (14)
S10.31362 (6)0.55753 (11)0.61376 (3)0.0469 (2)
N10.24572 (17)0.7151 (3)0.47503 (10)0.0345 (4)
N20.14750 (19)0.6402 (3)0.50005 (12)0.0408 (5)
N30.0841 (2)0.4802 (5)0.59265 (14)0.0617 (8)
H10.023 (2)0.456 (6)0.5610 (15)0.074*
H20.101 (3)0.422 (5)0.6343 (12)0.074*
N40.44641 (18)0.8236 (3)0.43679 (11)0.0377 (5)
N50.5749 (2)0.6199 (4)0.55657 (12)0.0468 (6)
N60.6113 (2)0.5803 (4)0.61823 (13)0.0487 (6)
N70.6497 (3)0.5408 (5)0.67545 (14)0.0721 (9)
C10.1174 (2)0.8573 (3)0.37564 (12)0.0340 (5)
C20.0861 (3)0.7823 (4)0.30754 (14)0.0454 (6)
H2A0.14120.71090.28610.054*
C30.0264 (3)0.8127 (5)0.27110 (15)0.0506 (7)
H30.04700.76270.22510.061*
C40.1078 (2)0.9171 (5)0.30306 (16)0.0506 (7)
H40.18480.93390.27960.061*
C50.0752 (3)0.9963 (5)0.36967 (17)0.0556 (8)
H50.12941.07070.39060.067*
C60.0364 (2)0.9669 (4)0.40563 (14)0.0456 (6)
H60.05761.02160.45070.055*
C70.2345 (2)0.8130 (3)0.41657 (12)0.0335 (5)
C80.1738 (2)0.5609 (4)0.56389 (13)0.0414 (6)
C90.3482 (2)0.8757 (4)0.39278 (13)0.0349 (5)
C100.3555 (2)0.9761 (4)0.33033 (14)0.0438 (6)
H100.28661.01150.30100.053*
C110.4675 (3)1.0232 (5)0.31207 (16)0.0510 (7)
H110.47501.09100.27020.061*
C120.5668 (3)0.9688 (5)0.35637 (17)0.0546 (7)
H120.64280.99780.34460.065*
C130.5534 (2)0.8708 (4)0.41863 (16)0.0460 (6)
H130.62140.83640.44900.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03127 (19)0.0431 (2)0.0358 (2)0.00031 (11)0.00433 (13)0.00303 (12)
S10.0438 (4)0.0589 (5)0.0356 (3)0.0033 (3)0.0049 (3)0.0100 (3)
N10.0312 (9)0.0386 (12)0.0328 (9)0.0013 (8)0.0002 (7)0.0049 (8)
N20.0332 (10)0.0478 (14)0.0404 (11)0.0046 (9)0.0003 (8)0.0132 (9)
N30.0541 (15)0.079 (2)0.0504 (14)0.0192 (14)0.0032 (11)0.0287 (14)
N40.0325 (10)0.0390 (13)0.0410 (11)0.0018 (8)0.0018 (8)0.0002 (8)
N50.0366 (11)0.0595 (16)0.0412 (12)0.0036 (11)0.0092 (9)0.0006 (11)
N60.0408 (11)0.0518 (16)0.0499 (13)0.0046 (10)0.0099 (10)0.0094 (11)
N70.081 (2)0.083 (2)0.0462 (14)0.0153 (16)0.0196 (13)0.0044 (14)
C10.0341 (11)0.0368 (14)0.0308 (11)0.0008 (9)0.0026 (9)0.0077 (9)
C20.0456 (14)0.0489 (17)0.0402 (13)0.0035 (12)0.0013 (10)0.0058 (12)
C30.0508 (16)0.061 (2)0.0370 (13)0.0032 (13)0.0064 (11)0.0039 (12)
C40.0367 (13)0.060 (2)0.0527 (15)0.0040 (12)0.0052 (11)0.0219 (14)
C50.0421 (14)0.065 (2)0.0608 (17)0.0200 (14)0.0120 (12)0.0086 (15)
C60.0455 (14)0.0547 (18)0.0368 (12)0.0050 (12)0.0057 (10)0.0012 (11)
C70.0319 (11)0.0343 (14)0.0337 (11)0.0022 (9)0.0012 (9)0.0002 (9)
C80.0409 (13)0.0449 (17)0.0370 (12)0.0025 (11)0.0006 (10)0.0075 (10)
C90.0348 (11)0.0332 (13)0.0369 (11)0.0001 (10)0.0050 (9)0.0004 (9)
C100.0446 (14)0.0453 (17)0.0418 (13)0.0020 (11)0.0062 (11)0.0050 (11)
C110.0551 (17)0.0497 (18)0.0508 (15)0.0051 (13)0.0171 (13)0.0057 (13)
C120.0425 (14)0.055 (2)0.0695 (19)0.0090 (13)0.0208 (13)0.0018 (15)
C130.0336 (12)0.0482 (17)0.0557 (16)0.0032 (11)0.0034 (11)0.0029 (12)
Geometric parameters (Å, º) top
Cu1—N51.942 (2)C2—C31.381 (4)
Cu1—N11.9578 (19)C2—H2A0.9300
Cu1—N42.022 (2)C3—C41.373 (4)
Cu1—S12.2603 (8)C3—H30.9300
Cu1—N5i2.533 (3)C4—C51.371 (5)
S1—C81.729 (3)C4—H40.9300
N1—C71.287 (3)C5—C61.368 (4)
N1—N21.359 (3)C5—H50.9300
N2—C81.316 (3)C6—H60.9300
N3—C81.329 (4)C7—C91.472 (3)
N3—H10.872 (10)C9—C101.376 (3)
N3—H20.879 (10)C10—C111.384 (4)
N4—C131.331 (3)C10—H100.9300
N4—C91.348 (3)C11—C121.364 (4)
N5—N61.202 (3)C11—H110.9300
N6—N71.134 (3)C12—C131.377 (4)
C1—C61.372 (4)C12—H120.9300
C1—C21.380 (4)C13—H130.9300
C1—C71.477 (3)
N5—Cu1—N1173.91 (9)C2—C3—H3120.1
N5—Cu1—N494.22 (9)C5—C4—C3119.7 (2)
N1—Cu1—N480.26 (8)C5—C4—H4120.1
N5—Cu1—S1101.84 (7)C3—C4—H4120.1
N1—Cu1—S184.08 (6)C6—C5—C4120.5 (3)
N4—Cu1—S1160.44 (7)C6—C5—H5119.7
N5—Cu1—N5i85.54 (9)C4—C5—H5119.7
N1—Cu1—N5i91.79 (8)C5—C6—C1120.5 (3)
N4—Cu1—N5i89.28 (8)C5—C6—H6119.8
S1—Cu1—N5i102.92 (6)C1—C6—H6119.8
C8—S1—Cu193.90 (9)N1—C7—C9114.7 (2)
C7—N1—N2120.1 (2)N1—C7—C1123.1 (2)
C7—N1—Cu1117.58 (17)C9—C7—C1122.3 (2)
N2—N1—Cu1122.15 (15)N2—C8—N3116.7 (2)
C8—N2—N1111.9 (2)N2—C8—S1125.6 (2)
C8—N3—H1114 (2)N3—C8—S1117.71 (19)
C8—N3—H2118 (3)N4—C9—C10122.1 (2)
H1—N3—H2124 (4)N4—C9—C7114.3 (2)
C13—N4—C9118.5 (2)C10—C9—C7123.6 (2)
C13—N4—Cu1128.30 (19)C9—C10—C11118.7 (3)
C9—N4—Cu1113.11 (16)C9—C10—H10120.7
N6—N5—Cu1124.8 (2)C11—C10—H10120.7
N7—N6—N5177.3 (3)C12—C11—C10119.1 (3)
C6—C1—C2119.1 (2)C12—C11—H11120.4
C6—C1—C7120.8 (2)C10—C11—H11120.4
C2—C1—C7120.1 (2)C11—C12—C13119.4 (3)
C1—C2—C3120.4 (3)C11—C12—H12120.3
C1—C2—H2A119.8C13—C12—H12120.3
C3—C2—H2A119.8N4—C13—C12122.2 (3)
C4—C3—C2119.8 (3)N4—C13—H13118.9
C4—C3—H3120.1C12—C13—H13118.9
N5—Cu1—S1—C8167.21 (13)C2—C1—C6—C52.2 (4)
N1—Cu1—S1—C811.35 (12)C7—C1—C6—C5175.2 (3)
N4—Cu1—S1—C848.2 (2)N2—N1—C7—C9176.1 (2)
N5i—Cu1—S1—C879.13 (11)Cu1—N1—C7—C90.5 (3)
N4—Cu1—N1—C71.37 (19)N2—N1—C7—C13.0 (4)
S1—Cu1—N1—C7169.6 (2)Cu1—N1—C7—C1178.59 (18)
N5i—Cu1—N1—C787.6 (2)C6—C1—C7—N165.7 (4)
N4—Cu1—N1—N2176.9 (2)C2—C1—C7—N1111.7 (3)
S1—Cu1—N1—N214.88 (19)C6—C1—C7—C9115.3 (3)
N5i—Cu1—N1—N287.9 (2)C2—C1—C7—C967.3 (3)
C7—N1—N2—C8173.5 (2)N1—N2—C8—N3178.8 (3)
Cu1—N1—N2—C811.1 (3)N1—N2—C8—S12.6 (4)
N5—Cu1—N4—C130.4 (2)Cu1—S1—C8—N211.5 (3)
N1—Cu1—N4—C13177.8 (3)Cu1—S1—C8—N3170.0 (3)
S1—Cu1—N4—C13144.9 (2)C13—N4—C9—C100.3 (4)
N5i—Cu1—N4—C1385.9 (2)Cu1—N4—C9—C10176.6 (2)
N5—Cu1—N4—C9175.44 (18)C13—N4—C9—C7178.6 (2)
N1—Cu1—N4—C91.97 (17)Cu1—N4—C9—C72.2 (3)
S1—Cu1—N4—C939.2 (3)N1—C7—C9—N41.2 (3)
N5i—Cu1—N4—C989.97 (18)C1—C7—C9—N4179.7 (2)
N4—Cu1—N5—N6155.8 (3)N1—C7—C9—C10177.6 (3)
S1—Cu1—N5—N613.0 (3)C1—C7—C9—C101.5 (4)
N5i—Cu1—N5—N6115.3 (3)N4—C9—C10—C110.6 (4)
C6—C1—C2—C32.0 (4)C7—C9—C10—C11178.1 (3)
C7—C1—C2—C3175.5 (3)C9—C10—C11—C120.0 (5)
C1—C2—C3—C40.5 (5)C10—C11—C12—C130.9 (5)
C2—C3—C4—C52.6 (5)C9—N4—C13—C120.7 (4)
C3—C4—C5—C62.3 (5)Cu1—N4—C13—C12175.0 (2)
C4—C5—C6—C10.1 (5)C11—C12—C13—N41.3 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N2ii0.87 (1)2.22 (1)3.075 (3)168 (4)
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C13H11N4S)2(N3)2]
Mr721.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.2462 (12), 7.2344 (10), 18.519 (2)
β (°) 96.653 (5)
V3)1496.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.604, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
13614, 3747, 2973
Rint0.075
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.134, 1.04
No. of reflections3747
No. of parameters205
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.66

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N2i0.87 (1)2.22 (1)3.075 (3)168 (4)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Castellano, E. E., Ellena, J., Tasende, M. S. G., Sánchez, A., Sordo, J. & Vidarte, M. J. (2003). Inorg. Chem. 42, 2584–2595.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds