organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­benzo­yl)-6-(4-chloro­phen­yl)-2,4-di­methyl­benzo­nitrile

aSchool of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China, and bXinyang Agricultural College, Xinyang, Henan 464000, People's Republic of China
*Correspondence e-mail: hxxzhym@sina.com

(Received 19 August 2012; accepted 21 August 2012; online 25 August 2012)

In the title compound, C22H15Cl2NO, the terminal chloro­benzene rings are oriented at 44.51 (15) and 86.06 (17)° with respect to the central polysubstituted benzene ring, and make a dihedral angle of 49.48 (17)°with each other. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N inter­actions.

Related literature

For background to the title compound, see: Ma (2003[Ma, S. (2003). Acc. Chem. Res. 36, 701-712.], 2005[Ma, S. (2005). Chem. Rev. 105, 2829-2871.], 2007[Ma, S. (2007). Aldrichim. Acta, 40, 91-102.]); Hoffmann-Röder et al. (2004[Hoffmann-Röder, A. & Krause, N. (2004). Angew. Chem. Int. Ed. 43, 1196-1216.]). For related structures, see: Zhang et al. (2011[Zhang, X., Jia, X., Fang, L., Liu, N., Wang, J. & Fan, X. (2011). Org. Lett. 13, 5024-5027.]); Fun et al. (2012[Fun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1877-o1878.]); Jagadeesan et al. (2011[Jagadeesan, G., Sethusankar, K., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2177.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15Cl2NO

  • Mr = 380.25

  • Monoclinic, P 21 /c

  • a = 7.8102 (12) Å

  • b = 30.032 (5) Å

  • c = 8.2054 (13) Å

  • β = 103.739 (2)°

  • V = 1869.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.39 × 0.33 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.922

  • 11684 measured reflections

  • 3442 independent reflections

  • 2013 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.121

  • S = 1.08

  • 3442 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.93 2.61 3.305 (5) 132
C5—H5⋯O1ii 0.93 2.53 3.390 (5) 155
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It has been well documented that benzenoid compounds are ubiquitous structural units in a wide variety of naturally occurring compounds and a plethora of pharmaceuticals. On the other hand, allene derivatives are powerful synthetic intermediates toward a plethora of important organic compounds and frequent building blocks of natural products (Ma, 2003, 2005, 2007; Hoffmann-Röder et al., 2004). In this regard, Zhang et al. have developed a novel and efficient method for the preparation of polysubstituted benzenes by one-pot double Michael addition/intramolecular aldol reaction/ decarboxylation of 1,2-allenic ketones with cyanoacetate (Zhang et al., 2011). Herein, we would like to report the structure of one of the products obtained by this method.

In the title compound (Fig. 1), all the bond lengths and bond angles are within normal ranges. The central polysubstituted benzene ring (C7—C12) forms dihedral angles of 44.51 (15)° and 86.06 (17)° with the other two chloro-substituted phenyl rings (C1—C6) and (C17—C22), respectively. And the dihedral angle between the two chloro-substituted phenyl rings, (C1—C7) and (C7—C12), is 49.48 (17)°. The mean plane of the ketone group is almost co-planar with the neighboring chloro-substituted phenyl ring (C17-C22).

In the crystal structure, the molecules are connected via C—H···O and C—H···N interactions.

Related literature top

For background to the title compound, see: Ma (2003, 2005, 2007); Hoffmann-Röder et al. (2004). For related structures, see: Zhang et al. (2011); Fun et al. (2012); Jagadeesan et al. (2011).

Experimental top

A mixture of 1-(4-chlorophenyl)buta-2,3-dien-1-one (1 mmol), cyanoacetate (0.5 mmol) and K2CO3 (0.5 mmol) in acetone (5 ml) was refluxed for 15 min. Upon completion, the reaction mixture was cooled to room temperature, added with water (10 ml) and extracted with ethyl acetate. The combined organic phases were washed with brine, dried, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluting with ethyl acetate/hexane (1:20 v/v) to give the title compound as Colorless solids with a yield of 80%. Single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of solvent from a petroleum ether-dichloromethane (2:1 v/v) solution.

Refinement top

The H atoms were included at calculated positions and were refined as riding atoms: C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, with Uiso(H) =xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Crystal structure of the title compound, viewed along the a axis. Intermolecular C—H···O and C—H···N hydrogen bonds are shown as dashed lines, only H atoms involved in hydrogen bonds are shown.
3-(4-Chlorobenzoyl)-6-(4-chlorophenyl)-2,4-dimethylbenzonitrile top
Crystal data top
C22H15Cl2NOF(000) = 784
Mr = 380.25Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3123 reflections
a = 7.8102 (12) Åθ = 2.6–22.9°
b = 30.032 (5) ŵ = 0.36 mm1
c = 8.2054 (13) ÅT = 296 K
β = 103.739 (2)°Block, colourless
V = 1869.6 (5) Å30.39 × 0.33 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3442 independent reflections
Radiation source: fine-focus sealed tube2013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.873, Tmax = 0.922k = 3636
11684 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0235P)2 + 1.9216P]
where P = (Fo2 + 2Fc2)/3
3442 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H15Cl2NOV = 1869.6 (5) Å3
Mr = 380.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8102 (12) ŵ = 0.36 mm1
b = 30.032 (5) ÅT = 296 K
c = 8.2054 (13) Å0.39 × 0.33 × 0.23 mm
β = 103.739 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3442 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2013 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.922Rint = 0.034
11684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
3442 reflectionsΔρmin = 0.24 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7995 (4)0.21705 (10)0.1502 (4)0.0402 (7)
C20.6497 (4)0.20687 (10)0.2063 (4)0.0452 (8)
H20.59450.22920.25350.054*
C30.5808 (4)0.16426 (11)0.1934 (4)0.0525 (9)
H30.48060.15800.23180.063*
C40.6621 (5)0.13136 (10)0.1233 (4)0.0518 (9)
C50.8084 (5)0.14040 (11)0.0632 (4)0.0529 (9)
H50.86060.11810.01310.063*
C60.8767 (4)0.18288 (10)0.0779 (4)0.0483 (8)
H60.97670.18890.03860.058*
C70.8714 (4)0.26288 (10)0.1663 (4)0.0398 (7)
C81.0517 (4)0.27148 (10)0.2239 (4)0.0442 (8)
C91.1199 (4)0.31495 (11)0.2343 (4)0.0483 (8)
C101.0020 (4)0.35035 (10)0.1930 (4)0.0460 (8)
C110.8210 (4)0.34288 (10)0.1389 (4)0.0467 (8)
C120.7596 (4)0.29920 (10)0.1238 (4)0.0451 (8)
H120.63940.29420.08380.054*
C131.1720 (5)0.23601 (12)0.2910 (5)0.0558 (9)
C141.3152 (5)0.32286 (14)0.2910 (5)0.0772 (12)
H14A1.36980.31640.20050.116*
H14B1.36390.30380.38450.116*
H14C1.33650.35340.32410.116*
C150.6925 (5)0.38100 (11)0.0981 (5)0.0646 (10)
H15A0.57520.36950.05920.097*
H15B0.72150.39910.01220.097*
H15C0.69880.39860.19690.097*
C161.0722 (5)0.39731 (11)0.2256 (5)0.0547 (9)
C171.1277 (4)0.42252 (11)0.0920 (4)0.0495 (8)
C181.2013 (5)0.46432 (11)0.1290 (5)0.0634 (10)
H181.21670.47580.23670.076*
C191.2517 (5)0.48886 (12)0.0070 (5)0.0693 (11)
H191.30290.51670.03260.083*
C201.2263 (5)0.47210 (11)0.1532 (5)0.0589 (10)
C211.1562 (5)0.43075 (11)0.1909 (5)0.0658 (11)
H211.14120.41940.29880.079*
C221.1076 (5)0.40580 (11)0.0673 (5)0.0619 (10)
H221.06080.37740.09240.074*
Cl10.57545 (16)0.07788 (3)0.10760 (15)0.0838 (4)
Cl21.28408 (16)0.50406 (3)0.30697 (14)0.0848 (4)
N11.2698 (4)0.20909 (12)0.3525 (5)0.0805 (11)
O11.0819 (4)0.41318 (9)0.3638 (3)0.0857 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (18)0.0436 (17)0.0329 (18)0.0008 (14)0.0092 (14)0.0012 (14)
C20.049 (2)0.0429 (18)0.045 (2)0.0041 (15)0.0140 (16)0.0021 (15)
C30.055 (2)0.051 (2)0.054 (2)0.0044 (17)0.0172 (17)0.0015 (17)
C40.067 (2)0.0420 (18)0.045 (2)0.0002 (17)0.0117 (18)0.0021 (16)
C50.069 (2)0.050 (2)0.041 (2)0.0109 (18)0.0164 (18)0.0040 (16)
C60.057 (2)0.0477 (19)0.044 (2)0.0038 (17)0.0204 (17)0.0003 (16)
C70.0453 (19)0.0439 (18)0.0323 (18)0.0010 (15)0.0130 (15)0.0001 (14)
C80.045 (2)0.0508 (19)0.040 (2)0.0009 (16)0.0165 (15)0.0008 (15)
C90.046 (2)0.061 (2)0.039 (2)0.0086 (17)0.0138 (16)0.0054 (16)
C100.057 (2)0.0502 (19)0.0314 (19)0.0099 (17)0.0125 (16)0.0035 (14)
C110.058 (2)0.0470 (19)0.0354 (19)0.0021 (16)0.0117 (16)0.0022 (15)
C120.0446 (19)0.0485 (19)0.042 (2)0.0017 (16)0.0095 (15)0.0012 (15)
C130.050 (2)0.062 (2)0.059 (2)0.0008 (19)0.0207 (19)0.0016 (19)
C140.054 (2)0.085 (3)0.090 (3)0.016 (2)0.013 (2)0.010 (2)
C150.070 (3)0.044 (2)0.076 (3)0.0014 (18)0.011 (2)0.0032 (18)
C160.063 (2)0.055 (2)0.048 (2)0.0154 (18)0.0178 (18)0.0095 (18)
C170.059 (2)0.0467 (18)0.044 (2)0.0116 (17)0.0144 (17)0.0070 (16)
C180.083 (3)0.053 (2)0.057 (2)0.023 (2)0.021 (2)0.0158 (18)
C190.092 (3)0.043 (2)0.077 (3)0.022 (2)0.030 (2)0.010 (2)
C200.070 (3)0.045 (2)0.066 (3)0.0041 (18)0.026 (2)0.0057 (18)
C210.094 (3)0.053 (2)0.056 (2)0.020 (2)0.028 (2)0.0097 (18)
C220.082 (3)0.049 (2)0.058 (3)0.0240 (19)0.022 (2)0.0079 (18)
Cl10.1082 (9)0.0465 (5)0.1010 (9)0.0146 (5)0.0337 (7)0.0085 (5)
Cl20.1219 (10)0.0556 (6)0.0896 (8)0.0063 (6)0.0505 (7)0.0130 (5)
N10.065 (2)0.083 (2)0.095 (3)0.018 (2)0.023 (2)0.014 (2)
O10.127 (3)0.0814 (19)0.0601 (19)0.0443 (17)0.0442 (18)0.0276 (15)
Geometric parameters (Å, º) top
C1—C21.389 (4)C12—H120.9300
C1—C61.393 (4)C13—N11.144 (4)
C1—C71.481 (4)C14—H14A0.9600
C2—C31.382 (4)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.373 (4)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.374 (5)C15—H15C0.9600
C4—Cl11.736 (3)C16—O11.216 (4)
C5—C61.377 (4)C16—C171.479 (4)
C5—H50.9300C17—C221.374 (4)
C6—H60.9300C17—C181.384 (4)
C7—C121.389 (4)C18—C191.373 (5)
C7—C81.398 (4)C18—H180.9300
C8—C91.405 (4)C19—C201.377 (5)
C8—C131.440 (5)C19—H190.9300
C9—C101.395 (4)C20—C211.363 (5)
C9—C141.504 (5)C20—Cl21.729 (3)
C10—C111.396 (4)C21—C221.384 (5)
C10—C161.514 (4)C21—H210.9300
C11—C121.392 (4)C22—H220.9300
C11—C151.507 (4)
C2—C1—C6117.6 (3)C11—C12—H12118.8
C2—C1—C7120.4 (3)N1—C13—C8176.2 (4)
C6—C1—C7122.0 (3)C9—C14—H14A109.5
C3—C2—C1121.4 (3)C9—C14—H14B109.5
C3—C2—H2119.3H14A—C14—H14B109.5
C1—C2—H2119.3C9—C14—H14C109.5
C4—C3—C2119.2 (3)H14A—C14—H14C109.5
C4—C3—H3120.4H14B—C14—H14C109.5
C2—C3—H3120.4C11—C15—H15A109.5
C3—C4—C5121.0 (3)C11—C15—H15B109.5
C3—C4—Cl1119.1 (3)H15A—C15—H15B109.5
C5—C4—Cl1119.9 (3)C11—C15—H15C109.5
C4—C5—C6119.3 (3)H15A—C15—H15C109.5
C4—C5—H5120.3H15B—C15—H15C109.5
C6—C5—H5120.3O1—C16—C17121.8 (3)
C5—C6—C1121.5 (3)O1—C16—C10118.0 (3)
C5—C6—H6119.3C17—C16—C10120.2 (3)
C1—C6—H6119.3C22—C17—C18119.2 (3)
C12—C7—C8117.5 (3)C22—C17—C16122.0 (3)
C12—C7—C1120.3 (3)C18—C17—C16118.8 (3)
C8—C7—C1122.2 (3)C19—C18—C17120.2 (3)
C7—C8—C9121.9 (3)C19—C18—H18119.9
C7—C8—C13120.4 (3)C17—C18—H18119.9
C9—C8—C13117.4 (3)C18—C19—C20119.9 (3)
C10—C9—C8118.4 (3)C18—C19—H19120.1
C10—C9—C14121.1 (3)C20—C19—H19120.1
C8—C9—C14120.5 (3)C21—C20—C19120.6 (3)
C9—C10—C11121.0 (3)C21—C20—Cl2120.0 (3)
C9—C10—C16118.5 (3)C19—C20—Cl2119.4 (3)
C11—C10—C16120.2 (3)C20—C21—C22119.5 (3)
C12—C11—C10118.8 (3)C20—C21—H21120.3
C12—C11—C15119.9 (3)C22—C21—H21120.3
C10—C11—C15121.3 (3)C17—C22—C21120.6 (3)
C7—C12—C11122.3 (3)C17—C22—H22119.7
C7—C12—H12118.8C21—C22—H22119.7
C6—C1—C2—C31.0 (5)C16—C10—C11—C12174.6 (3)
C7—C1—C2—C3179.6 (3)C9—C10—C11—C15178.5 (3)
C1—C2—C3—C40.2 (5)C16—C10—C11—C155.1 (5)
C2—C3—C4—C51.2 (5)C8—C7—C12—C110.9 (4)
C2—C3—C4—Cl1179.9 (3)C1—C7—C12—C11179.2 (3)
C3—C4—C5—C61.8 (5)C10—C11—C12—C72.4 (5)
Cl1—C4—C5—C6179.4 (3)C15—C11—C12—C7177.3 (3)
C4—C5—C6—C10.9 (5)C7—C8—C13—N1119 (6)
C2—C1—C6—C50.4 (5)C9—C8—C13—N155 (6)
C7—C1—C6—C5179.9 (3)C9—C10—C16—O186.8 (4)
C2—C1—C7—C1244.8 (4)C11—C10—C16—O186.8 (4)
C6—C1—C7—C12134.6 (3)C9—C10—C16—C1792.8 (4)
C2—C1—C7—C8135.3 (3)C11—C10—C16—C1793.6 (4)
C6—C1—C7—C845.3 (4)O1—C16—C17—C22176.1 (4)
C12—C7—C8—C91.9 (4)C10—C16—C17—C224.3 (5)
C1—C7—C8—C9178.1 (3)O1—C16—C17—C183.5 (6)
C12—C7—C8—C13171.8 (3)C10—C16—C17—C18176.1 (3)
C1—C7—C8—C138.3 (4)C22—C17—C18—C190.7 (6)
C7—C8—C9—C103.0 (5)C16—C17—C18—C19179.0 (4)
C13—C8—C9—C10170.8 (3)C17—C18—C19—C201.0 (6)
C7—C8—C9—C14177.8 (3)C18—C19—C20—C211.9 (6)
C13—C8—C9—C148.4 (5)C18—C19—C20—Cl2178.0 (3)
C8—C9—C10—C111.4 (4)C19—C20—C21—C221.1 (6)
C14—C9—C10—C11179.4 (3)Cl2—C20—C21—C22178.9 (3)
C8—C9—C10—C16172.1 (3)C18—C17—C22—C211.5 (6)
C14—C9—C10—C167.1 (5)C16—C17—C22—C21178.1 (4)
C9—C10—C11—C121.2 (5)C20—C21—C22—C170.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.613.305 (5)132
C5—H5···O1ii0.932.533.390 (5)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H15Cl2NO
Mr380.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.8102 (12), 30.032 (5), 8.2054 (13)
β (°) 103.739 (2)
V3)1869.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.39 × 0.33 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.873, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
11684, 3442, 2013
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.08
No. of reflections3442
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.613.305 (5)132.0
C5—H5···O1ii0.932.533.390 (5)155.0
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21172057).

References

First citationBruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Loh, W.-S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1877–o1878.  CSD CrossRef IUCr Journals Google Scholar
First citationHoffmann-Röder, A. & Krause, N. (2004). Angew. Chem. Int. Ed. 43, 1196–1216.  Google Scholar
First citationJagadeesan, G., Sethusankar, K., Sivasakthikumaran, R. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, S. (2003). Acc. Chem. Res. 36, 701–712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, S. (2005). Chem. Rev. 105, 2829–2871.  Web of Science CrossRef PubMed Google Scholar
First citationMa, S. (2007). Aldrichim. Acta, 40, 91–102.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Jia, X., Fang, L., Liu, N., Wang, J. & Fan, X. (2011). Org. Lett. 13, 5024–5027.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds