organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­chloro-3,6-diiso­propyl­cyclo­hexa-2,5-diene-1,4-dione

aFaculty of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China
*Correspondence e-mail: Binboll@126.com

(Received 17 June 2012; accepted 19 July 2012; online 11 August 2012)

The mol­ecule of the title compound, C12H14Cl2O2, lies about an inversion center. The six-membered ring is almost planar, with the largest deviation from the least-squares plane being 0.014 (4) Å. The mol­ecular conformation is stabilized by a weak intra­molecular C—H⋯O hydrogen bond. In the crystal, mol­ecules are packed into stacks along the c-axis direction, with an inter­centroid separation of 4.811 (2) Å. Neighboring mol­ecules within the stack are related by the c-glide plane.

Related literature

Metal complexes of catechols, semiquinones and quinones are of general inter­est in the investigation of ligand centered redox reactions and as models for biochemical processes involving metal ions, see: Mostafa (1999[Mostafa, S. I. (1999). Transition Met. Chem. 24, 306-310.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14Cl2O4

  • Mr = 293.13

  • Monoclinic, C 2/c

  • a = 10.286 (2) Å

  • b = 15.034 (3) Å

  • c = 9.621 (2) Å

  • β = 109.022 (4)°

  • V = 1406.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Brucker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.946

  • 3544 measured reflections

  • 1248 independent reflections

  • 676 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.198

  • S = 1.08

  • 1248 reflections

  • 84 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.98 2.34 2.926 (7) 117
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal complexes of catechols, semiquinones and quinones are of general interest in the investigation of ligand centered redox reactions and as models for biochemical processes involving metal ions (Mostafa, 1999). The title compound is the synthetic precusor for chloranilic acid, which is a simple, readily available ligand combining chelating and bridging capabilities.

In the title molecule, the six-membered ring and attached oxygen and clorine atoms bound to every vertex of this carbon hexagon, share a same plane with the largest deviation being 0.053 (4) Å for C3. The two isopropyl groups extend from the plane, one above and one below the plane, as shown in Fig. 1. The C1O1 bond has a lengths of 1.221 (4) Å, typical of Csp2 O double bonds (Allen et al., 1987). The C3—O2 bond, however, is a Csp2—O single bond with the lengths of 1.346 (5) Å, which is slightly shorter than the value expected for enol ester systems [1.354 (16) Å (Allen et al.,1987). The carbon-carbon bonds in the six-membered ring can also be divided into two groups: the C2C3 bond is a typical double bond with the length of 1.343 (5) Å, whereas the C1—C2 and C1—C3i bonds with the lengths of 1.463 (5) Å and 1.480 (6) Å, reaspectively, are obviously the Csp2—Csp2 single bonds.

There are weak intramolecular interactions C2—H2A···O2 (1 - x,1 - y,1 - z) [H···O = 2.34 Å, C···O = 2.926 (7) Å, and C—H···O = 117°], which stabilize the molecule conformation.

In the crystal, the molecules of the title compound are packed into stacks along the c direction with intercentroid separation of 4.811 (2) Å. Neighboring molecules within the stack are related by the c glide plane.

Related literature top

Metal complexes of catechols, semiquinones and quinones are of general interest in the investigation of ligand centered redox reactions and as models for biochemical processes involving metal ions, see: Mostafa (1999). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Potassium hydroxide (5.0 g) was added to a solution containing chloranil (5.0 g) in 2-propanol (100 ml). The resulting mixture was stirred under reflux for 1 h, and then the red reaction solution was cooled to 283 K. The precipitated yellow solid was collected and recrystallized in ethanol.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.98 Å and Uiso(H)= 1.2Ueq(C) for tertiary hydrogen and with C—H = 0.96 Å and Uiso(H)= 1.5Ueq(C) for methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure with atom labelling scheme and thermal ellipsoids drawn at the 30% probability level (symmetry code (i): 1 - x,1 - y,1 - z).
2,5-Dichloro-3,6-diisopropylcyclohexa-2,5-diene-1,4-dione top
Crystal data top
C12H14Cl2O4F(000) = 608
Mr = 293.13Dx = 1.384 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 837 reflections
a = 10.286 (2) Åθ = 2.5–21.5°
b = 15.034 (3) ŵ = 0.46 mm1
c = 9.621 (2) ÅT = 293 K
β = 109.022 (4)°Block, yellow
V = 1406.5 (6) Å30.15 × 0.13 × 0.12 mm
Z = 4
Data collection top
Brucker APEXII CCD
diffractometer
1248 independent reflections
Radiation source: fine-focus sealed tube676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 129
Tmin = 0.925, Tmax = 0.946k = 1717
3544 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1P)2 + 0.P]
where P = (Fo2 + 2Fc2)/3
1248 reflections(Δ/σ)max = 0.001
84 parametersΔρmax = 0.41 e Å3
12 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H14Cl2O4V = 1406.5 (6) Å3
Mr = 293.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.286 (2) ŵ = 0.46 mm1
b = 15.034 (3) ÅT = 293 K
c = 9.621 (2) Å0.15 × 0.13 × 0.12 mm
β = 109.022 (4)°
Data collection top
Brucker APEXII CCD
diffractometer
1248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
676 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.946Rint = 0.079
3544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05912 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
1248 reflectionsΔρmin = 0.24 e Å3
84 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4914 (5)0.5935 (3)0.5241 (4)0.0672 (11)
C20.5842 (4)0.5580 (3)0.4504 (4)0.0686 (12)
C30.5968 (4)0.4704 (3)0.4308 (4)0.0632 (11)
C40.7787 (5)0.3702 (3)0.4212 (5)0.0903 (13)
H40.72850.31490.42230.108*
C50.8654 (6)0.3916 (4)0.5744 (6)0.1146 (16)
H5A0.91960.44360.57400.172*
H5B0.92520.34240.61500.172*
H5C0.80750.40270.63310.172*
C60.8576 (7)0.3595 (4)0.3175 (6)0.1114 (16)
H6A0.79490.35080.21980.167*
H6B0.91730.30890.34590.167*
H6C0.91150.41200.31980.167*
Cl10.68016 (14)0.63397 (8)0.39265 (14)0.0914 (7)
O10.4891 (4)0.6728 (2)0.5509 (4)0.0948 (11)
O20.6789 (3)0.4409 (2)0.3567 (3)0.0789 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.085 (3)0.052 (3)0.065 (3)0.012 (2)0.025 (2)0.007 (2)
C20.086 (3)0.061 (3)0.058 (2)0.001 (2)0.022 (2)0.007 (2)
C30.075 (3)0.059 (3)0.057 (2)0.010 (2)0.023 (2)0.0061 (19)
C40.095 (3)0.100 (3)0.079 (3)0.027 (2)0.033 (2)0.006 (2)
C50.114 (3)0.124 (3)0.094 (3)0.026 (3)0.018 (3)0.006 (3)
C60.124 (3)0.121 (3)0.092 (3)0.044 (3)0.040 (3)0.004 (3)
Cl10.1161 (12)0.0720 (9)0.0961 (10)0.0080 (6)0.0484 (8)0.0120 (6)
O10.125 (3)0.055 (2)0.119 (3)0.0052 (18)0.059 (2)0.0032 (18)
O20.102 (2)0.0689 (19)0.075 (2)0.0238 (16)0.0414 (18)0.0111 (14)
Geometric parameters (Å, º) top
C1—O11.221 (4)C4—C51.489 (7)
C1—C21.463 (5)C4—H40.9800
C1—C3i1.480 (6)C5—H5A0.9600
C2—C31.343 (5)C5—H5B0.9600
C2—Cl11.715 (4)C5—H5C0.9600
C3—O21.346 (5)C6—H6A0.9600
C4—O21.468 (5)C6—H6B0.9600
C4—C61.486 (7)C6—H6C0.9600
O1—C1—C2121.2 (4)C5—C4—H4108.7
O1—C1—C3i121.0 (4)C4—C5—H5A109.5
C2—C1—C3i117.7 (4)C4—C5—H5B109.5
C3—C2—C1122.2 (4)H5A—C5—H5B109.5
C3—C2—Cl1121.1 (3)C4—C5—H5C109.5
C1—C2—Cl1116.7 (3)H5A—C5—H5C109.5
C2—C3—O2120.2 (4)H5B—C5—H5C109.5
C2—C3—C1i120.0 (4)C4—C6—H6A109.5
O2—C3—C1i119.5 (4)C4—C6—H6B109.5
O2—C4—C6104.7 (4)H6A—C6—H6B109.5
O2—C4—C5111.9 (4)C4—C6—H6C109.5
C6—C4—C5114.0 (5)H6A—C6—H6C109.5
O2—C4—H4108.7H6B—C6—H6C109.5
C6—C4—H4108.7C3—O2—C4119.2 (3)
O1—C1—C2—C3174.3 (4)C1—C2—C3—C1i4.0 (6)
C3i—C1—C2—C33.9 (6)Cl1—C2—C3—C1i177.4 (3)
O1—C1—C2—Cl14.3 (5)C2—C3—O2—C4130.7 (4)
C3i—C1—C2—Cl1177.4 (3)C1i—C3—O2—C456.2 (5)
C1—C2—C3—O2177.1 (3)C6—C4—O2—C3175.7 (4)
Cl1—C2—C3—O24.4 (5)C5—C4—O2—C351.8 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.982.342.926 (7)117
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14Cl2O4
Mr293.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.286 (2), 15.034 (3), 9.621 (2)
β (°) 109.022 (4)
V3)1406.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerBrucker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.925, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
3544, 1248, 676
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.198, 1.08
No. of reflections1248
No. of parameters84
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.982.342.926 (7)117
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Shandong College research program (J11LB15) and the Young and Middle-aged Scientist Research Awards Foundation of Shandong Province (BS2010CL045)

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMostafa, S. I. (1999). Transition Met. Chem. 24, 306–310.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds