organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy-2-{(E)-[(3-nitro­phen­yl)iminio]meth­yl}phenolate

aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cUniversity of Engineering and Technology, Department of Chemistry, Lahore 54890, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 July 2012; accepted 27 July 2012; online 1 August 2012)

The title compound, C13H10N2O4, crystallized as the zwitterionic tautomer. As a result, the phenolate C—O bond [1.296 (2) Å] is shorter than a normal Csp2—O(H) bond, and the azomethine C=N bond [1.314 (2) Å] is longer than a normal C=N double bond. The mol­ecule is nearly planar, the mean plane of the nitro-substituted benzene ring forming dihedral angles of 9.83 (7) and 8.45 (9)° with the other benzene ring and with the nitro group, respectively. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, strong O—H⋯O hydrogen bonds link the mol­ecules into double-stranded chains along the b-axis direction. Within the chains there are ππ interactions involving the benzene rings of adjacent molecules [centroid–centroid distance = 3.669 (1) Å]. The chains are linked via C—H⋯O hydrogen bonds, forming R21(6), R21(7) and R22(10) ring motifs.

Related literature

For related structures, see: Yeap et al. (1992[Yeap, G.-Y., Gan, C.-L., Fun, H.-K., Shawkataly, O. & Teoh, S.-G. (1992). Acta Cryst. C48, 1143-1144.]); Hijji et al. (2009[Hijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, o291-o292.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, C 2/c

  • a = 12.8518 (9) Å

  • b = 7.8501 (5) Å

  • c = 24.1316 (18) Å

  • β = 101.593 (3)°

  • V = 2384.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 5601 measured reflections

  • 2126 independent reflections

  • 1569 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.02

  • 2126 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.86 1.87 2.5716 (19) 138
O4—H4A⋯O3i 0.82 1.79 2.6100 (17) 179
C2—H2⋯O2ii 0.93 2.54 3.446 (2) 164
C4—H4⋯O4iii 0.93 2.54 3.268 (2) 135
C7—H7⋯O2ii 0.93 2.49 3.355 (2) 154
C10—H10⋯O3i 0.93 2.56 3.226 (2) 129
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y-{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (Fig. 1) has been synthesized as a precursor for complex formation and other studies.

In contrast to the closely related structure of 2-[(3-nitrophenylimino)methyl]phenol (Yeap et al., 1992), the title compound is a zwitterion, in which the hydroxy H+ ion is transferred to the imino N atom (Fig. 1). Analogous zwitterionic structure is observed for 2-{[(2-hydroxy-5-nitrophenyl)iminio]methyl}phenolate (Hijji et al., 2009).

The molecule consists of two roughly planar groups, the 3-nitroaniline fragment (C1—C6/N1/N2/O1/O2) and the rest of 2,4-dihydroxybenzaldehyde (C7—C13/O3/O4), the mean deviations from the planes are 0.070Å and 0.023Å, respectively. The dihedral angle between the planes of these groups is 9.37 (6)°.

Strong intramolecular N—H···O hydrogen bond (Table 1, Fig. 2) produce S(6) ring motif (Bernstein et al., 1995). Due to the intermolecular O—H···O hydrogen bonds, the C(6) chains along the b-axis direction are formed (Table 1, Fig. 2). The C—H···O interactions join these chains, generating the R21(7) and R22(10) rings. motifs. Due to the C—H···O and O—H···O hydrogen bonds, the R21(6) ring motif is also formed (Table 1, Fig. 2).

Related literature top

For related structures, see: Yeap et al. (1992); Hijji et al. (2009). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

3-Nitroaniline (0.138 g, 1.0 mmol) was dissolved in distilled methanol. Solution of 2,4-dihydroxybenzaldehyde (0.138 g, 1.0 mmol) in methanol was added dropwise. The mixture was refluxed for 2 h and orange prisms of the title compound were obtained after 48 h.

Refinement top

At initial stages, all H atoms were refined freely, indicating the zwitterion structure. Later, all H atoms were positioned geometrically at C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å, respectively, and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram showing the chains along the [010] direction and various ring motifs.
5-Hydroxy-2-{(E)-[(3-nitrophenyl)iminio]methyl}phenolate top
Crystal data top
C13H10N2O4F(000) = 1072
Mr = 258.23Dx = 1.438 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1569 reflections
a = 12.8518 (9) Åθ = 3.1–25.3°
b = 7.8501 (5) ŵ = 0.11 mm1
c = 24.1316 (18) ÅT = 296 K
β = 101.593 (3)°Prism, orange
V = 2384.9 (3) Å30.30 × 0.25 × 0.22 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2126 independent reflections
Radiation source: fine-focus sealed tube1569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 98
Tmin = 0.975, Tmax = 0.985l = 2827
5601 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.8634P]
where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H10N2O4V = 2384.9 (3) Å3
Mr = 258.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.8518 (9) ŵ = 0.11 mm1
b = 7.8501 (5) ÅT = 296 K
c = 24.1316 (18) Å0.30 × 0.25 × 0.22 mm
β = 101.593 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1569 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.025
5601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
2126 reflectionsΔρmin = 0.15 e Å3
173 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15456 (11)0.19142 (18)0.02818 (6)0.0662 (5)
O20.20746 (12)0.03661 (18)0.00681 (6)0.0724 (6)
O30.62612 (10)0.43187 (15)0.22353 (5)0.0534 (4)
O40.76284 (11)0.95669 (16)0.17361 (5)0.0575 (5)
N10.21457 (12)0.0694 (2)0.03061 (7)0.0496 (6)
N20.49661 (11)0.26941 (19)0.14644 (6)0.0474 (5)
C10.43511 (13)0.1203 (2)0.13474 (7)0.0410 (6)
C20.35653 (14)0.1006 (2)0.08681 (7)0.0421 (6)
C30.29944 (13)0.0494 (2)0.08125 (7)0.0414 (6)
C40.31558 (15)0.1781 (2)0.12040 (8)0.0481 (6)
C50.39528 (16)0.1569 (3)0.16724 (8)0.0530 (7)
C60.45478 (14)0.0106 (3)0.17409 (7)0.0487 (6)
C70.50024 (13)0.4025 (2)0.11385 (7)0.0447 (6)
C80.56478 (13)0.5432 (2)0.13102 (7)0.0405 (6)
C90.62972 (13)0.5521 (2)0.18714 (7)0.0403 (6)
C100.69554 (13)0.6942 (2)0.20049 (7)0.0406 (6)
C110.69865 (13)0.8209 (2)0.16195 (7)0.0416 (6)
C120.63360 (14)0.8146 (2)0.10705 (7)0.0461 (6)
C130.56882 (14)0.6792 (2)0.09292 (7)0.0459 (6)
H20.342680.185280.059360.0505*
H2A0.537310.273960.179380.0569*
H40.274140.276110.115470.0578*
H4A0.797250.949120.206040.0862*
H50.408930.242230.194460.0636*
H60.509280.001110.205660.0584*
H70.457870.402800.077740.0536*
H100.738190.702760.236400.0487*
H120.635510.902010.081260.0553*
H130.525550.675180.057080.0551*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0630 (9)0.0603 (9)0.0709 (10)0.0201 (8)0.0033 (7)0.0121 (7)
O20.0882 (12)0.0606 (9)0.0540 (9)0.0102 (8)0.0198 (8)0.0103 (8)
O30.0592 (8)0.0484 (7)0.0437 (8)0.0070 (6)0.0110 (6)0.0081 (6)
O40.0692 (9)0.0485 (8)0.0460 (8)0.0139 (7)0.0092 (6)0.0048 (6)
N10.0527 (10)0.0446 (9)0.0478 (10)0.0009 (8)0.0010 (7)0.0077 (8)
N20.0451 (9)0.0506 (9)0.0399 (9)0.0003 (8)0.0072 (6)0.0014 (7)
C10.0396 (10)0.0429 (10)0.0386 (10)0.0018 (8)0.0037 (7)0.0030 (8)
C20.0469 (10)0.0370 (10)0.0389 (10)0.0026 (8)0.0002 (8)0.0031 (7)
C30.0418 (10)0.0400 (10)0.0401 (10)0.0022 (8)0.0031 (8)0.0036 (8)
C40.0514 (11)0.0426 (10)0.0510 (11)0.0008 (9)0.0117 (9)0.0057 (9)
C50.0567 (12)0.0538 (12)0.0484 (12)0.0081 (10)0.0103 (9)0.0167 (9)
C60.0469 (11)0.0619 (12)0.0347 (10)0.0056 (10)0.0023 (8)0.0053 (9)
C70.0391 (10)0.0532 (11)0.0374 (10)0.0041 (9)0.0025 (8)0.0024 (9)
C80.0368 (9)0.0432 (10)0.0378 (10)0.0029 (8)0.0016 (7)0.0044 (8)
C90.0391 (10)0.0399 (10)0.0385 (10)0.0062 (8)0.0002 (7)0.0001 (8)
C100.0414 (10)0.0429 (10)0.0318 (9)0.0022 (8)0.0059 (7)0.0033 (8)
C110.0429 (10)0.0391 (10)0.0403 (10)0.0018 (8)0.0024 (8)0.0024 (8)
C120.0514 (11)0.0479 (11)0.0356 (10)0.0027 (9)0.0007 (8)0.0050 (8)
C130.0462 (11)0.0528 (11)0.0337 (10)0.0048 (9)0.0040 (8)0.0004 (8)
Geometric parameters (Å, º) top
O1—N11.224 (2)C7—C81.393 (2)
O2—N11.218 (2)C8—C131.417 (2)
O3—C91.296 (2)C8—C91.443 (2)
O4—C111.343 (2)C9—C101.398 (2)
O4—H4A0.8200C10—C111.368 (2)
N1—C31.474 (2)C11—C121.418 (2)
N2—C71.314 (2)C12—C131.351 (2)
N2—C11.409 (2)C2—H20.9300
N2—H2A0.8600C4—H40.9300
C1—C61.388 (3)C5—H50.9300
C1—C21.383 (2)C6—H60.9300
C2—C31.380 (2)C7—H70.9300
C3—C41.370 (2)C10—H100.9300
C4—C51.375 (3)C12—H120.9300
C5—C61.371 (3)C13—H130.9300
C11—O4—H4A109.00C8—C9—C10117.65 (14)
O1—N1—O2123.14 (17)C9—C10—C11121.51 (15)
O1—N1—C3118.52 (15)O4—C11—C12116.45 (14)
O2—N1—C3118.35 (15)O4—C11—C10122.38 (15)
C1—N2—C7128.80 (15)C10—C11—C12121.17 (15)
C7—N2—H2A116.00C11—C12—C13118.74 (15)
C1—N2—H2A116.00C8—C13—C12122.02 (16)
N2—C1—C2123.13 (15)C1—C2—H2121.00
N2—C1—C6117.42 (15)C3—C2—H2121.00
C2—C1—C6119.45 (16)C3—C4—H4121.00
C1—C2—C3117.49 (15)C5—C4—H4121.00
N1—C3—C2117.52 (14)C4—C5—H5120.00
N1—C3—C4118.52 (15)C6—C5—H5120.00
C2—C3—C4123.95 (16)C1—C6—H6119.00
C3—C4—C5117.53 (17)C5—C6—H6119.00
C4—C5—C6120.39 (19)N2—C7—H7119.00
C1—C6—C5121.15 (16)C8—C7—H7119.00
N2—C7—C8122.88 (15)C9—C10—H10119.00
C7—C8—C13120.11 (15)C11—C10—H10119.00
C7—C8—C9121.00 (15)C11—C12—H12121.00
C9—C8—C13118.88 (15)C13—C12—H12121.00
O3—C9—C8120.53 (14)C8—C13—H13119.00
O3—C9—C10121.82 (15)C12—C13—H13119.00
O1—N1—C3—C2171.10 (16)C4—C5—C6—C11.1 (3)
O1—N1—C3—C47.6 (2)N2—C7—C8—C91.9 (3)
O2—N1—C3—C28.8 (2)N2—C7—C8—C13177.02 (16)
O2—N1—C3—C4172.56 (17)C7—C8—C9—O32.7 (3)
C7—N2—C1—C28.0 (3)C7—C8—C9—C10177.49 (16)
C7—N2—C1—C6172.80 (17)C13—C8—C9—O3178.36 (16)
C1—N2—C7—C8179.59 (16)C13—C8—C9—C101.5 (2)
N2—C1—C2—C3177.80 (16)C7—C8—C13—C12177.19 (17)
C6—C1—C2—C31.4 (3)C9—C8—C13—C121.8 (3)
N2—C1—C6—C5177.00 (17)O3—C9—C10—C11179.76 (16)
C2—C1—C6—C52.2 (3)C8—C9—C10—C110.1 (2)
C1—C2—C3—N1179.08 (15)C9—C10—C11—O4178.67 (16)
C1—C2—C3—C40.5 (3)C9—C10—C11—C121.1 (3)
N1—C3—C4—C5179.88 (17)O4—C11—C12—C13178.96 (16)
C2—C3—C4—C51.6 (3)C10—C11—C12—C130.9 (3)
C3—C4—C5—C60.7 (3)C11—C12—C13—C80.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.861.872.5716 (19)138
O4—H4A···O3i0.821.792.6100 (17)179
C2—H2···O2ii0.932.543.446 (2)164
C4—H4···O4iii0.932.543.268 (2)135
C7—H7···O2ii0.932.493.355 (2)154
C10—H10···O3i0.932.563.226 (2)129
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y3/2, z.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)12.8518 (9), 7.8501 (5), 24.1316 (18)
β (°) 101.593 (3)
V3)2384.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5601, 2126, 1569
Rint0.025
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.02
No. of reflections2126
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.861.872.5716 (19)138
O4—H4A···O3i0.821.792.6100 (17)179
C2—H2···O2ii0.932.543.446 (2)164
C4—H4···O4iii0.932.543.268 (2)135
C7—H7···O2ii0.932.493.355 (2)154
C10—H10···O3i0.932.563.226 (2)129
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x1/2, y3/2, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHijji, Y. M., Barare, B., Butcher, R. J. & Jasinski, J. P. (2009). Acta Cryst. E65, o291–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeap, G.-Y., Gan, C.-L., Fun, H.-K., Shawkataly, O. & Teoh, S.-G. (1992). Acta Cryst. C48, 1143–1144.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds