organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,4-Di­chloro­phen­yl)-1,3-thia­zol-2-amine

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, cInterdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Defence Road, Off Raiwind Road, Lahore, Pakistan, and dUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 August 2012; accepted 9 August 2012; online 15 August 2012)

In the title mol­ecule, C9H6Cl2N2S, the mean planes of the benzene and thia­zole rings make a dihedral angle of 54.18 (8)°. In the crystal, mol­ecules are joined into dimers with an R22(8) ring motif by pairs of N—H⋯N hydrogen bonds. These dimers are linked by C—H⋯Cl inter­actions into layers parallel to (011). The thia­zole rings form columns along the c-axis direction, with a centroid–centroid separation of 3.8581 (9) Å, indicating ππ inter­actions. An intra­molecular C—H⋯S contact also occurs.

Related literature

For the synthesis and crystal structure of a related compound, see: Babar et al. (2012[Babar, A., Munawar, M. A., Tahir, M. N., Khan, A. F. & Tariq, M. I. (2012). Acta Cryst. E68, o2441.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6Cl2N2S

  • Mr = 245.12

  • Monoclinic, P 21 /c

  • a = 13.0270 (9) Å

  • b = 10.1183 (6) Å

  • c = 7.7159 (5) Å

  • β = 91.974 (3)°

  • V = 1016.44 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.33 × 0.28 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.778, Tmax = 0.844

  • 8039 measured reflections

  • 2245 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.04

  • 2245 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.07 2.9302 (19) 174
C3—H3⋯Cl2ii 0.93 2.82 3.7483 (17) 173
C6—H6⋯S1 0.93 2.87 3.2056 (19) 103
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound has been prepared in continuation to our ongoing project of synthesizing various derivatives of N-phenyl-1,3-thiazol-2-amine. We have recently published the synthesis and crystal structure of N-(2,4,6-trimethylphenyl)-1,3-thiazol-2-amine (Babar et al., 2012) which is related to the title compound.

In the title compound (Fig. 1), the 1,3-dichlorobenzene group A (C1–C6/CL1/CL2) and 1,3-thiazol-2-amine group B (N1/C7/S1/C8/C9/N2) are planar with r.m.s. deviations of 0.009 Å and 0.030 Å, respectively. The dihedral angle between the planes of A and B is 53.28 (4)°. The molecules are joined into dimers by pairs of N—H···N hydrogen bonds (Table 1, Fig. 2), forming R22(8) ring motif (Bernstein et al., 1995). The dimers are further linked by C—H···Cl hydrogen bonds into layers parallel to (0 1 1). Thiazole rings form stacks along the c axis direction with intercentroid separation Cg···Cgi [i = x, 3/2 - y, ±1/2 + z] of 3.8581 (9) Å, indicating ππ interactions.

Related literature top

For the synthesis and crystal structure of a related compound, see: Babar et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of N-(2,4-dichlorophenyl)thiourea (1.00 g, 4.52 mmol) and 2-chloro-1,1-dimethoxyethane(0.93 g, 6.12 mmol) was dissolved in water- methanol mixture (1:2) (100 mL). A few drops of concentrated HCl were added and the reaction mixture was refluxed for 4 h. Water (100 ml) was added, and the mixture was neutralized with aqueous NaOH to pH=8. The resulting precipitate was filtered and washed with ice cold water. The crude product was recrystallized from chloroform - hexane mixture (1:2) to obtain white prisms.

Refinement top

The hydrogen atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing showing molecular dimer linked to the anothers by C—H···Cl interactions.
N-(2,4-Dichlorophenyl)-1,3-thiazol-2-amine top
Crystal data top
C9H6Cl2N2SF(000) = 496
Mr = 245.12Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 912 reflections
a = 13.0270 (9) Åθ = 1.6–27.2°
b = 10.1183 (6) ŵ = 0.80 mm1
c = 7.7159 (5) ÅT = 296 K
β = 91.974 (3)°Prism, yellow
V = 1016.44 (11) Å30.33 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2245 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 7.80 pixels mm-1θmax = 27.2°, θmin = 1.6°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.778, Tmax = 0.844l = 99
8039 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.2925P]
where P = (Fo2 + 2Fc2)/3
2245 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C9H6Cl2N2SV = 1016.44 (11) Å3
Mr = 245.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0270 (9) ŵ = 0.80 mm1
b = 10.1183 (6) ÅT = 296 K
c = 7.7159 (5) Å0.33 × 0.28 × 0.22 mm
β = 91.974 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2245 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1957 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.844Rint = 0.020
8039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2245 reflectionsΔρmin = 0.30 e Å3
127 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24571 (4)0.37457 (5)0.29544 (6)0.0545 (2)
Cl20.05984 (3)0.34681 (6)0.74042 (8)0.0662 (2)
S10.33053 (3)0.77775 (4)0.66934 (5)0.0405 (1)
N10.35990 (10)0.51946 (12)0.57795 (18)0.0403 (4)
N20.49723 (10)0.66580 (13)0.57830 (18)0.0400 (4)
C10.26014 (11)0.48156 (14)0.6171 (2)0.0353 (4)
C20.19932 (12)0.41107 (15)0.4977 (2)0.0369 (4)
C30.10147 (12)0.36979 (16)0.5348 (2)0.0434 (5)
C40.06296 (12)0.40070 (17)0.6935 (2)0.0451 (5)
C50.12029 (14)0.47052 (18)0.8147 (2)0.0505 (6)
C60.21843 (14)0.50928 (18)0.7763 (2)0.0463 (5)
C70.40145 (11)0.64084 (14)0.60680 (18)0.0326 (4)
C80.43848 (14)0.87355 (15)0.6496 (2)0.0455 (5)
C90.51714 (14)0.79861 (16)0.6017 (2)0.0462 (5)
H10.398180.460920.531650.0483*
H30.062250.321850.453840.0520*
H50.093310.491420.921300.0606*
H60.257720.555210.859260.0556*
H80.441700.964150.669330.0545*
H90.581880.834170.585030.0554*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0514 (3)0.0636 (3)0.0487 (3)0.0090 (2)0.0058 (2)0.0158 (2)
Cl20.0351 (2)0.0737 (3)0.0905 (4)0.0031 (2)0.0114 (2)0.0243 (3)
S10.0421 (2)0.0346 (2)0.0453 (2)0.0064 (2)0.0081 (2)0.0047 (2)
N10.0325 (7)0.0334 (6)0.0554 (8)0.0019 (5)0.0082 (6)0.0134 (6)
N20.0350 (7)0.0333 (6)0.0519 (8)0.0022 (5)0.0059 (6)0.0070 (6)
C10.0319 (7)0.0302 (7)0.0438 (8)0.0008 (6)0.0034 (6)0.0011 (6)
C20.0365 (8)0.0338 (7)0.0405 (8)0.0009 (6)0.0019 (6)0.0005 (6)
C30.0351 (8)0.0396 (8)0.0550 (10)0.0030 (6)0.0047 (7)0.0039 (7)
C40.0319 (8)0.0420 (9)0.0619 (11)0.0019 (7)0.0075 (7)0.0141 (8)
C50.0470 (10)0.0526 (10)0.0530 (10)0.0006 (8)0.0170 (8)0.0013 (8)
C60.0454 (9)0.0480 (9)0.0458 (9)0.0049 (7)0.0059 (7)0.0078 (7)
C70.0342 (8)0.0313 (7)0.0325 (7)0.0025 (6)0.0021 (6)0.0045 (5)
C80.0567 (10)0.0289 (7)0.0511 (9)0.0023 (7)0.0071 (8)0.0040 (7)
C90.0449 (9)0.0357 (8)0.0583 (10)0.0084 (7)0.0080 (8)0.0052 (7)
Geometric parameters (Å, º) top
Cl1—C21.7327 (16)C2—C31.381 (2)
Cl2—C41.7399 (16)C3—C41.375 (2)
S1—C71.7425 (15)C4—C51.372 (2)
S1—C81.7191 (18)C5—C61.379 (3)
N1—C11.3979 (19)C8—C91.337 (2)
N1—C71.3574 (19)C3—H30.9300
N2—C71.2992 (19)C5—H50.9300
N2—C91.379 (2)C6—H60.9300
N1—H10.8600C8—H80.9300
C1—C61.389 (2)C9—H90.9300
C1—C21.391 (2)
C7—S1—C888.89 (7)C1—C6—C5121.76 (15)
C1—N1—C7125.53 (13)S1—C7—N2114.44 (11)
C7—N2—C9110.16 (13)S1—C7—N1123.54 (11)
C7—N1—H1117.00N1—C7—N2121.87 (13)
C1—N1—H1117.00S1—C8—C9109.99 (12)
N1—C1—C6122.05 (14)N2—C9—C8116.50 (16)
N1—C1—C2120.67 (14)C2—C3—H3121.00
C2—C1—C6117.26 (14)C4—C3—H3121.00
C1—C2—C3121.78 (14)C4—C5—H5120.00
Cl1—C2—C3118.39 (12)C6—C5—H5120.00
Cl1—C2—C1119.83 (12)C1—C6—H6119.00
C2—C3—C4118.92 (15)C5—C6—H6119.00
C3—C4—C5121.14 (15)S1—C8—H8125.00
Cl2—C4—C3118.70 (12)C9—C8—H8125.00
Cl2—C4—C5120.15 (13)N2—C9—H9122.00
C4—C5—C6119.13 (15)C8—C9—H9122.00
C8—S1—C7—N1174.25 (13)C6—C1—C2—Cl1179.25 (12)
C8—S1—C7—N21.39 (12)C6—C1—C2—C30.1 (2)
C7—S1—C8—C90.80 (12)N1—C1—C6—C5179.38 (15)
C7—N1—C1—C2134.53 (16)C2—C1—C6—C50.9 (2)
C7—N1—C1—C647.0 (2)Cl1—C2—C3—C4178.59 (13)
C1—N1—C7—S19.7 (2)C1—C2—C3—C40.8 (2)
C1—N1—C7—N2174.96 (14)C2—C3—C4—Cl2179.29 (12)
C9—N2—C7—S11.53 (17)C2—C3—C4—C50.5 (3)
C9—N2—C7—N1174.19 (14)Cl2—C4—C5—C6178.34 (14)
C7—N2—C9—C80.9 (2)C3—C4—C5—C60.5 (3)
N1—C1—C2—Cl12.2 (2)C4—C5—C6—C11.2 (3)
N1—C1—C2—C3178.44 (14)S1—C8—C9—N20.13 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.072.9302 (19)174
C3—H3···Cl2ii0.932.823.7483 (17)173
C6—H6···S10.932.873.2056 (19)103
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H6Cl2N2S
Mr245.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.0270 (9), 10.1183 (6), 7.7159 (5)
β (°) 91.974 (3)
V3)1016.44 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.33 × 0.28 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.778, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
8039, 2245, 1957
Rint0.020
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.04
No. of reflections2245
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.072.9302 (19)174
C3—H3···Cl2ii0.932.823.7483 (17)173
C6—H6···S10.932.873.2056 (19)103
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They are also thankful to the Higher Education Commission (HEC), Pakistan, for financial assistance.

References

First citationBabar, A., Munawar, M. A., Tahir, M. N., Khan, A. F. & Tariq, M. I. (2012). Acta Cryst. E68, o2441.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds