organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(10E,12E,14E)-9,16-Dioxo­octa­deca-10,12,14-trienoic acid

aLaboratoire de Pharmacognosie, UMR 7200, CNRS-Unistra, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, CS 60024, 67401 Illkirch Cedex, France, and bInstitut de Chimie de Strasbourg, UMR 7177 CNRS-Unistra, Service de Radiocristallographie, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
*Correspondence e-mail: lise.breant@hotmail.fr

(Received 16 May 2012; accepted 19 June 2012; online 1 August 2012)

The title octa­deca­trienoic acid derivative, C18H26O4, was isolated from Silene maritima With. (Caryophyllaceae), the first time this natural compound has been found in the Caryophyllales order. This fatty acid has an 18-carbon backbone with three double bonds on trans (E) conformation and two carbonyl. In the crystal, molecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For botanical information about Silene maritima With., see: Baker (1978[Baker, A. J. M. (1978). New Phytol. 81, 321-330.]); Bremer et al. (2009[Bremer, B., Bremer, K., Chase, M. W., Fay, M. F., Reveal, J. L., Soltis, D. E., Soltis, P. S., Stevens, P. F., Anderberg, A. A., Moore, M. J., Olmstead, R. G., Rudall, P. J., Sytsma, K. J., Tank, D. C., Wurdack, K., Xiang, J. Q. Y. & Zmarzty, S. (2009). Bot. J. Linn. Soc. 161, 105-121.]). For interactions between heavy-metals and Silene maritima With., see: Price & Abrahams (1994[Price, G. C. & Abrahams, W. P. (1994). Environ. Geochem. Health, 16, 27-31.]). For phytochemical investigation on Silene maritima With., see: Adrian-Romero et al. (1998[Adrian-Romero, M., Wilson, S. J., Gerald, B., Yang, M.-H., Carabot-Cuervo, A. & Bashir, A. K. (1998). Biochem. Syst. Ecol. 26, 535-543.]). For previous descriptions of the title compound, see: Herz & Kulanthaivel (1984[Herz, W. & Kulanthaivel, P. (1984). Phytochemistry, 23, 1453-1459.]); Li et al. (2011[Li, L. M., Pu, J. X., Xiao, W. L. & Sun, H. D. (2011). Arch. Pharmacal. Res. 34, 875-879.]). For lipoxygenase action on α-linoleic acid, see: Vellosillo et al. (2007[Vellosillo, T., Martinez, M., Lopez, M. A., Vicente, J., Cascon, T., Dolan, L., Hamberg, M. & Castresana, C. (2007). Plant Cell, 19, 831-846.]). For environmental-stress-response involvement of oxylipines and their structure similarity with the title compound, see: Browse (2005[Browse, J. (2005). Vitam. Horm. (N.Y.), 72, 431-456.]); Schaller et al. (2004[Schaller, F., Schaller, A. & Stintzi, A. (2004). J. Plant Growth Regul. 23, 179-199.]); Wasternack (2007[Wasternack, C. (2007). Ann. Bot. (Oxford, U.K.), 100, 681-697.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26O4

  • Mr = 306.39

  • Triclinic, [P \overline 1]

  • a = 5.6859 (3) Å

  • b = 7.7535 (5) Å

  • c = 19.9045 (16) Å

  • α = 81.333 (4)°

  • β = 84.152 (4)°

  • γ = 87.660 (4)°

  • V = 862.68 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 8217 measured reflections

  • 3846 independent reflections

  • 2648 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.189

  • S = 1.06

  • 3846 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.90 (4) 1.78 (4) 2.658 (2) 167.0 (4)
Symmetry code: (i) -x+4, -y+2, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Silene maritima With. belongs to the Caryophyllaceae family (Bremer et al., 2009) and is a perennial species found on cliffs and shingle beaches in coastal habitats (Baker, 1978). This species is known to be a heavy-metal indicator (Price & Abrahams, 1994), and the only phytochemical investigation previously carried out on its aerial parts has revealed the presence of glycinebetaine, a compound used by cells for protection against osmotic stress (Adrian-Romero et al., 1998).

This study is the first report of the presence of 9,16-dioxo-10E,12E,14E octadecatrienoic acid in the Caryophyllales order. This compound has previously been described only in the Asteraceae (Herz & Kulanthaivel, 1984) and Lamiaceae (Li et al., 2011) families.

Its molecular structure contains an 18-carbon backbone with three double bonds in the trans conformation and two carbonyls (Fig. 1). The existence of intermolecular hydrogen interactions between two carboxylic functions was also observed (Fig. 2). The structure of this fatty acid might involve a lipoxygenase action on the α-linoleic acid (Vellosillo et al., 2007). Thus suggesting that it could belong to oxylipines, a class of compounds implicated in environmental stress responses (Browse, 2005; Schaller et al., 2004; Wasternack, 2007).

Related literature top

For background to Silene maritima With., see: Baker (1978); Bremer et al. (2009). This species is known to be a heavy-metal indicator (Price & Abrahams, 1994), and phytochemical investigation on its aerial parts revealed the presence of glycinebetaine, a compound used by cells for protection against osmotic stress (Adrian-Romero et al., 1998). The title compound has previously been described in the Asteraceae (Herz & Kulanthaivel, 1984) and Lamiaceae (Li et al., 2011) families. The structure might involve lipoxygenase action on the α-linoleic acid (Vellosillo et al., 2007), thus suggesting that it could belong to oxylipines, a class of compounds implicated in environmental stress responses (Browse, 2005; Schaller et al., 2004; Wasternack, 2007).

Experimental top

The sampling station is situated in the littoral zone of the western coast of Brittany (Brélès 29, France). Sampling was carried out in July 2008. The aerial parts of the plant were collected, air-dried, and grinded into a fine powder using a grinder (Retsch, ZM 200). Hydroalcoholic extract of aerial parts (1 kg) was prepared by soaking it at room temperature in 3 x 10 l of EtOH/H2O (6/4, v/v) during first 14 h, then 4 h and again 4 h, until exhaustion of raw materials. The extract was then filtered and dried under vacuum using a rotavapor. The amorphous solid, a black-brownish mass, was then dissolved in d-H2O and extracted sequentially with cyclohexane, CH2Cl2, AcOEt and n-BuOH. The CH2Cl2 extract (2.496 g) was fractionated on a silica gel column (SI60 0.050–0.16 mm in size, Merck) eluted successively with cyclohexane (500 ml), AcOEt (1170 ml) and MeOH (330 ml) to yield five main fractions. The third fraction (210 mg) was re-dissolved in MeOH and subjected to semi-preparative HPLC purification (Gilson, binary solvent system). The isolation was performed with a reverse phase Nucleodur C18 ec (250 mm x 21 mm, 5 µm) from Macherey-Nagel. Eluent A was H2O with 0.01% HCOOH, and eluent B was ACN. The flow rate was 10 ml/min and the injection volume was 400 µl at 40 mg ml-1. The elution conditions applied were: 0–5 min, linear gradient from 10% to 15% B; 5–55 min, 15% to 65% B; 55–60 min, 65% to 100% B; 60–70 min, 100% B isocratic. Simultaneous UV monitoring was set at 316 nm. This experimental procedure allowed us to isolate the title compound C18H26O4 at the retention time of 26 min. The pure compound (1 mg) was re-dissolved in 0.2 ml of MeOH/CHCl3 (2/1). The corresponding crystals of 9,16-dioxo-10E,12E,14E octadecatrienoic acid were grown thanks to a slow solubility decrease during two weeks at room temperature after addition of n-heptane (0.4 ml).

Refinement top

The H atoms, except for the H-atom of the carboxyl group which was located from Fourier difference maps, were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of 9,16-dioxo-10E,12E,14E octadecatrienoic acid with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram of four molecules of 9,16-dioxo-10E,12E,14E octadecatrienoic acid.
(10E,12E,14E)-9,16-Dioxooctadeca-10,12,14-trienoic acid top
Crystal data top
C18H26O4Z = 2
Mr = 306.39F(000) = 332
Triclinic, P1Dx = 1.180 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6859 (3) ÅCell parameters from 12739 reflections
b = 7.7535 (5) Åθ = 1.0–27.5°
c = 19.9045 (16) ŵ = 0.08 mm1
α = 81.333 (4)°T = 173 K
β = 84.152 (4)°Plate, colorless
γ = 87.660 (4)°0.40 × 0.30 × 0.10 mm
V = 862.68 (10) Å3
Data collection top
Nonius KappaCCD
diffractometer
2648 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 27.5°, θmin = 1.0°
phi and ω scansh = 77
8217 measured reflectionsk = 1010
3846 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0932P)2 + 0.1679P]
where P = (Fo2 + 2Fc2)/3
3846 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H26O4γ = 87.660 (4)°
Mr = 306.39V = 862.68 (10) Å3
Triclinic, P1Z = 2
a = 5.6859 (3) ÅMo Kα radiation
b = 7.7535 (5) ŵ = 0.08 mm1
c = 19.9045 (16) ÅT = 173 K
α = 81.333 (4)°0.40 × 0.30 × 0.10 mm
β = 84.152 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2648 reflections with I > 2σ(I)
8217 measured reflectionsRint = 0.063
3846 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
3846 reflectionsΔρmin = 0.24 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.7412 (3)0.9602 (2)0.07113 (9)0.0370 (4)
C21.5281 (3)0.9351 (3)0.12198 (10)0.0426 (5)
H2A1.39140.91320.09770.051*
H2B1.49351.04530.14100.051*
C31.5485 (3)0.7882 (2)0.18074 (9)0.0355 (4)
H3A1.67000.81630.20940.043*
H3B1.59990.67930.16250.043*
C41.3134 (3)0.7601 (2)0.22433 (9)0.0371 (4)
H4A1.26130.87050.24130.044*
H4B1.19350.73110.19540.044*
C51.3238 (3)0.6162 (2)0.28491 (9)0.0349 (4)
H5A1.43520.64890.31570.042*
H5B1.38590.50740.26840.042*
C61.0834 (3)0.5817 (2)0.32511 (9)0.0344 (4)
H6A1.02120.69040.34170.041*
H6B0.97200.54890.29440.041*
C71.0945 (3)0.4374 (2)0.38581 (9)0.0332 (4)
H7A1.20190.47220.41730.040*
H7B1.16220.33000.36930.040*
C80.8539 (3)0.3977 (2)0.42492 (8)0.0310 (4)
H8A0.78100.50740.43810.037*
H8B0.75060.35450.39420.037*
C90.8631 (3)0.2648 (2)0.48833 (9)0.0295 (4)
C100.6343 (3)0.2012 (2)0.52376 (8)0.0300 (4)
H100.49170.23970.50450.036*
C110.6245 (3)0.0905 (2)0.58252 (9)0.0299 (4)
H110.76960.05150.60020.036*
C120.4081 (3)0.0265 (2)0.62080 (9)0.0298 (4)
H120.26230.06080.60270.036*
C130.4038 (3)0.0797 (2)0.68114 (9)0.0303 (4)
H130.55030.11680.69840.036*
C140.1889 (3)0.1398 (2)0.72083 (8)0.0291 (4)
H140.04330.10260.70310.035*
C150.1797 (3)0.2443 (2)0.78105 (9)0.0318 (4)
H150.32350.28470.79920.038*
C160.0463 (3)0.2989 (2)0.82020 (9)0.0295 (4)
C170.0310 (3)0.4111 (3)0.88816 (10)0.0420 (5)
H17A0.07120.35350.91500.050*
H17B0.04680.52390.88040.050*
C180.2653 (4)0.4474 (3)0.93005 (10)0.0502 (5)
H18A0.33920.33740.94110.075*
H18B0.23930.52510.97240.075*
H18C0.36930.50320.90390.075*
O11.9060 (2)0.85667 (18)0.06800 (7)0.0537 (4)
O21.7321 (3)1.10716 (19)0.02820 (8)0.0565 (4)
O31.0497 (2)0.21570 (18)0.51052 (7)0.0464 (4)
O40.2355 (2)0.25612 (17)0.79837 (6)0.0434 (4)
H21.868 (7)1.118 (5)0.001 (2)0.140 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (10)0.0350 (9)0.0294 (9)0.0042 (8)0.0027 (8)0.0061 (7)
C20.0401 (10)0.0458 (11)0.0351 (10)0.0011 (8)0.0066 (8)0.0093 (8)
C30.0367 (9)0.0362 (9)0.0293 (9)0.0033 (7)0.0052 (7)0.0037 (7)
C40.0362 (10)0.0399 (10)0.0306 (9)0.0047 (8)0.0049 (7)0.0050 (8)
C50.0352 (9)0.0362 (9)0.0299 (9)0.0051 (7)0.0042 (7)0.0021 (7)
C60.0346 (9)0.0356 (9)0.0293 (9)0.0053 (7)0.0039 (7)0.0041 (7)
C70.0310 (9)0.0343 (9)0.0308 (9)0.0053 (7)0.0030 (7)0.0031 (7)
C80.0296 (9)0.0340 (9)0.0267 (9)0.0050 (7)0.0010 (7)0.0041 (7)
C90.0275 (8)0.0321 (9)0.0274 (8)0.0046 (7)0.0020 (7)0.0009 (7)
C100.0265 (8)0.0342 (9)0.0277 (9)0.0034 (7)0.0034 (7)0.0023 (7)
C110.0253 (8)0.0324 (9)0.0303 (9)0.0029 (7)0.0032 (7)0.0015 (7)
C120.0275 (8)0.0322 (9)0.0278 (9)0.0026 (7)0.0025 (7)0.0027 (7)
C130.0259 (8)0.0328 (9)0.0299 (9)0.0028 (7)0.0028 (7)0.0030 (7)
C140.0260 (8)0.0311 (8)0.0285 (9)0.0011 (7)0.0032 (7)0.0017 (7)
C150.0253 (8)0.0345 (9)0.0324 (9)0.0019 (7)0.0035 (7)0.0059 (7)
C160.0276 (8)0.0291 (8)0.0293 (9)0.0010 (7)0.0030 (7)0.0034 (7)
C170.0349 (9)0.0471 (11)0.0369 (10)0.0026 (8)0.0018 (8)0.0157 (8)
C180.0468 (12)0.0550 (12)0.0389 (11)0.0009 (9)0.0072 (9)0.0176 (9)
O10.0502 (8)0.0507 (8)0.0466 (9)0.0085 (7)0.0175 (6)0.0193 (7)
O20.0603 (10)0.0444 (8)0.0501 (9)0.0071 (7)0.0212 (7)0.0200 (7)
O30.0292 (7)0.0591 (9)0.0442 (8)0.0057 (6)0.0048 (6)0.0166 (6)
O40.0275 (6)0.0587 (9)0.0382 (7)0.0020 (6)0.0040 (5)0.0127 (6)
Geometric parameters (Å, º) top
C1—O11.211 (2)C9—O31.215 (2)
C1—O21.320 (2)C9—C101.481 (2)
C1—C21.497 (3)C10—C111.340 (2)
C2—C31.515 (2)C10—H100.9500
C2—H2A0.9900C11—C121.444 (2)
C2—H2B0.9900C11—H110.9500
C3—C41.522 (2)C12—C131.349 (2)
C3—H3A0.9900C12—H120.9500
C3—H3B0.9900C13—C141.440 (2)
C4—C51.519 (2)C13—H130.9500
C4—H4A0.9900C14—C151.339 (2)
C4—H4B0.9900C14—H140.9500
C5—C61.524 (2)C15—C161.476 (2)
C5—H5A0.9900C15—H150.9500
C5—H5B0.9900C16—O41.2161 (19)
C6—C71.522 (2)C16—C171.502 (2)
C6—H6A0.9900C17—C181.511 (3)
C6—H6B0.9900C17—H17A0.9900
C7—C81.523 (2)C17—H17B0.9900
C7—H7A0.9900C18—H18A0.9800
C7—H7B0.9900C18—H18B0.9800
C8—C91.508 (2)C18—H18C0.9800
C8—H8A0.9900O2—H20.90 (4)
C8—H8B0.9900
O1—C1—O2122.25 (17)C7—C8—H8A108.8
O1—C1—C2124.48 (16)C9—C8—H8B108.8
O2—C1—C2113.26 (16)C7—C8—H8B108.8
C1—C2—C3115.59 (15)H8A—C8—H8B107.7
C1—C2—H2A108.4O3—C9—C10121.41 (15)
C3—C2—H2A108.4O3—C9—C8121.50 (15)
C1—C2—H2B108.4C10—C9—C8117.06 (14)
C3—C2—H2B108.4C11—C10—C9121.25 (15)
H2A—C2—H2B107.4C11—C10—H10119.4
C2—C3—C4111.17 (15)C9—C10—H10119.4
C2—C3—H3A109.4C10—C11—C12124.38 (15)
C4—C3—H3A109.4C10—C11—H11117.8
C2—C3—H3B109.4C12—C11—H11117.8
C4—C3—H3B109.4C13—C12—C11122.93 (15)
H3A—C3—H3B108.0C13—C12—H12118.5
C5—C4—C3113.63 (15)C11—C12—H12118.5
C5—C4—H4A108.8C12—C13—C14123.43 (15)
C3—C4—H4A108.8C12—C13—H13118.3
C5—C4—H4B108.8C14—C13—H13118.3
C3—C4—H4B108.8C15—C14—C13124.62 (15)
H4A—C4—H4B107.7C15—C14—H14117.7
C4—C5—C6112.83 (15)C13—C14—H14117.7
C4—C5—H5A109.0C14—C15—C16122.26 (15)
C6—C5—H5A109.0C14—C15—H15118.9
C4—C5—H5B109.0C16—C15—H15118.9
C6—C5—H5B109.0O4—C16—C15121.69 (15)
H5A—C5—H5B107.8O4—C16—C17121.60 (15)
C7—C6—C5112.67 (15)C15—C16—C17116.71 (14)
C7—C6—H6A109.1C16—C17—C18115.05 (15)
C5—C6—H6A109.1C16—C17—H17A108.5
C7—C6—H6B109.1C18—C17—H17A108.5
C5—C6—H6B109.1C16—C17—H17B108.5
H6A—C6—H6B107.8C18—C17—H17B108.5
C6—C7—C8113.09 (14)H17A—C17—H17B107.5
C6—C7—H7A109.0C17—C18—H18A109.5
C8—C7—H7A109.0C17—C18—H18B109.5
C6—C7—H7B109.0H18A—C18—H18B109.5
C8—C7—H7B109.0C17—C18—H18C109.5
H7A—C7—H7B107.8H18A—C18—H18C109.5
C9—C8—C7113.98 (14)H18B—C18—H18C109.5
C9—C8—H8A108.8C1—O2—H2109 (2)
O1—C1—C2—C312.6 (3)C8—C9—C10—C11176.26 (15)
O2—C1—C2—C3168.51 (16)C9—C10—C11—C12178.37 (15)
C1—C2—C3—C4173.08 (16)C10—C11—C12—C13177.39 (16)
C2—C3—C4—C5179.00 (15)C11—C12—C13—C14177.91 (15)
C3—C4—C5—C6176.13 (15)C12—C13—C14—C15179.56 (16)
C4—C5—C6—C7179.98 (14)C13—C14—C15—C16178.72 (15)
C5—C6—C7—C8178.05 (14)C14—C15—C16—O42.6 (3)
C6—C7—C8—C9175.62 (14)C14—C15—C16—C17177.86 (16)
C7—C8—C9—O310.3 (3)O4—C16—C17—C187.0 (3)
C7—C8—C9—C10171.76 (14)C15—C16—C17—C18173.45 (16)
O3—C9—C10—C111.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.90 (4)1.78 (4)2.658 (2)167.0 (4)
Symmetry code: (i) x+4, y+2, z.

Experimental details

Crystal data
Chemical formulaC18H26O4
Mr306.39
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.6859 (3), 7.7535 (5), 19.9045 (16)
α, β, γ (°)81.333 (4), 84.152 (4), 87.660 (4)
V3)862.68 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8217, 3846, 2648
Rint0.063
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.189, 1.06
No. of reflections3846
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.90 (4)1.78 (4)2.658 (2)167.0 (4)
Symmetry code: (i) x+4, y+2, z.
 

Acknowledgements

The authors thank Dr J. Suffert for his help in crystallizing the compound.

References

First citationAdrian-Romero, M., Wilson, S. J., Gerald, B., Yang, M.-H., Carabot-Cuervo, A. & Bashir, A. K. (1998). Biochem. Syst. Ecol. 26, 535–543.  CAS Google Scholar
First citationBaker, A. J. M. (1978). New Phytol. 81, 321–330.  CrossRef CAS Web of Science Google Scholar
First citationBremer, B., Bremer, K., Chase, M. W., Fay, M. F., Reveal, J. L., Soltis, D. E., Soltis, P. S., Stevens, P. F., Anderberg, A. A., Moore, M. J., Olmstead, R. G., Rudall, P. J., Sytsma, K. J., Tank, D. C., Wurdack, K., Xiang, J. Q. Y. & Zmarzty, S. (2009). Bot. J. Linn. Soc. 161, 105–121.  Google Scholar
First citationBrowse, J. (2005). Vitam. Horm. (N.Y.), 72, 431–456.  Web of Science CrossRef CAS Google Scholar
First citationHerz, W. & Kulanthaivel, P. (1984). Phytochemistry, 23, 1453–1459.  CrossRef CAS Web of Science Google Scholar
First citationLi, L. M., Pu, J. X., Xiao, W. L. & Sun, H. D. (2011). Arch. Pharmacal. Res. 34, 875–879.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrice, G. C. & Abrahams, W. P. (1994). Environ. Geochem. Health, 16, 27–31.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSchaller, F., Schaller, A. & Stintzi, A. (2004). J. Plant Growth Regul. 23, 179–199.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVellosillo, T., Martinez, M., Lopez, M. A., Vicente, J., Cascon, T., Dolan, L., Hamberg, M. & Castresana, C. (2007). Plant Cell, 19, 831–846.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWasternack, C. (2007). Ann. Bot. (Oxford, U.K.), 100, 681–697.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds