organic compounds
3-Phenylcoumarin
aDepartment of Organic Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
*Correspondence e-mail: mariacmatos@gmail.com
In the title compound, C15H10O2, a 3-phenyl derivative of the coumarin (also known as 2H-chromen-2-one or 2H-1-benzopyran-2-one) scaffold, the Cp—Cp—Cc—Cc torsion angle between the coumarin (c) ring system and the phenyl (p) ring is −47.6 (2)°.
Related literature
For the synthesis of the title compound, see: Matos, Santana et al.. et al. (2011); Matos, Terán et al.. et al. (2011). For examples of biological activity of coumarin derivatives, see: Borges et al. (2009); Matos et al. (2009, 2010); Matos, Santana et al.. et al. (2011); Matos, Terán et al.. et al. (2011); Viña, Matos, Ferino et al. (2012); Viña, Matos Yáñez et al. (2012).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812034277/zj2091sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812034277/zj2091Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812034277/zj2091Isup3.cml
3-Phenylcoumarin was prepared according to the protocol described by Matos, Santana et al.. et al. (2011) and Matos, Terán et al.. et al. (2011). Perkin reaction gave the desired coumarin derivative. A solution of 2-hydroxybenzaldehyde (0.9 g, 7.37 mmol) and the phenylacetic acid (1.25 g, 9.21 mmol) in dimethyl sulfoxide (15 ml) was prepared. Dicyclohexylcarbodiimide (DCC, 2.37 g, 11.50 mmol) was added, and the mixture was heated at 110 °C for 24 h. Ice (100 ml) and acetic acid (10 ml) were added to the reaction mixture. After keeping it at room temperature for 2 h, the mixture was extracted with ether (3 x 25 ml). The organic layer was extracted with sodium bicarbonate solution (50 ml, 5%) and then water (20 ml). The solvent was evaporated under vacuum, and the dry residue was purified by flash δ 7.34–7.54 (5H, m, 6-H, 8-H, 9-H, 11-H, 13-H), 7.56–7.66 (2H, m, 10-H, 12-H), 7.72–7.80 (2H, m, 5-H, 7-H), 7.90 (1H, s, 4-H); 13C NMR (75.47 MHz, CDCl3): δ 116.5, 119.7, 124.5, 127.9, 128.4, 128.5, 128.5, 128.9, 131.4, 134.7, 139.9, 153.5, 160.6; DEPT: 116.5, 124.5, 127.9, 128.4, 128.5, 128.5, 131.4, 139.9; MS m/z 223 ([M + 1]+, 16), 222 (M+, 100). Anal. Calcd for C15H10O2: C, 81.07; H, 4.54. Found: C, 81.02; H, 4.52.
(hexane/ethyl acetate 9:1). A white solid was obtained in a yield of 67% (1.1 g). Suitable crystals for X-ray studies were grown from slow evaporation from acetone/ethanol: Mp. 131–132 °C; 1H NMR (300 MHz, CDCl3):Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R- factors(gt) etc. and is not relevant to the choice of reflections for R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C15H10O2 | F(000) = 928 |
Mr = 222.23 | F(000) = 928 |
Monoclinic, C2/c | Dx = 1.409 Mg m−3 |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.7107 Å |
a = 18.469 (4) Å | Cell parameters from 1813 reflections |
b = 5.9596 (12) Å | θ = 2.8–26.2° |
c = 19.274 (4) Å | µ = 0.09 mm−1 |
β = 99.079 (3)° | T = 100 K |
V = 2094.9 (7) Å3 | Prism, colourless |
Z = 8 | 0.27 × 0.22 × 0.09 mm |
Bruker SMART CCD 1000 diffractometer | 1924 independent reflections |
Radiation source: fine-focus sealed tube | 1492 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 25.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −22→21 |
Tmin = 0.876, Tmax = 1 | k = 0→7 |
9021 measured reflections | l = 0→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0528P)2 + 1.3579P] where P = (Fo2 + 2Fc2)/3 |
1924 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C15H10O2 | V = 2094.9 (7) Å3 |
Mr = 222.23 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.469 (4) Å | µ = 0.09 mm−1 |
b = 5.9596 (12) Å | T = 100 K |
c = 19.274 (4) Å | 0.27 × 0.22 × 0.09 mm |
β = 99.079 (3)° |
Bruker SMART CCD 1000 diffractometer | 1924 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1492 reflections with I > 2σ(I) |
Tmin = 0.876, Tmax = 1 | Rint = 0.042 |
9021 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.21 e Å−3 |
1924 reflections | Δρmin = −0.26 e Å−3 |
154 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.21370 (8) | 0.2410 (3) | 0.36971 (8) | 0.0168 (4) | |
H1 | 0.219 | 0.3712 | 0.3985 | 0.02* | |
C2 | 0.15672 (9) | 0.2280 (3) | 0.31395 (8) | 0.0184 (4) | |
H2 | 0.1223 | 0.3472 | 0.3054 | 0.022* | |
C3 | 0.14979 (9) | 0.0409 (3) | 0.27041 (8) | 0.0192 (4) | |
H3 | 0.1115 | 0.0337 | 0.2313 | 0.023* | |
C4 | 0.19876 (9) | −0.1348 (3) | 0.28427 (8) | 0.0188 (4) | |
H4 | 0.1939 | −0.263 | 0.2546 | 0.023* | |
C5 | 0.25492 (9) | −0.1254 (3) | 0.34124 (8) | 0.0166 (4) | |
H5 | 0.2876 | −0.2485 | 0.3511 | 0.02* | |
C6 | 0.26348 (8) | 0.0646 (3) | 0.38409 (8) | 0.0145 (4) | |
C7 | 0.32522 (8) | 0.0774 (3) | 0.44333 (8) | 0.0146 (3) | |
C8 | 0.34288 (8) | −0.0903 (3) | 0.49004 (8) | 0.0145 (3) | |
H8 | 0.3139 | −0.2228 | 0.4858 | 0.017* | |
C9 | 0.40398 (8) | −0.0744 (3) | 0.54588 (8) | 0.0145 (4) | |
C10 | 0.42315 (8) | −0.2408 (3) | 0.59681 (8) | 0.0168 (4) | |
H10 | 0.3949 | −0.3744 | 0.5955 | 0.02* | |
C11 | 0.48286 (9) | −0.2116 (3) | 0.64877 (8) | 0.0201 (4) | |
H11 | 0.4954 | −0.3246 | 0.6834 | 0.024* | |
C12 | 0.52497 (9) | −0.0168 (3) | 0.65072 (8) | 0.0206 (4) | |
H12 | 0.5664 | 0.001 | 0.6863 | 0.025* | |
C13 | 0.50708 (9) | 0.1506 (3) | 0.60137 (8) | 0.0190 (4) | |
H13 | 0.5357 | 0.2835 | 0.6026 | 0.023* | |
C14 | 0.44646 (8) | 0.1196 (3) | 0.55016 (8) | 0.0152 (4) | |
C15 | 0.37106 (8) | 0.2799 (3) | 0.44882 (8) | 0.0161 (4) | |
O1 | 0.42953 (6) | 0.29055 (18) | 0.50224 (5) | 0.0177 (3) | |
O2 | 0.36238 (6) | 0.43926 (18) | 0.40948 (6) | 0.0220 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0191 (8) | 0.0165 (8) | 0.0160 (8) | 0.0006 (7) | 0.0062 (7) | −0.0010 (7) |
C2 | 0.0167 (8) | 0.0186 (9) | 0.0206 (8) | 0.0025 (7) | 0.0050 (7) | 0.0052 (7) |
C3 | 0.0166 (8) | 0.0250 (9) | 0.0156 (8) | −0.0040 (7) | 0.0013 (6) | 0.0034 (7) |
C4 | 0.0215 (9) | 0.0188 (9) | 0.0167 (8) | −0.0050 (7) | 0.0051 (7) | −0.0029 (7) |
C5 | 0.0188 (8) | 0.0134 (8) | 0.0182 (8) | 0.0012 (7) | 0.0050 (7) | 0.0020 (6) |
C6 | 0.0144 (8) | 0.0156 (8) | 0.0144 (8) | −0.0023 (6) | 0.0054 (6) | 0.0004 (6) |
C7 | 0.0149 (8) | 0.0147 (8) | 0.0152 (8) | 0.0012 (6) | 0.0055 (6) | −0.0020 (6) |
C8 | 0.0154 (8) | 0.0132 (8) | 0.0160 (8) | 0.0001 (6) | 0.0058 (6) | −0.0028 (6) |
C9 | 0.0138 (8) | 0.0167 (8) | 0.0140 (8) | 0.0030 (6) | 0.0056 (6) | −0.0019 (6) |
C10 | 0.0174 (8) | 0.0166 (8) | 0.0177 (8) | 0.0012 (7) | 0.0066 (7) | 0.0003 (7) |
C11 | 0.0216 (9) | 0.0225 (9) | 0.0163 (8) | 0.0063 (7) | 0.0037 (7) | 0.0017 (7) |
C12 | 0.0158 (8) | 0.0283 (10) | 0.0171 (8) | 0.0035 (7) | 0.0010 (6) | −0.0041 (7) |
C13 | 0.0174 (8) | 0.0201 (9) | 0.0199 (9) | −0.0013 (7) | 0.0046 (7) | −0.0057 (7) |
C14 | 0.0168 (8) | 0.0162 (8) | 0.0136 (8) | 0.0038 (7) | 0.0057 (6) | −0.0005 (6) |
C15 | 0.0154 (8) | 0.0161 (8) | 0.0171 (8) | 0.0020 (7) | 0.0038 (6) | −0.0025 (7) |
O1 | 0.0202 (6) | 0.0138 (6) | 0.0185 (6) | −0.0026 (5) | 0.0011 (5) | 0.0000 (5) |
O2 | 0.0239 (6) | 0.0148 (6) | 0.0265 (6) | −0.0003 (5) | 0.0017 (5) | 0.0053 (5) |
C1—C2 | 1.382 (2) | C8—H8 | 0.95 |
C1—C6 | 1.395 (2) | C9—C14 | 1.392 (2) |
C1—H1 | 0.95 | C9—C10 | 1.401 (2) |
C2—C3 | 1.390 (2) | C10—C11 | 1.379 (2) |
C2—H2 | 0.95 | C10—H10 | 0.95 |
C3—C4 | 1.382 (2) | C11—C12 | 1.395 (2) |
C3—H3 | 0.95 | C11—H11 | 0.95 |
C4—C5 | 1.387 (2) | C12—C13 | 1.382 (2) |
C4—H4 | 0.95 | C12—H12 | 0.95 |
C5—C6 | 1.396 (2) | C13—C14 | 1.383 (2) |
C5—H5 | 0.95 | C13—H13 | 0.95 |
C6—C7 | 1.483 (2) | C14—O1 | 1.3776 (18) |
C7—C8 | 1.350 (2) | C15—O2 | 1.2102 (19) |
C7—C15 | 1.468 (2) | C15—O1 | 1.3709 (19) |
C8—C9 | 1.434 (2) | ||
C2—C1—C6 | 120.61 (15) | C9—C8—H8 | 119 |
C2—C1—H1 | 119.7 | C14—C9—C10 | 117.94 (14) |
C6—C1—H1 | 119.7 | C14—C9—C8 | 117.93 (14) |
C1—C2—C3 | 120.03 (15) | C10—C9—C8 | 124.13 (15) |
C1—C2—H2 | 120 | C11—C10—C9 | 120.29 (15) |
C3—C2—H2 | 120 | C11—C10—H10 | 119.9 |
C4—C3—C2 | 119.76 (15) | C9—C10—H10 | 119.9 |
C4—C3—H3 | 120.1 | C10—C11—C12 | 120.22 (15) |
C2—C3—H3 | 120.1 | C10—C11—H11 | 119.9 |
C3—C4—C5 | 120.48 (15) | C12—C11—H11 | 119.9 |
C3—C4—H4 | 119.8 | C13—C12—C11 | 120.71 (15) |
C5—C4—H4 | 119.8 | C13—C12—H12 | 119.6 |
C4—C5—C6 | 120.11 (15) | C11—C12—H12 | 119.6 |
C4—C5—H5 | 119.9 | C12—C13—C14 | 118.25 (15) |
C6—C5—H5 | 119.9 | C12—C13—H13 | 120.9 |
C1—C6—C5 | 118.96 (14) | C14—C13—H13 | 120.9 |
C1—C6—C7 | 121.09 (14) | O1—C14—C13 | 116.88 (14) |
C5—C6—C7 | 119.94 (14) | O1—C14—C9 | 120.55 (14) |
C8—C7—C15 | 118.97 (14) | C13—C14—C9 | 122.57 (14) |
C8—C7—C6 | 123.41 (14) | O2—C15—O1 | 116.41 (14) |
C15—C7—C6 | 117.56 (14) | O2—C15—C7 | 125.59 (15) |
C7—C8—C9 | 122.02 (15) | O1—C15—C7 | 117.99 (14) |
C7—C8—H8 | 119 | C15—O1—C14 | 122.53 (12) |
C6—C1—C2—C3 | −1.8 (2) | C9—C10—C11—C12 | −0.5 (2) |
C1—C2—C3—C4 | 1.9 (2) | C10—C11—C12—C13 | 0.8 (2) |
C2—C3—C4—C5 | −0.2 (2) | C11—C12—C13—C14 | 0.0 (2) |
C3—C4—C5—C6 | −1.6 (2) | C12—C13—C14—O1 | 179.25 (13) |
C2—C1—C6—C5 | 0.0 (2) | C12—C13—C14—C9 | −1.2 (2) |
C2—C1—C6—C7 | 179.41 (14) | C10—C9—C14—O1 | −178.93 (13) |
C4—C5—C6—C1 | 1.6 (2) | C8—C9—C14—O1 | 0.4 (2) |
C4—C5—C6—C7 | −177.73 (14) | C10—C9—C14—C13 | 1.5 (2) |
C1—C6—C7—C8 | 133.05 (16) | C8—C9—C14—C13 | −179.15 (13) |
C5—C6—C7—C8 | −47.6 (2) | C8—C7—C15—O2 | 178.09 (15) |
C1—C6—C7—C15 | −49.86 (19) | C6—C7—C15—O2 | 0.9 (2) |
C5—C6—C7—C15 | 129.50 (15) | C8—C7—C15—O1 | −0.9 (2) |
C15—C7—C8—C9 | 1.5 (2) | C6—C7—C15—O1 | −178.17 (12) |
C6—C7—C8—C9 | 178.59 (14) | O2—C15—O1—C14 | −179.01 (13) |
C7—C8—C9—C14 | −1.3 (2) | C7—C15—O1—C14 | 0.1 (2) |
C7—C8—C9—C10 | 178.02 (14) | C13—C14—O1—C15 | 179.72 (13) |
C14—C9—C10—C11 | −0.6 (2) | C9—C14—O1—C15 | 0.1 (2) |
C8—C9—C10—C11 | −179.96 (14) |
Experimental details
Crystal data | |
Chemical formula | C15H10O2 |
Mr | 222.23 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 18.469 (4), 5.9596 (12), 19.274 (4) |
β (°) | 99.079 (3) |
V (Å3) | 2094.9 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.27 × 0.22 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART CCD 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.876, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9021, 1924, 1492 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.104, 1.03 |
No. of reflections | 1924 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.26 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by funds from the Xunta da Galicia (09CSA030203PR), the Ministerio de Sanidad y Consumo (PS09/00501) and the Fundação para a Ciência e Tecnologia (SFRH/BD/61262/2009).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85. Google Scholar
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011). Bioorg. Med. Chem. Lett. 21, 3342–3345. Web of Science CrossRef CAS PubMed Google Scholar
Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011). J. Med. Chem. 54, 7127–7137. Web of Science CrossRef CAS PubMed Google Scholar
Matos, M. J., Viña, D., Janeiro, P., Borges, F., Santana, L. & Uriarte, E. (2010). Bioorg. Med. Chem. Lett. 20, 5157–5160. Web of Science CrossRef CAS PubMed Google Scholar
Matos, M. J., Viña, D., Quezada, E., Picciau, C., Delogu, G., Orallo, F., Santana, L. & Uriarte, E. (2009). Bioorg. Med. Chem. Lett. 19, 3268–3270. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Viña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012). Chem. Med. Chem. 7, 464–470. Web of Science PubMed Google Scholar
Viña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012). Med. Chem. Commun. 3, 213–218. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarin derivatives are very interesting molecules due to the biological properties that they may display (Borges et al. 2009; Matos et al. 2009, 2010; Matos, Santana et al.., 2011; Matos, Terán et al.., 2011). The title structure is a 3-phenyl coumarin derivative that posses one aromatic ring linked at that position. Therefore, the X-ray analysis of this compound (figure 1) aims to contribute to the elucidation of structural requirements needed to understand the partial planarity of the compound (coumarin nucleus) and the torsion of the 3-phenyl ring. From the single-crystal diffraction measurements one can conclude that the experimental bond lengths are within normal values with the average the molecule bond lengths. The planarity of the coumarin moiety is also evident by the torsion angles values between their carbons. Also, the angle C5—C6—C7—C8 is from -47.6 (2)°, typical of the torsion permitted by the rotation of the 3-phenyl ring. Packing diagram of the structure allows the interpretation of the spatial orientation of the molecules (figure 2).