organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-(3-Fluoro­pyridin-2-yl)methyl­­idene]benzohydrazide monohydrate

aDepartment of Chemical Oceanography, Cochin University of Science and Technology, Lakeside Campus, Kochi 682 016, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and cDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India
*Correspondence e-mail: eesans@yahoo.com

(Received 10 July 2012; accepted 8 August 2012; online 15 August 2012)

The title compound, C13H10FN3O·H2O, exists in the E conformation with respect to the azomethane C=N double bond. The mol­ecule is close to planar with a maximum deviation of 0.286 (2) Å. The pyridine ring is essentially coplanar with the central C(= O)N2C unit [dihedral angle = 2.02 (3)°] and the phenyl ring exhibits a dihedral angle of 14.41 (10)° with respect to the central unit. The crystal structure features O—H⋯N, N—H⋯O and O—H⋯O hydrogen-bond inter­actions between the solvent water and the benzohydrazide mol­ecules, as well as C—H⋯O hydrogen bonds and C—F⋯π [3.0833 (18) Å] inter­actions.

Related literature

For background to the use of benzohydrazides as catalysts, see: Heravi et al. (2007[Heravi, M. M., Ranjbar, L., Derikvand, F., Oskooie, H. A. & Bamoharram, F. F. (2007). J. Mol. Catal. A Chem. 265, 186-188.]); Hou et al. (2005[Hou, J., Sun, W.-H., Zhang, D., Chen, L., Li, W., Zhao, D. & Song, H. (2005). J. Mol. Catal. A Chem. 231, 221-233.]) and for their biological activity, see: Sreeja et al. (2004[Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575-581.]). For the synthesis of related compounds, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]). For related structures, see Mangalam et al. (2009[Mangalam, N. A., Sivakumar, S., Sheeja, S. R., Kurup, M. R. P. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 4191-4197.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10FN3O·H2O

  • Mr = 261.26

  • Orthorhombic, P b c a

  • a = 8.2540 (4) Å

  • b = 11.5489 (4) Å

  • c = 26.1962 (11) Å

  • V = 2497.14 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.974

  • 34264 measured reflections

  • 2192 independent reflections

  • 1817 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.096

  • S = 1.07

  • 2190 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′⋯O1W 0.901 (18) 1.914 (18) 2.7917 (17) 164.3 (16)
O1W—H1A⋯O1i 0.84 (3) 2.08 (3) 2.9187 (19) 172 (2)
O1W—H1A⋯N2i 0.84 (3) 2.48 (2) 2.9494 (17) 116.1 (19)
O1W—H1B⋯N1i 0.89 (2) 1.95 (3) 2.8420 (18) 178 (2)
C9—H9⋯O1W 0.93 2.30 3.209 (2) 165
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in coordination chemistry of benzohydrazide has been a subject of enthusiastic research since their complexes show a wide range of catalytic properties (Heravi et al., 2007; Hou et al., 2005). Benzohydrazone derivatives are also important due to their wide spectrum of biological activities (Sreeja et al., 2004).

This molecule adopts an E conformation with respect to the C6=N2 bond and it exists in the amido form with a C7=O1 bond length of 1.2258 (17) Å which is very close to the reported C=O bond length of a similar structure (Mangalam et al., 2009). The O1 and N2 atoms are in a Z conformation with respect to C7–N3 having a torsional angle of -0.4 (2)°. The molecule is almost planar with a maximum deviation of 0.286 (2) Å for the atom C12 from its least square plane. The pyridyl ring is essentially coplanar with the central C(=O)N2C unit (dihedral angle 2.02 (3) °), the phenyl ring exhibits a dihedral angle of 14.41 (10)° with respect to the central unit.

The water molecule forms six H-bonds with two different benzohydrazone molecules. Hydrogen bond interactions such as O–H···N, O–H···O, N–H···O and C–H···O are present in the crystal system between the H atoms attached to the O1W atom and N1, N2, N3, C9 and O1 atoms of two adjacent molecules with D···A distances of 2.842 (2), 2.9495 (17), 2.7917 (17), 3.209 (2) and 2.9188 (18) Å respectively as shown in Table 1. Both H-atoms of the water molecule form bifurcated hydrogen bonds with the azomethine nitrogen, the pyridyl nitrogen and the carbonyl oxygen atoms of one neighboring molecule (Fig. 2). The water molecule acts as a hydrogen bond acceptor towards another benzohydrazone molecule through an N–H···O hydrogen bond. Through these interactions the molecules are interconnected through the water molecule to form infinite chains parallel to the b axis of the unit cell (Fig. 2). Benzohydrazone molecules within these chains also interact through weak C–F···π [3.0833 (18) Å] interactions (Fig. 2) that augment the stronger O–H···N, O–H···O, N–H···O hydrogen bonds.

Related literature top

For catalytic properties of benzohydrazides, see: Heravi et al. (2007); Hou et al. (2005) and for their biological activity, see: Sreeja et al. (2004). For the synthesis of related compounds, see: Fun et al. (2008). For related structures, see Mangalam et al. (2009).

Experimental top

The title compound was prepared by adapting a reported procedure (Fun et al., 2008). A solution of 3-fluoropyridine-2-carbaldehyde (1.25 g,1 mmol) in ethanol (10 ml) was mixed with an ethanolic solution (10 ml) of benzohydrazide (1.36 g,1 mmol). The mixture was boiled under reflux for 12 h after adding few drops of glacial acetic acid and then cooled to room temperature. Colorless block shaped crystals, suitable for single-crystal analysis, were obtained in 61.8% yield after slow evaporation of the solution in air for a few days. 1H NMR spectrum, DMSO-d6, δ, p.p.m.: 12.12 (s, 1H, NH), 8.66 (s, 1H, CH=N), 8.53 (d, 1H, py–H(C1)), 7.54–7.95 (m, 7H, Ar–H (C2, C3, C9, C10, C11, C12, C13)). IR spectrum, ν (cm-1): 3421, 3059, 1683,1650, 1597, 1441, 1350, 1295, 1273, 1167, 1134, 1073, 922, 801, 706, 674.

Refinement top

The atoms H3', H1A and H1B were located from a difference Fourier map and refined isotropically. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93 Å, and with isotropic displacement parameters 1.2 times that of the parent carbon atoms. Omitted owing to bad disagreement were the reflections (0 0 2) and (1 0 2).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
Fig. 1. ORTEP diagram of N'-[(E)-(3-fluoropyridin-2-yl)methylidene]benzohydrazide monohydrate with 50% probability ellipsoids.

Fig. 2. Hydrogen-bonding interactions showing an infinite chain in the crystal structure of N'-[(E)-(3-fluoropyridin-2-yl)methylidene]benzohydrazide hydrate and the interconnection of the chains via weak C–F···π interactions.
N'-[(E)-(3-Fluoropyridin-2-yl)methylidene]benzohydrazide monohydrate top
Crystal data top
C13H10FN3O·H2OF(000) = 1088
Mr = 261.26Dx = 1.390 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9884 reflections
a = 8.2540 (4) Åθ = 5.8–54.5°
b = 11.5489 (4) ŵ = 0.11 mm1
c = 26.1962 (11) ÅT = 296 K
V = 2497.14 (18) Å3Block, colorless
Z = 80.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2192 independent reflections
Radiation source: fine-focus sealed tube1817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.964, Tmax = 0.974k = 1313
34264 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.6736P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2190 reflectionsΔρmax = 0.18 e Å3
185 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (8)
Crystal data top
C13H10FN3O·H2OV = 2497.14 (18) Å3
Mr = 261.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2540 (4) ŵ = 0.11 mm1
b = 11.5489 (4) ÅT = 296 K
c = 26.1962 (11) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2192 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1817 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.974Rint = 0.027
34264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.18 e Å3
2190 reflectionsΔρmin = 0.13 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.75071 (13)0.87133 (8)1.09485 (3)0.0629 (3)
O10.82638 (15)1.12491 (9)0.86590 (4)0.0561 (3)
O1W0.90084 (17)0.73757 (10)0.93534 (6)0.0600 (3)
N10.60294 (15)1.12483 (10)1.03176 (5)0.0462 (3)
N20.79363 (14)1.02906 (10)0.95707 (4)0.0413 (3)
N30.88214 (15)0.97616 (11)0.91928 (4)0.0418 (3)
C10.51707 (19)1.17020 (13)1.06961 (6)0.0514 (4)
H10.46331.23971.06370.062*
C20.5032 (2)1.12006 (14)1.11710 (6)0.0562 (4)
H20.44201.15521.14250.067*
C30.5812 (2)1.01773 (15)1.12616 (6)0.0557 (4)
H30.57420.98111.15770.067*
C40.66988 (18)0.97122 (13)1.08709 (5)0.0444 (4)
C50.68155 (16)1.02434 (11)1.04024 (5)0.0392 (3)
C60.77636 (17)0.97353 (12)0.99866 (5)0.0416 (3)
H60.82370.90101.00260.050*
C70.89290 (17)1.03168 (12)0.87370 (5)0.0416 (3)
C80.99453 (17)0.97527 (13)0.83362 (5)0.0427 (3)
C91.0457 (2)0.86099 (14)0.83555 (6)0.0543 (4)
H91.01760.81480.86330.065*
C101.1385 (2)0.81533 (17)0.79643 (6)0.0664 (5)
H101.17150.73840.79780.080*
C111.1819 (2)0.88324 (18)0.75569 (7)0.0692 (5)
H111.24410.85220.72940.083*
C121.1337 (2)0.99666 (18)0.75360 (6)0.0650 (5)
H121.16451.04270.72610.078*
C131.03959 (19)1.04278 (15)0.79213 (6)0.0529 (4)
H131.00621.11960.79030.064*
H3'0.908 (2)0.9010 (16)0.9235 (6)0.057 (5)*
H1A0.838 (3)0.699 (2)0.9166 (9)0.102 (9)*
H1B0.902 (3)0.701 (2)0.9653 (9)0.100 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0738 (6)0.0639 (6)0.0511 (5)0.0185 (5)0.0040 (5)0.0128 (4)
O10.0757 (8)0.0461 (6)0.0467 (6)0.0037 (5)0.0021 (5)0.0061 (5)
O1W0.0761 (8)0.0452 (6)0.0589 (8)0.0080 (6)0.0070 (7)0.0081 (6)
N10.0496 (7)0.0422 (7)0.0468 (7)0.0015 (5)0.0020 (6)0.0028 (5)
N20.0454 (7)0.0418 (6)0.0366 (6)0.0004 (5)0.0024 (5)0.0031 (5)
N30.0500 (7)0.0406 (7)0.0348 (6)0.0017 (5)0.0046 (5)0.0004 (5)
C10.0508 (9)0.0451 (8)0.0583 (10)0.0016 (7)0.0051 (7)0.0096 (7)
C20.0529 (9)0.0628 (10)0.0528 (10)0.0014 (8)0.0107 (7)0.0155 (8)
C30.0571 (9)0.0704 (11)0.0395 (8)0.0017 (8)0.0053 (7)0.0008 (7)
C40.0447 (8)0.0492 (8)0.0395 (8)0.0006 (7)0.0027 (6)0.0008 (6)
C50.0381 (7)0.0417 (7)0.0377 (7)0.0032 (6)0.0013 (6)0.0039 (6)
C60.0459 (8)0.0401 (8)0.0388 (7)0.0034 (6)0.0001 (6)0.0008 (6)
C70.0458 (8)0.0415 (8)0.0375 (8)0.0089 (6)0.0036 (6)0.0003 (6)
C80.0421 (8)0.0527 (8)0.0333 (7)0.0109 (6)0.0020 (6)0.0007 (6)
C90.0643 (10)0.0551 (9)0.0433 (8)0.0037 (8)0.0112 (8)0.0003 (7)
C100.0736 (12)0.0708 (11)0.0550 (10)0.0039 (9)0.0161 (9)0.0077 (9)
C110.0611 (11)0.1001 (15)0.0463 (10)0.0034 (10)0.0143 (8)0.0098 (10)
C120.0576 (10)0.0987 (14)0.0386 (9)0.0147 (10)0.0058 (7)0.0105 (9)
C130.0519 (9)0.0651 (10)0.0418 (8)0.0110 (8)0.0024 (7)0.0068 (7)
Geometric parameters (Å, º) top
F1—C41.3481 (17)C4—C51.376 (2)
O1—C71.2258 (17)C5—C61.4639 (19)
O1W—H1A0.84 (3)C6—H60.9300
O1W—H1B0.89 (2)C7—C81.494 (2)
N1—C11.3266 (19)C8—C91.387 (2)
N1—C51.3480 (18)C8—C131.388 (2)
N2—C61.2721 (18)C9—C101.384 (2)
N2—N31.3736 (16)C9—H90.9300
N3—C71.3582 (18)C10—C111.372 (3)
N3—H3'0.901 (18)C10—H100.9300
C1—C21.377 (2)C11—C121.370 (3)
C1—H10.9300C11—H110.9300
C2—C31.366 (2)C12—C131.381 (2)
C2—H20.9300C12—H120.9300
C3—C41.368 (2)C13—H130.9300
C3—H30.9300
H1A—O1W—H1B105 (2)C5—C6—H6120.2
C1—N1—C5118.31 (13)O1—C7—N3122.14 (13)
C6—N2—N3116.90 (12)O1—C7—C8121.16 (13)
C7—N3—N2117.28 (12)N3—C7—C8116.67 (13)
C7—N3—H3'123.2 (11)C9—C8—C13118.79 (14)
N2—N3—H3'117.8 (11)C9—C8—C7124.09 (13)
N1—C1—C2123.60 (15)C13—C8—C7117.12 (14)
N1—C1—H1118.2C10—C9—C8120.27 (15)
C2—C1—H1118.2C10—C9—H9119.9
C3—C2—C1118.79 (14)C8—C9—H9119.9
C3—C2—H2120.6C11—C10—C9120.18 (18)
C1—C2—H2120.6C11—C10—H10119.9
C2—C3—C4117.49 (15)C9—C10—H10119.9
C2—C3—H3121.3C12—C11—C10120.13 (17)
C4—C3—H3121.3C12—C11—H11119.9
F1—C4—C3119.21 (13)C10—C11—H11119.9
F1—C4—C5118.78 (13)C11—C12—C13120.19 (16)
C3—C4—C5122.00 (14)C11—C12—H12119.9
N1—C5—C4119.81 (13)C13—C12—H12119.9
N1—C5—C6118.68 (12)C12—C13—C8120.43 (16)
C4—C5—C6121.51 (13)C12—C13—H13119.8
N2—C6—C5119.67 (12)C8—C13—H13119.8
N2—C6—H6120.2
C6—N2—N3—C7176.10 (12)N2—N3—C7—O10.4 (2)
C5—N1—C1—C20.2 (2)N2—N3—C7—C8177.81 (11)
N1—C1—C2—C30.2 (2)O1—C7—C8—C9166.31 (14)
C1—C2—C3—C40.3 (2)N3—C7—C8—C915.5 (2)
C2—C3—C4—F1178.90 (14)O1—C7—C8—C1313.8 (2)
C2—C3—C4—C50.1 (2)N3—C7—C8—C13164.45 (13)
C1—N1—C5—C40.6 (2)C13—C8—C9—C100.7 (2)
C1—N1—C5—C6179.89 (13)C7—C8—C9—C10179.37 (15)
F1—C4—C5—N1179.40 (12)C8—C9—C10—C110.7 (3)
C3—C4—C5—N10.5 (2)C9—C10—C11—C120.1 (3)
F1—C4—C5—C61.4 (2)C10—C11—C12—C130.8 (3)
C3—C4—C5—C6179.78 (14)C11—C12—C13—C80.8 (3)
N3—N2—C6—C5179.18 (11)C9—C8—C13—C120.0 (2)
N1—C5—C6—N25.7 (2)C7—C8—C13—C12179.90 (14)
C4—C5—C6—N2175.10 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1W0.901 (18)1.914 (18)2.7917 (17)164.3 (16)
O1W—H1A···O1i0.84 (3)2.08 (3)2.9187 (19)172 (2)
O1W—H1A···N2i0.84 (3)2.48 (2)2.9494 (17)116.1 (19)
O1W—H1B···N1i0.89 (2)1.95 (3)2.8420 (18)178 (2)
C9—H9···O1W0.932.303.209 (2)165
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC13H10FN3O·H2O
Mr261.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.2540 (4), 11.5489 (4), 26.1962 (11)
V3)2497.14 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.964, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
34264, 2192, 1817
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.07
No. of reflections2190
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3'···O1W0.901 (18)1.914 (18)2.7917 (17)164.3 (16)
O1W—H1A···O1i0.84 (3)2.08 (3)2.9187 (19)172 (2)
O1W—H1A···N2i0.84 (3)2.48 (2)2.9494 (17)116.1 (19)
O1W—H1B···N1i0.89 (2)1.95 (3)2.8420 (18)178 (2)
C9—H9···O1W0.93102.29913.209 (2)165.38
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

The authors are thankful to Dr Shibu M. Eapen, SAIF, Cochin University of Science and Technology, for the data collection.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeravi, M. M., Ranjbar, L., Derikvand, F., Oskooie, H. A. & Bamoharram, F. F. (2007). J. Mol. Catal. A Chem. 265, 186–188.  Web of Science CrossRef CAS Google Scholar
First citationHou, J., Sun, W.-H., Zhang, D., Chen, L., Li, W., Zhao, D. & Song, H. (2005). J. Mol. Catal. A Chem. 231, 221–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationMangalam, N. A., Sivakumar, S., Sheeja, S. R., Kurup, M. R. P. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 4191–4197.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds