metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1184-m1185

Poly[di­aqua­(μ4-2,5-dicarb­­oxy­benzene-1,4-di­carboxyl­ato-κ4O1:O2:O4:O5)(μ2-2,5-dicarb­­oxy­benzene-1,4-di­carboxyl­ato-κ2O1:O4)bis­­(1,10-phenanthroline-κ2N,N′)dimanganese(II)]

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 12 June 2012; accepted 10 August 2012; online 23 August 2012)

In the title compound, [Mn2(C10H4O8)2(C12H8N2)2(H2O)2]n, the Mn2+ ion has a slightly distorted octa­hedral N2O4 coordination geometry being coordinated by one aqua O atom, two N atoms of the chelating 1,10-phenanthroline ligand and three carboxyl O atoms from three 2,5-dicarb­oxy­benzene-1,4-dicarboxyl­ate (H2btec2−) ligands. The H2btec2− anion exhibits two different coordination modes, viz. μ2 and μ4. Both of the H2btec2− anions are located on special positions (inversion centers). The μ4-anion bridges adjacent MnII atoms, forming a chain along the a axis. Adjacent chains are further bridged by μ2-anions, resulting in a two-dimensional layered polymer parallel to (011). In the crystal, extensive carb­oxy–carboxyl­ate O—H⋯O and water–carboxyl­ate O—H⋯O inter­actions lead to the formation of a three-dimensional supra­molecular network.

Related literature

For isotypic structures, see: Hu et al. (2004[Hu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112-m113.]); Yu et al. (2007[Yu, X.-Y., Lu, J., Yu, J.-H., Zhang, X., Xu, J.-Q. & Wang, T.-G. (2007). Z. Anorg. Allg. Chem. 633, 490-494.]). For background to manganese complexes and phenanthroline complexes, see: Zhu et al. (2006[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2688-m2689.]); Zhong et al. (2009[Zhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.]); Cui et al. (2010[Cui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.]); Zhong (2011[Zhong, K.-L. (2011). Acta Cryst. E67, m1609-m1610.]). For background to coordination polymers, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067-1068.]); Fabelo et al. (2008[Fabelo, O., Pason, J., Lloret, F., Julve, M. & Ruiz-Perez, C. (2008). Inorg. Chem. 47, 3568-3576.]); Liu et al. (2007[Liu, J.-Q., Wang, Y.-Y., Ma, L.-F., Zhong, F., Zeng, X.-R., Wu, W.-P. & Shi, Q.-Z. (2007). Inorg. Chem. Commun. 10, 979-982.]); Li et al. (2003[Li, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119-3124.]); Zhang et al. (2010[Zhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535-1550.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C10H4O8)2(C12H8N2)2(H2O)2]

  • Mr = 1010.58

  • Triclinic, [P \overline 1]

  • a = 9.880 (2) Å

  • b = 10.246 (2) Å

  • c = 11.272 (2) Å

  • α = 86.29 (3)°

  • β = 71.82 (3)°

  • γ = 65.32 (3)°

  • V = 982.2 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 223 K

  • 0.50 × 0.50 × 0.30 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB: Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.710, Tmax = 0.810

  • 9376 measured reflections

  • 4403 independent reflections

  • 3757 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.05

  • 4403 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1W 2.1576 (17)
Mn1—O5i 2.1830 (12)
Mn1—O7 2.1852 (13)
Mn1—O1 2.2001 (12)
Mn1—N2 2.2314 (14)
Mn1—N1 2.2317 (17)
Symmetry code: (i) -x, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O1 0.82 1.75 2.5176 (16) 155
O4—H4⋯O6ii 0.82 1.81 2.592 (2) 158
O1W—H1WB⋯O6i 0.79 (2) 1.95 (3) 2.7108 (19) 160 (2)
O1W—H1WA⋯O2iii 0.80 (2) 1.94 (2) 2.7117 (18) 162 (2)
Symmetry codes: (i) -x, -y, -z+2; (ii) -x-1, -y+1, -z+2; (iii) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the self-assembly of coordination polymers and the crystal engineering of metal-organic coordination frameworks have received much attention (Batten & Robson, 1998; Liu et al., 2007; Zhang et al., 2010). The 1,2,4,5-benzenetetracarboxylate acid and 1,10-phenanthroline (phen) have also been widely employed as polydentate ligands in coordination reactions and in the construction of supermolecular networks (Li et al., 2003; Fabelo et al., 2008). In the past few years, we have synthesized and reported many metal-Phen complexes such as manganese (Zhu et al., 2006), nickel (Zhong et al., 2009), zinc (Cui et al., 2010) and cadmium (Zhong, 2011) complexes . The title compound [Mn(phen)(µ2 –H2btec)1/24– H2btec)1/2(H2O)], (I), was obtained during an attempt to synthesize a mixed-ligand complex of MnII with phen and 1,2,4,5-benzenetetracarboxylate ligand via a hydrothermal reaction.

The title compound is isomorphic with previously reported cobalt(II) and zinc(II) analogs (Hu et al., 2004; Yu et al., 2007). The X-ray diffraction study indicates that the MnII centers exhibit a slightly distorted octahedral MnN2O4 coordination environment. Atom Mn1 is coordinated by one aqua O atom (O1W), two N atoms (N1 and N2) from a bridging 1,10-phenanthroline ligand and three carboxyl O atoms (O1, O7 and O5D) from three H2btec2- anions. The N1, N2, O1W and O7 atoms occupy the equatorial sites, while O1 and O5D occupy the axial positions (Fig. 1 and Table 1). The Mn—N1 and Mn—N2 bond distances are 2.2317 (17) Å and 2.2314 (14) Å, respectively, and the N1—Ni—N2 bite angle is 75.32 (6)°. The bond lengths of Mn—O range from 2.1576 (17) Å to 2.2001 (12) Å. The H2btec2- anion exhibits two different coordination modes, µ2-H2btec2- and µ4-H2btec2-. The mean planes defined by µ2-H2btec2- and its neighbour phenantroline ring are almost parallel [the dihedral angle is 5.18 (4)°], while the mean planes defined by µ4-H2btec2- and its neighbour phenantroline ring are oriented at 64.33 (4)°, those are in agreement with that observed in [Co(C10H4O8) (C12H8N2)(H2O)] (Hu et al., 2004). The µ4-H2btec2- anions link neighbour MnII cations, giving rise to one-dimensional chains running along the a axis. The distances between two neighbour Mn atoms are 9.880 (2) Å [Mn1—Mn1 (1 + x, y, z)] and 5.880 (2) Å [Mn1—Mn1 (-x, -y, 2 - z)], respectively (Fig. 2). The adjacent one-dimensional chains are further crosslinked by bridging µ2-H2btec2- anions, leading to a two-dimensional layered polymer (Fig. 3). Intermolecular O8—H8···O1 hydrogen bond and π-π interaction between the parallel phenantroline and µ2-H2btec2- ligands help to further stabilize the layered structure (Fig.3 and Table 2). In the crystal structure, the two-dimensional polymeric layers are linked by carboxylic acid O—H···O carboxyl and water O—H···O carboxyl hydrogen bonds to form a three-dimensional supramolecular network structure (Fig.4).

Related literature top

For isotypic compounds, see: Hu et al. (2004); Yu et al. (2007). For background to manganese complexes and phenanthroline complexes, see: Zhu et al. (2006); Zhong et al. (2009); Cui et al. (2010); Zhong (2011). For background to coordination polymers, see: Batten & Robson (1998); Fabelo et al. (2008); Liu et al. (2007); Li et al. (2003); Zhang et al. (2010).

Experimental top

0.1 mmol MnSO4.2H2O, 0.1 mmol phen, 0.1 mmol 1,2,4,5-benzenetetracarboxylic acid and 3.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 383 K for 72 h, whereupon pale-yellow block-shaped crystals were obtained.

Refinement top

All non-hydrogen atoms were refined anisotropically. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å, O—H = 0.82 Å, Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O). The H atoms of the water molecules were located in difference Fourier maps and freely refined.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound (displacement ellipsoids drawn at the 35% probability level). Unlabeled atoms are related to the labelled atoms by symmetry operators (symmetry codes: A = -x, 1 - y, 1 - z; B = 1 - x, -y, 2 - z; C = x - 1, y, z; D = -x, -y, 2 - z).
[Figure 2] Fig. 2. The one-dimensional chain structure of the title compound. Dashed lines indicate hydrogen bonds. All C atoms of the phenantroline and µ2-H2btec ligands have been omitted for clarity (symmetry codes: i = 1 + x, y, z; ii = -x, -y, 2 - z).
[Figure 3] Fig. 3. The two-dimensional layer structure of the title compound viewed along the a axis. All H atoms have been omitted for clarity.
[Figure 4] Fig. 4. Hydrogen-bonding interactions between adjacent layers of the title compound. Dashed lines indicate hydrogen bonds.
Poly[diaqua(µ4-2,5-dicarboxybenzene-1,4-dicarboxylato-κ4O1: O2:O4:O5)(µ2-2,5-dicarboxybenzene-1,4- dicarboxylato-κ2O1:O4)bis(1,10-phenanthroline- κ2N,N')dimanganese(II)] top
Crystal data top
[Mn2(C10H4O8)2(C12H8N2)2(H2O)2]Z = 1
Mr = 1010.58F(000) = 514
Triclinic, P1Dx = 1.708 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.880 (2) ÅCell parameters from 4733 reflections
b = 10.246 (2) Åθ = 3.5–27.5°
c = 11.272 (2) ŵ = 0.74 mm1
α = 86.29 (3)°T = 223 K
β = 71.82 (3)°Prism, pale yellow
γ = 65.32 (3)°0.50 × 0.50 × 0.30 mm
V = 982.2 (5) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube3757 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.025
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 1112
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
k = 1213
Tmin = 0.710, Tmax = 0.810l = 1314
9376 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mn2(C10H4O8)2(C12H8N2)2(H2O)2]γ = 65.32 (3)°
Mr = 1010.58V = 982.2 (5) Å3
Triclinic, P1Z = 1
a = 9.880 (2) ÅMo Kα radiation
b = 10.246 (2) ŵ = 0.74 mm1
c = 11.272 (2) ÅT = 223 K
α = 86.29 (3)°0.50 × 0.50 × 0.30 mm
β = 71.82 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
3757 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.810Rint = 0.025
9376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
4403 reflectionsΔρmin = 0.45 e Å3
315 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.03585 (3)0.13877 (2)0.76264 (2)0.01653 (9)
O10.07365 (14)0.18231 (12)0.61328 (10)0.0203 (2)
O1W0.19967 (17)0.06467 (13)0.65855 (13)0.0287 (3)
H1WB0.235 (3)0.112 (2)0.709 (2)0.048 (7)*
H1WA0.191 (3)0.113 (2)0.610 (2)0.051 (7)*
O20.20089 (15)0.27574 (12)0.47561 (11)0.0251 (3)
O30.36828 (15)0.48967 (13)0.70890 (11)0.0289 (3)
O40.38216 (15)0.71264 (12)0.71302 (12)0.0344 (3)
H40.46970.73050.76250.052*
O50.16064 (13)0.06578 (11)1.09959 (10)0.0196 (2)
O60.32453 (13)0.16588 (11)1.15378 (10)0.0201 (2)
O70.15899 (14)0.08266 (12)0.86097 (10)0.0230 (3)
O80.24706 (16)0.05474 (14)0.70863 (10)0.0302 (3)
H80.17450.07300.66470.045*
N10.10378 (17)0.35804 (14)0.86211 (12)0.0201 (3)
N20.19008 (17)0.25423 (14)0.69255 (12)0.0200 (3)
C10.2460 (2)0.40702 (19)0.94468 (16)0.0277 (4)
H1A0.29770.34680.96260.033*
C20.3227 (3)0.5448 (2)1.00651 (18)0.0380 (5)
H2A0.42310.57591.06360.046*
C30.2453 (3)0.63274 (19)0.98044 (18)0.0389 (5)
H3A0.29400.72501.01990.047*
C40.0943 (2)0.58473 (18)0.89512 (16)0.0298 (4)
C50.0026 (3)0.6674 (2)0.86821 (19)0.0396 (5)
H5A0.04610.75970.90680.048*
C60.1431 (3)0.6146 (2)0.78925 (19)0.0394 (5)
H6A0.19960.67060.77470.047*
C70.2162 (2)0.4723 (2)0.72534 (16)0.0298 (4)
C80.3693 (3)0.4120 (2)0.64430 (18)0.0376 (5)
H8A0.43010.46410.62760.045*
C90.4304 (2)0.2758 (2)0.58920 (19)0.0386 (5)
H9A0.53290.23400.53540.046*
C100.3351 (2)0.2004 (2)0.61544 (17)0.0289 (4)
H10A0.37620.10850.57680.035*
C110.1296 (2)0.38922 (17)0.74896 (15)0.0211 (4)
C120.0266 (2)0.44510 (17)0.83610 (15)0.0212 (4)
C130.08667 (19)0.36364 (16)0.44035 (14)0.0169 (3)
H13A0.14580.27190.39970.020*
C140.06214 (19)0.39624 (16)0.52328 (13)0.0152 (3)
C150.15027 (19)0.53453 (16)0.58379 (14)0.0161 (3)
C160.39312 (18)0.02498 (15)1.04387 (13)0.0144 (3)
C170.37723 (18)0.02458 (15)0.91572 (14)0.0149 (3)
C180.48391 (18)0.00020 (15)0.87421 (13)0.0156 (3)
H16A0.47230.00010.78910.019*
C190.12121 (19)0.27874 (16)0.53878 (13)0.0159 (3)
C200.3108 (2)0.57403 (17)0.67429 (14)0.0190 (3)
C210.28096 (18)0.04445 (16)1.10044 (13)0.0149 (3)
C220.25052 (19)0.05606 (16)0.82447 (14)0.0168 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01545 (15)0.01648 (14)0.02046 (14)0.00844 (11)0.00689 (10)0.00152 (9)
O10.0245 (7)0.0232 (6)0.0220 (6)0.0159 (5)0.0120 (5)0.0094 (5)
O1W0.0373 (9)0.0203 (6)0.0300 (7)0.0062 (6)0.0199 (6)0.0032 (6)
O20.0358 (8)0.0259 (6)0.0276 (6)0.0192 (6)0.0205 (6)0.0070 (5)
O30.0233 (7)0.0290 (6)0.0343 (7)0.0167 (6)0.0000 (6)0.0006 (5)
O40.0216 (7)0.0234 (6)0.0446 (8)0.0094 (6)0.0095 (6)0.0094 (6)
O50.0162 (6)0.0204 (6)0.0216 (6)0.0043 (5)0.0095 (5)0.0006 (4)
O60.0176 (6)0.0187 (6)0.0255 (6)0.0074 (5)0.0079 (5)0.0029 (5)
O70.0228 (7)0.0365 (7)0.0204 (6)0.0216 (6)0.0092 (5)0.0078 (5)
O80.0372 (8)0.0556 (8)0.0172 (6)0.0376 (7)0.0102 (5)0.0109 (5)
N10.0202 (8)0.0203 (7)0.0195 (7)0.0068 (6)0.0082 (6)0.0016 (5)
N20.0200 (8)0.0213 (7)0.0218 (7)0.0109 (6)0.0079 (6)0.0041 (5)
C10.0222 (10)0.0311 (9)0.0241 (8)0.0055 (8)0.0072 (7)0.0014 (7)
C20.0318 (12)0.0358 (11)0.0286 (10)0.0032 (9)0.0086 (9)0.0069 (8)
C30.0505 (14)0.0212 (9)0.0299 (10)0.0043 (9)0.0186 (10)0.0056 (8)
C40.0493 (13)0.0180 (8)0.0249 (9)0.0098 (8)0.0217 (9)0.0030 (7)
C50.0750 (18)0.0220 (9)0.0355 (11)0.0236 (11)0.0320 (12)0.0078 (8)
C60.0758 (18)0.0343 (10)0.0394 (11)0.0414 (12)0.0366 (12)0.0188 (9)
C70.0478 (13)0.0364 (10)0.0284 (9)0.0322 (10)0.0249 (9)0.0169 (8)
C80.0450 (13)0.0556 (13)0.0389 (11)0.0404 (11)0.0245 (10)0.0220 (10)
C90.0246 (11)0.0605 (14)0.0360 (10)0.0250 (10)0.0091 (9)0.0158 (10)
C100.0230 (10)0.0335 (10)0.0291 (9)0.0128 (8)0.0063 (8)0.0066 (8)
C110.0299 (10)0.0228 (8)0.0201 (8)0.0158 (8)0.0149 (7)0.0074 (6)
C120.0304 (10)0.0165 (8)0.0198 (8)0.0084 (7)0.0145 (7)0.0038 (6)
C130.0190 (9)0.0149 (7)0.0179 (7)0.0075 (6)0.0064 (6)0.0006 (6)
C140.0179 (9)0.0176 (7)0.0146 (7)0.0097 (6)0.0082 (6)0.0040 (6)
C150.0163 (8)0.0184 (8)0.0150 (7)0.0076 (6)0.0063 (6)0.0024 (6)
C160.0143 (8)0.0121 (7)0.0181 (7)0.0055 (6)0.0067 (6)0.0007 (6)
C170.0139 (8)0.0144 (7)0.0172 (7)0.0066 (6)0.0049 (6)0.0022 (6)
C180.0167 (9)0.0168 (7)0.0142 (7)0.0073 (6)0.0057 (6)0.0021 (6)
C190.0159 (9)0.0166 (7)0.0137 (7)0.0076 (6)0.0015 (6)0.0004 (6)
C200.0175 (9)0.0222 (8)0.0182 (7)0.0087 (7)0.0061 (7)0.0003 (6)
C210.0147 (8)0.0193 (8)0.0133 (7)0.0101 (7)0.0038 (6)0.0025 (6)
C220.0166 (9)0.0171 (7)0.0186 (7)0.0087 (7)0.0061 (6)0.0033 (6)
Geometric parameters (Å, º) top
Mn1—O1W2.1576 (17)C4—C121.408 (2)
Mn1—O5i2.1830 (12)C4—C51.437 (3)
Mn1—O72.1852 (13)C5—C61.331 (3)
Mn1—O12.2001 (12)C5—H5A0.9300
Mn1—N22.2314 (14)C6—C71.448 (3)
Mn1—N12.2317 (17)C6—H6A0.9300
O1—C191.2858 (19)C7—C81.391 (3)
O1W—H1WB0.79 (2)C7—C111.402 (2)
O1W—H1WA0.80 (2)C8—C91.368 (3)
O2—C191.2250 (19)C8—H8A0.9300
O3—C201.2040 (19)C9—C101.405 (3)
O4—C201.325 (2)C9—H9A0.9300
O4—H40.8200C10—H10A0.9300
O5—C211.250 (2)C11—C121.437 (3)
O5—Mn1i2.1830 (12)C13—C141.385 (2)
O6—C211.2581 (18)C13—C15ii1.400 (2)
O7—C221.2304 (19)C13—H13A0.9300
O8—C221.2963 (18)C14—C151.398 (2)
O8—H80.8200C14—C191.522 (2)
N1—C11.322 (2)C15—C13ii1.400 (2)
N1—C121.363 (2)C15—C201.493 (2)
N2—C101.318 (2)C16—C18iii1.386 (2)
N2—C111.364 (2)C16—C171.404 (2)
C1—C21.399 (3)C16—C211.522 (2)
C1—H1A0.9300C17—C181.393 (2)
C2—C31.372 (3)C17—C221.490 (2)
C2—H2A0.9300C18—C16iii1.386 (2)
C3—C41.395 (3)C18—H16A0.9300
C3—H3A0.9300
O1W—Mn1—O5i85.93 (5)C8—C7—C6123.54 (17)
O1W—Mn1—O799.43 (6)C11—C7—C6118.32 (19)
O5i—Mn1—O796.43 (5)C9—C8—C7119.84 (17)
O1W—Mn1—O186.66 (6)C9—C8—H8A120.1
O5i—Mn1—O1172.36 (4)C7—C8—H8A120.1
O7—Mn1—O182.92 (4)C8—C9—C10118.7 (2)
O1W—Mn1—N296.43 (6)C8—C9—H9A120.6
O5i—Mn1—N284.21 (5)C10—C9—H9A120.6
O7—Mn1—N2164.13 (5)N2—C10—C9122.82 (18)
O1—Mn1—N298.51 (5)N2—C10—H10A118.6
O1W—Mn1—N1171.56 (5)C9—C10—H10A118.6
O5i—Mn1—N191.39 (5)N2—C11—C7121.88 (17)
O7—Mn1—N188.81 (6)N2—C11—C12118.21 (14)
O1—Mn1—N196.21 (5)C7—C11—C12119.90 (16)
N2—Mn1—N175.32 (6)N1—C12—C4121.70 (17)
C19—O1—Mn1141.94 (10)N1—C12—C11118.23 (14)
Mn1—O1W—H1WB103.6 (17)C4—C12—C11120.05 (16)
Mn1—O1W—H1WA131.1 (18)C14—C13—C15ii121.62 (14)
H1WB—O1W—H1WA111 (2)C14—C13—H13A119.2
C20—O4—H4109.5C15ii—C13—H13A119.2
C21—O5—Mn1i131.34 (10)C13—C14—C15118.80 (14)
C22—O7—Mn1132.25 (10)C13—C14—C19117.00 (13)
C22—O8—H8109.5C15—C14—C19124.16 (14)
C1—N1—C12118.72 (15)C14—C15—C13ii119.58 (15)
C1—N1—Mn1127.15 (12)C14—C15—C20120.56 (14)
C12—N1—Mn1114.05 (11)C13ii—C15—C20119.85 (14)
C10—N2—C11118.60 (15)C18iii—C16—C17118.29 (14)
C10—N2—Mn1126.98 (11)C18iii—C16—C21116.70 (12)
C11—N2—Mn1113.96 (11)C17—C16—C21124.95 (14)
N1—C1—C2123.36 (18)C18—C17—C16119.83 (14)
N1—C1—H1A118.3C18—C17—C22119.82 (13)
C2—C1—H1A118.3C16—C17—C22120.31 (14)
C3—C2—C1118.06 (19)C16iii—C18—C17121.88 (13)
C3—C2—H2A121.0C16iii—C18—H16A119.1
C1—C2—H2A121.0C17—C18—H16A119.1
C2—C3—C4120.50 (17)O2—C19—O1124.21 (14)
C2—C3—H3A119.8O2—C19—C14119.47 (13)
C4—C3—H3A119.8O1—C19—C14116.15 (13)
C3—C4—C12117.66 (17)O3—C20—O4123.94 (16)
C3—C4—C5123.69 (17)O3—C20—C15123.99 (15)
C12—C4—C5118.61 (19)O4—C20—C15112.06 (13)
C6—C5—C4121.33 (18)O5—C21—O6125.93 (14)
C6—C5—H5A119.3O5—C21—C16116.50 (13)
C4—C5—H5A119.3O6—C21—C16117.22 (14)
C5—C6—C7121.77 (17)O7—C22—O8124.29 (14)
C5—C6—H6A119.1O7—C22—C17120.20 (13)
C7—C6—H6A119.1O8—C22—C17115.50 (14)
C8—C7—C11118.12 (17)
O1W—Mn1—O1—C19130.08 (17)C6—C7—C11—N2179.99 (15)
O7—Mn1—O1—C19129.98 (17)C8—C7—C11—C12177.39 (15)
N2—Mn1—O1—C1934.06 (17)C6—C7—C11—C120.9 (2)
N1—Mn1—O1—C1941.96 (17)C1—N1—C12—C40.2 (2)
O1W—Mn1—O7—C2269.40 (15)Mn1—N1—C12—C4176.96 (12)
O5i—Mn1—O7—C22156.33 (14)C1—N1—C12—C11178.22 (14)
O1—Mn1—O7—C2216.00 (14)Mn1—N1—C12—C111.03 (18)
N2—Mn1—O7—C22112.2 (2)C3—C4—C12—N11.0 (2)
N1—Mn1—O7—C22112.41 (15)C5—C4—C12—N1176.62 (15)
O5i—Mn1—N1—C195.99 (14)C3—C4—C12—C11178.99 (15)
O7—Mn1—N1—C10.42 (14)C5—C4—C12—C111.3 (2)
O1—Mn1—N1—C183.16 (14)N2—C11—C12—N12.8 (2)
N2—Mn1—N1—C1179.63 (15)C7—C11—C12—N1176.29 (14)
O5i—Mn1—N1—C1280.91 (11)N2—C11—C12—C4179.13 (14)
O7—Mn1—N1—C12177.32 (11)C7—C11—C12—C41.7 (2)
O1—Mn1—N1—C1299.93 (11)C15ii—C13—C14—C150.1 (2)
N2—Mn1—N1—C122.73 (10)C15ii—C13—C14—C19177.97 (13)
O1W—Mn1—N2—C102.02 (15)C13—C14—C15—C13ii0.1 (2)
O5i—Mn1—N2—C1083.21 (14)C19—C14—C15—C13ii177.80 (13)
O7—Mn1—N2—C10176.37 (15)C13—C14—C15—C20179.72 (13)
O1—Mn1—N2—C1089.58 (15)C19—C14—C15—C202.6 (2)
N1—Mn1—N2—C10176.18 (15)C18iii—C16—C17—C180.1 (2)
O1W—Mn1—N2—C11174.03 (11)C21—C16—C17—C18177.34 (13)
O5i—Mn1—N2—C1188.80 (11)C18iii—C16—C17—C22177.73 (13)
O7—Mn1—N2—C114.4 (2)C21—C16—C17—C225.0 (2)
O1—Mn1—N2—C1198.40 (11)C16—C17—C18—C16iii0.1 (2)
N1—Mn1—N2—C114.17 (10)C22—C17—C18—C16iii177.74 (14)
C12—N1—C1—C20.6 (3)Mn1—O1—C19—O2168.79 (11)
Mn1—N1—C1—C2177.34 (13)Mn1—O1—C19—C1416.0 (2)
N1—C1—C2—C30.5 (3)C13—C14—C19—O293.97 (19)
C1—C2—C3—C40.4 (3)C15—C14—C19—O283.76 (19)
C2—C3—C4—C121.1 (3)C13—C14—C19—O181.52 (17)
C2—C3—C4—C5176.44 (17)C15—C14—C19—O1100.75 (18)
C3—C4—C5—C6177.60 (18)C14—C15—C20—O36.7 (2)
C12—C4—C5—C60.1 (3)C13ii—C15—C20—O3172.92 (15)
C4—C5—C6—C70.8 (3)C14—C15—C20—O4173.91 (14)
C5—C6—C7—C8178.54 (18)C13ii—C15—C20—O46.5 (2)
C5—C6—C7—C110.4 (3)Mn1i—O5—C21—O631.1 (2)
C11—C7—C8—C90.8 (3)Mn1i—O5—C21—C16141.87 (11)
C6—C7—C8—C9178.96 (17)C18iii—C16—C21—O593.87 (17)
C7—C8—C9—C100.6 (3)C17—C16—C21—O583.45 (18)
C11—N2—C10—C90.2 (3)C18iii—C16—C21—O679.70 (17)
Mn1—N2—C10—C9171.46 (13)C17—C16—C21—O6102.98 (18)
C8—C9—C10—N21.1 (3)Mn1—O7—C22—O80.8 (2)
C10—N2—C11—C71.2 (2)Mn1—O7—C22—C17178.26 (10)
Mn1—N2—C11—C7173.95 (12)C18—C17—C22—O7177.64 (14)
C10—N2—C11—C12177.90 (15)C16—C17—C22—O70.0 (2)
Mn1—N2—C11—C125.16 (18)C18—C17—C22—O81.5 (2)
C8—C7—C11—N21.7 (2)C16—C17—C22—O8179.20 (14)
Symmetry codes: (i) x, y, z+2; (ii) x, y+1, z+1; (iii) x1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O10.821.752.5176 (16)155
O4—H4···O6iv0.821.812.592 (2)158
O1W—H1WB···O6i0.79 (2)1.95 (3)2.7108 (19)160 (2)
O1W—H1WA···O2v0.80 (2)1.94 (2)2.7117 (18)162 (2)
Symmetry codes: (i) x, y, z+2; (iv) x1, y+1, z+2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C10H4O8)2(C12H8N2)2(H2O)2]
Mr1010.58
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.880 (2), 10.246 (2), 11.272 (2)
α, β, γ (°)86.29 (3), 71.82 (3), 65.32 (3)
V3)982.2 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.50 × 0.50 × 0.30
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB: Jacobson, 1998)
Tmin, Tmax0.710, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
9376, 4403, 3757
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.05
No. of reflections4403
No. of parameters315
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.45

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O1W2.1576 (17)Mn1—O12.2001 (12)
Mn1—O5i2.1830 (12)Mn1—N22.2314 (14)
Mn1—O72.1852 (13)Mn1—N12.2317 (17)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O10.821.752.5176 (16)154.5
O4—H4···O6ii0.821.812.592 (2)158.4
O1W—H1WB···O6i0.79 (2)1.95 (3)2.7108 (19)160 (2)
O1W—H1WA···O2iii0.80 (2)1.94 (2)2.7117 (18)162 (2)
Symmetry codes: (i) x, y, z+2; (ii) x1, y+1, z+2; (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17).

References

First citationBatten, S. R. & Robson, R. (1998). Chem. Commun. pp. 1067–1068.  Google Scholar
First citationCui, J.-D., Zhong, K.-L. & Liu, Y.-Y. (2010). Acta Cryst. E66, m564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFabelo, O., Pason, J., Lloret, F., Julve, M. & Ruiz-Perez, C. (2008). Inorg. Chem. 47, 3568–3576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, M.-L., Xiao, H.-P. & Yuan, J.-X. (2004). Acta Cryst. C60, m112–m113.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLi, Y., Hao, N., Lu, Y., Wang, E., Kang, Z. & Hu, C. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, J.-Q., Wang, Y.-Y., Ma, L.-F., Zhong, F., Zeng, X.-R., Wu, W.-P. & Shi, Q.-Z. (2007). Inorg. Chem. Commun. 10, 979–982.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, X.-Y., Lu, J., Yu, J.-H., Zhang, X., Xu, J.-Q. & Wang, T.-G. (2007). Z. Anorg. Allg. Chem. 633, 490–494.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L.-P., Ma, J.-F., Yang, J., Pang, Y.-Y. & Ma, J.-C. (2010). Inorg. Chem. 49, 1535–1550.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhong, K.-L. (2011). Acta Cryst. E67, m1609–m1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Ni, C. & Wang, J.-M. (2009). Acta Cryst. E65, m911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2688–m2689.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1184-m1185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds