organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(Thio­phen-2-yl)-8,9-di­hydro-3H-pyrazolo­[4,3-f]quinolin-7(6H)-one ethanol monosolvate

aLianyungang Teacher's College, Lianyungang 222006, People's Republic of China
*Correspondence e-mail: jiarunhong@126.com

(Received 24 June 2012; accepted 25 July 2012; online 1 August 2012)

In the title compound, C14H11N3OS·C2H5OH, the dihedral angle between the pyridine N—Cfused—Cfused—C(thio­phene) plane and the plane of the thio­phene ring is 81.9 (3)°, indicating that they are close to perpendicular. The dihedral angle between this pyridine plane and the benzene ring is 1.3 (3)°. The thio­phene ring is disordered over two coplanar orientations with an occupancy ratio of 0.692 (7):0.308 (7), while the ethanol solvent mol­ecule is also disordered over two sets of site in a 0.66 (4):0.34 (4) ratio. In the crystal, chains are formed along the b axis by N—H⋯O and O—H⋯N inter­actions with adjacent chains being connected through C—H⋯N and C—H⋯S inter­actions.

Related literature

For background to the biological activity of quinolinone derivatives, see: Larsen et al. (1996[Larsen, R. D., Corley, E. G., King, A. O., Carrol, J. D., Davis, P., Verhoeven, T. R., Reider, P. J., Labelle, M., Gauthier, J. Y., Xiang, Y. B. & Zamboni, R. J. (1996). J. Org. Chem. 61, 3398-3405.]); Chackal et al. (2002[Chackal, S., Houssin, R. & Henichart, J.-P. (2002). J. Org. Chem. 67, 3502-3505.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco 53, 399-404.]); Xu et al. (2000[Xu, M. X., Wang, X. L., Mo, S. W., Li, R. X. & Cai, S. H. (2000). Chin. J. Med. Chem. 1, 12-15.]). For the synthesis of quinolino­nes, see: Suarez et al. (1999[Suarez, M., Ochoa, E., Verdecia, Y., Pita, B., Moran, L., Martin, N., Quinteiro, M., Seoane, C., Soto, J. L., Novoa, H., Blaton, N. & Peters, O. M. (1999). Tetrahedron, 55, 875-884.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3OS·C2H6O

  • Mr = 315.39

  • Monoclinic, P 21 /c

  • a = 9.3831 (10) Å

  • b = 19.138 (2) Å

  • c = 8.7490 (9) Å

  • β = 99.412 (1)°

  • V = 1549.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.38 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.974

  • 7663 measured reflections

  • 2707 independent reflections

  • 1526 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.02

  • 2707 reflections

  • 248 parameters

  • ?

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.99 2.838 (16) 170
N3—H3⋯O1ii 0.86 2.04 2.863 (4) 160
O2—H2⋯N2 0.82 2.05 2.855 (14) 167
C8—H8⋯S1iii 0.98 2.86 3.802 (6) 162
C9—H9A⋯N1iii 0.97 2.56 3.529 (7) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The quinoline ring system is an important structural unit widely existing in alkaloids, therapeutics and synthetic analogues with interesting biological activities (Larsen et al., 1996). A large variety of quinoline derivatives have been used as antimalarial, anti-inflammatory, antiasthmatic, antibacterial, antihypertensive and tyrokinase PDGF-RTK inhibiting agents (Kalluraya & Sreenivasa, 1998). Various quinolinone derivatives are known to display interesting biological properties, for example, quinolinones represent the structural basis of many biologically active compounds, such as those with cardiovascular, anti-osteoporosis, anti-tumor (Chackal et al., 2002), antiinflammatory, and anti-virus (Xu et al., 2000) activities and so on.

Due to their diverse ranges of biological properties, the synthesis of these important molecules has attracted widespread attention. Some researchers have reported the synthesis of quinolinones (Suarez et al., 1999). To the best of our knowledge, however, the pyrazolo[4,3-f]quinolin-7-one derivatives have not been investigated. Because of the biological activities they exhibit, these compounds have distinguished themselves as heterocycles of profound chemical and biological significance.

In this paper we report the crystal structure of the title compound, C14H11N3OS.C2H6O, which was synthesized by the reaction of thiophene-2-carbaldehyde, 2,2-dimethyl-1,3-dioxane-4,6-dione, and indazol-5-amine in ethylene glycol without catalyst under microwave irradiation.

In the crystal structure of the title compound, the pyridine ring exhibits an envelope-like structure. The dihedral angle between the pyridine C6/C7/C8/N3 plane and the C11/C12/C13/C14/S1 thiophene ring is 81.9 (3)°, indicating that they are close to perpendicular. The dihedral angle between the pyridine C6/C7/C8/N3 plane and the C2—C7 benzene ring is 1.3 (3)°. The thiophene ring is disordered over two coplanar orientations with an occupancy ratio of 0.692 (7):0.308 (7) while the ethanol solvent molecule is also disordered over two sets of positions with a ratio of 0.66 (4):0.34 (4). Chains are formed along the b axis by N-H···O and O-H···N interactions and adjacent chains are connected through C-H···N and C-H···S interactions.

Related literature top

For background to the biological activity of quinolinone derivatives, see: Larsen et al. (1996); Chackal et al. (2002); Kalluraya & Sreenivasa (1998); Xu et al. (2000). For the synthesis of quinolinones, see: Suarez et al. (1999)

Experimental top

The title compound was prepared by the reaction of thiophene-2-carbaldehyde (1 mmol), 2,2-dimethyl-1,3-dioxane-4,6-dione (1 mmol), and indazol-5-amine (1 mmol) in ethylene glycol (1.0 ml). Single crystals were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 70%; m.p. 553–554 K).

IR (cm-1): 3194, 3013, 2967, 1681, 1502, 1390, 1241, 1162, 1049, 937, 843, 704. 1H NMR (DMSO-d6): 13.03 (s, 1H, NH), 10.21 (s, 1H, NH), 7.42 (d, J = 8.8 Hz, 1H, ArH), 7.31–7.30 (m, 1H, ArH), 7.02 (d, J = 8.8 Hz, 1H, ArH), 6.92–6.87 (m, 2H, ArH), 4.98 (d, J = 4.4 Hz, 1H, CH), 3.12–3.06 (m, 1H, CH2), 2.77–2.72 (m, 1H, CH2).

Refinement top

All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of title compound viewed along the a axis.
9-(Thiophen-2-yl)-8,9-dihydro-3H-pyrazolo[4,3-f]quinolin- 7(6H)-one ethanol monosolvate top
Crystal data top
C14H11N3OS·C2H6OF(000) = 664
Mr = 315.39Dx = 1.352 Mg m3
Monoclinic, P21/cMelting point = 553–554 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3831 (10) ÅCell parameters from 1612 reflections
b = 19.138 (2) Åθ = 2.4–25.1°
c = 8.7490 (9) ŵ = 0.22 mm1
β = 99.412 (1)°T = 298 K
V = 1549.9 (3) Å3Block, colourless
Z = 40.38 × 0.19 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2707 independent reflections
Radiation source: fine-focus sealed tube1526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 118
Tmin = 0.921, Tmax = 0.974k = 1922
7663 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.7752P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2707 reflectionsΔρmax = 0.28 e Å3
248 parametersΔρmin = 0.26 e Å3
0 restraints
Crystal data top
C14H11N3OS·C2H6OV = 1549.9 (3) Å3
Mr = 315.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3831 (10) ŵ = 0.22 mm1
b = 19.138 (2) ÅT = 298 K
c = 8.7490 (9) Å0.38 × 0.19 × 0.12 mm
β = 99.412 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1526 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.974Rint = 0.041
7663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052248 parameters
wR(F2) = 0.1540 restraints
S = 1.02Δρmax = 0.28 e Å3
2707 reflectionsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4885 (3)0.37278 (15)0.4386 (3)0.0564 (8)
H10.42320.40080.46060.068*
N20.6055 (4)0.39328 (15)0.3787 (3)0.0602 (8)
N30.5568 (3)0.08861 (13)0.4727 (3)0.0482 (7)
H30.51160.06470.53300.058*
O10.6492 (3)0.01035 (12)0.3895 (3)0.0661 (8)
O20.7049 (18)0.5320 (7)0.454 (2)0.074 (3)0.66 (4)
H20.67270.49210.44590.111*0.66 (4)
S10.9693 (10)0.2364 (5)0.5804 (11)0.0641 (12)0.692 (7)
O2'0.660 (4)0.5360 (13)0.388 (4)0.074 (6)0.34 (4)
H2'0.62420.49730.36960.111*0.34 (4)
C12'0.969 (8)0.219 (3)0.588 (9)0.064 (17)0.308 (7)
H12'0.94610.26580.57430.077*0.308 (7)
C10.6784 (4)0.33555 (18)0.3592 (4)0.0523 (9)
H1A0.76420.33440.31900.063*
C20.6089 (3)0.27598 (15)0.4074 (3)0.0414 (8)
C30.4862 (3)0.30217 (17)0.4600 (4)0.0454 (8)
C40.3889 (4)0.25971 (18)0.5179 (4)0.0519 (9)
H40.30850.27820.55290.062*
C50.4155 (3)0.18913 (17)0.5218 (4)0.0478 (9)
H50.35220.15920.56090.057*
C60.5368 (3)0.16138 (16)0.4678 (4)0.0400 (8)
C70.6358 (3)0.20320 (16)0.4120 (3)0.0396 (8)
C80.7669 (3)0.17000 (16)0.3616 (4)0.0437 (8)
H80.79720.19940.28090.052*
C90.7228 (4)0.09839 (17)0.2912 (4)0.0509 (9)
H9A0.66280.10520.19100.061*
H9B0.80900.07360.27440.061*
C100.6422 (4)0.05399 (18)0.3891 (4)0.0487 (9)
C110.8917 (3)0.16488 (19)0.4956 (4)0.0466 (8)
C120.963 (4)0.106 (2)0.569 (4)0.076 (10)0.692 (7)
H120.93950.06050.54010.091*0.692 (7)
S1'0.962 (3)0.0921 (16)0.570 (3)0.076 (3)0.308 (7)
C131.0754 (5)0.1238 (3)0.6916 (6)0.0920 (15)
H131.13370.09210.75360.110*
C141.0840 (4)0.1937 (3)0.7042 (5)0.0813 (14)
H141.15100.21590.77850.098*
C150.749 (2)0.5536 (8)0.306 (3)0.114 (5)0.66 (4)
H15A0.74540.51400.23590.137*0.66 (4)
H15B0.68480.58970.25620.137*0.66 (4)
C160.896 (2)0.5801 (13)0.344 (3)0.142 (6)0.66 (4)
H16A0.90400.60910.43470.213*0.66 (4)
H16B0.91900.60720.25890.213*0.66 (4)
H16C0.96210.54170.36390.213*0.66 (4)
C15'0.813 (5)0.5334 (19)0.378 (5)0.114 (10)0.34 (4)
H15C0.83770.49020.33060.137*0.34 (4)
H15D0.87230.53850.47880.137*0.34 (4)
C16'0.827 (5)0.595 (3)0.276 (5)0.142 (12)0.34 (4)
H16D0.78020.58550.17200.214*0.34 (4)
H16E0.92770.60470.27520.214*0.34 (4)
H16F0.78310.63540.31450.214*0.34 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0542 (19)0.0485 (18)0.065 (2)0.0099 (15)0.0051 (16)0.0007 (15)
N20.072 (2)0.0467 (18)0.062 (2)0.0014 (16)0.0107 (17)0.0047 (14)
N30.0484 (16)0.0392 (16)0.0604 (18)0.0001 (13)0.0187 (14)0.0006 (13)
O10.0662 (17)0.0407 (15)0.097 (2)0.0024 (12)0.0311 (15)0.0068 (13)
O20.087 (7)0.059 (3)0.085 (8)0.006 (4)0.041 (6)0.000 (5)
S10.0519 (16)0.067 (3)0.0727 (19)0.0077 (14)0.0084 (13)0.0134 (15)
O2'0.087 (14)0.059 (7)0.085 (15)0.006 (8)0.041 (11)0.000 (9)
C12'0.052 (16)0.07 (4)0.073 (18)0.008 (19)0.008 (12)0.01 (2)
C10.059 (2)0.045 (2)0.053 (2)0.0024 (18)0.0121 (17)0.0042 (17)
C20.0448 (19)0.0381 (19)0.0393 (18)0.0010 (15)0.0010 (15)0.0022 (14)
C30.043 (2)0.043 (2)0.048 (2)0.0020 (16)0.0002 (16)0.0005 (16)
C40.0376 (19)0.056 (2)0.061 (2)0.0068 (17)0.0045 (17)0.0076 (18)
C50.0383 (19)0.050 (2)0.056 (2)0.0058 (15)0.0100 (16)0.0019 (16)
C60.0370 (17)0.0382 (18)0.0446 (19)0.0009 (15)0.0057 (15)0.0011 (15)
C70.0387 (18)0.0425 (19)0.0369 (18)0.0004 (15)0.0043 (14)0.0013 (14)
C80.0468 (19)0.0450 (19)0.0421 (19)0.0006 (16)0.0159 (15)0.0040 (15)
C90.051 (2)0.056 (2)0.047 (2)0.0009 (17)0.0125 (17)0.0040 (16)
C100.045 (2)0.047 (2)0.053 (2)0.0033 (17)0.0078 (17)0.0086 (17)
C110.0355 (17)0.061 (2)0.047 (2)0.0016 (18)0.0153 (15)0.0003 (18)
C120.075 (10)0.061 (19)0.087 (11)0.008 (9)0.002 (7)0.001 (9)
S1'0.075 (5)0.061 (7)0.087 (6)0.008 (3)0.002 (4)0.001 (3)
C130.063 (3)0.125 (5)0.084 (4)0.026 (3)0.001 (3)0.018 (3)
C140.048 (3)0.127 (4)0.069 (3)0.014 (3)0.008 (2)0.022 (3)
C150.108 (11)0.121 (9)0.110 (12)0.022 (8)0.009 (10)0.038 (8)
C160.101 (13)0.188 (16)0.144 (15)0.013 (11)0.041 (10)0.031 (11)
C15'0.11 (2)0.121 (18)0.111 (19)0.021 (17)0.009 (18)0.038 (17)
C16'0.10 (3)0.19 (3)0.14 (3)0.01 (2)0.04 (2)0.03 (2)
Geometric parameters (Å, º) top
N1—N21.350 (4)C7—C81.512 (4)
N1—C31.365 (4)C8—C111.519 (4)
N1—H10.8600C8—C91.531 (4)
N2—C11.325 (4)C8—H80.9800
N3—C101.345 (4)C9—C101.496 (5)
N3—C61.405 (4)C9—H9A0.9700
N3—H30.8600C9—H9B0.9700
O1—C101.233 (4)C11—C121.41 (4)
O2—C151.48 (3)C11—S1'1.63 (3)
O2—H20.8200C12—C131.41 (4)
S1—C141.618 (12)C12—H120.9300
S1—C111.667 (10)S1'—C131.50 (3)
O2'—C15'1.45 (6)C13—C141.343 (6)
O2'—H2'0.8200C13—H130.9300
C12'—C111.43 (6)C14—H140.9300
C12'—C141.44 (7)C15—C161.46 (4)
C12'—H12'0.9300C15—H15A0.9700
C1—C21.412 (4)C15—H15B0.9700
C1—H1A0.9300C16—H16A0.9600
C2—C31.400 (5)C16—H16B0.9600
C2—C71.415 (4)C16—H16C0.9600
C3—C41.379 (5)C15'—C16'1.51 (8)
C4—C51.373 (4)C15'—H15C0.9700
C4—H40.9300C15'—H15D0.9700
C5—C61.406 (4)C16'—H16D0.9600
C5—H50.9300C16'—H16E0.9600
C6—C71.375 (4)C16'—H16F0.9600
N2—N1—C3111.9 (3)H9A—C9—H9B107.6
N2—N1—H1124.1O1—C10—N3121.8 (3)
C3—N1—H1124.1O1—C10—C9122.5 (3)
C1—N2—N1106.1 (3)N3—C10—C9115.7 (3)
C10—N3—C6124.1 (3)C12—C11—C12'99 (3)
C10—N3—H3118.0C12—C11—C8130.9 (17)
C6—N3—H3118.0C12'—C11—C8130 (3)
C15—O2—H2109.5C12'—C11—S1'105 (3)
C14—S1—C1194.4 (5)C8—C11—S1'125.1 (10)
C15'—O2'—H2'109.5C12—C11—S1108.0 (18)
C11—C12'—C14114 (4)C8—C11—S1121.1 (4)
C11—C12'—H12'122.8S1'—C11—S1113.8 (10)
C14—C12'—H12'122.8C11—C12—C13113 (3)
N2—C1—C2111.2 (3)C11—C12—H12123.3
N2—C1—H1A124.4C13—C12—H12123.3
C2—C1—H1A124.4C13—S1'—C1197.5 (17)
C3—C2—C1104.7 (3)C14—C13—C12109.0 (16)
C3—C2—C7119.7 (3)C14—C13—S1'119.1 (12)
C1—C2—C7135.6 (3)C14—C13—H13125.5
N1—C3—C4131.3 (3)C12—C13—H13125.5
N1—C3—C2106.1 (3)S1'—C13—H13115.4
C4—C3—C2122.6 (3)C13—C14—C12'104 (2)
C5—C4—C3117.4 (3)C13—C14—S1115.1 (5)
C5—C4—H4121.3C13—C14—H14122.4
C3—C4—H4121.3C12'—C14—H14133.3
C4—C5—C6121.1 (3)S1—C14—H14122.4
C4—C5—H5119.4C16—C15—O2106 (3)
C6—C5—H5119.4C16—C15—H15A110.4
C7—C6—N3119.6 (3)O2—C15—H15A110.4
C7—C6—C5122.1 (3)C16—C15—H15B110.4
N3—C6—C5118.4 (3)O2—C15—H15B110.4
C6—C7—C2117.1 (3)H15A—C15—H15B108.6
C6—C7—C8119.2 (3)O2'—C15'—C16'101 (6)
C2—C7—C8123.7 (3)O2'—C15'—H15C111.5
C7—C8—C11111.3 (3)C16'—C15'—H15C111.5
C7—C8—C9108.3 (3)O2'—C15'—H15D111.5
C11—C8—C9112.1 (3)C16'—C15'—H15D111.5
C7—C8—H8108.4H15C—C15'—H15D109.3
C11—C8—H8108.4C15'—C16'—H16D109.5
C9—C8—H8108.4C15'—C16'—H16E109.5
C10—C9—C8114.0 (3)H16D—C16'—H16E109.5
C10—C9—H9A108.8C15'—C16'—H16F109.5
C8—C9—H9A108.8H16D—C16'—H16F109.5
C10—C9—H9B108.8H16E—C16'—H16F109.5
C8—C9—H9B108.8
C3—N1—N2—C10.9 (4)C14—C12'—C11—C8179 (2)
N1—N2—C1—C20.2 (4)C14—C12'—C11—S1'4 (5)
N2—C1—C2—C30.4 (4)C14—C12'—C11—S1163 (25)
N2—C1—C2—C7179.4 (3)C7—C8—C11—C12116 (2)
N2—N1—C3—C4179.6 (3)C9—C8—C11—C125 (2)
N2—N1—C3—C21.2 (3)C7—C8—C11—C12'61 (4)
C1—C2—C3—N10.9 (3)C9—C8—C11—C12'177 (4)
C7—C2—C3—N1178.9 (3)C7—C8—C11—S1'115.6 (12)
C1—C2—C3—C4179.8 (3)C9—C8—C11—S1'5.9 (12)
C7—C2—C3—C40.3 (5)C7—C8—C11—S164.4 (5)
N1—C3—C4—C5178.6 (3)C9—C8—C11—S1174.2 (5)
C2—C3—C4—C50.5 (5)C14—S1—C11—C121.0 (18)
C3—C4—C5—C60.4 (5)C14—S1—C11—C12'14 (20)
C10—N3—C6—C719.3 (4)C14—S1—C11—C8179.7 (3)
C10—N3—C6—C5161.2 (3)C14—S1—C11—S1'0.3 (12)
C4—C5—C6—C71.5 (5)C12'—C11—C12—C131 (4)
C4—C5—C6—N3179.0 (3)C8—C11—C12—C13179.7 (11)
N3—C6—C7—C2179.0 (3)S1'—C11—C12—C13173 (28)
C5—C6—C7—C21.5 (4)S1—C11—C12—C131 (3)
N3—C6—C7—C81.9 (4)C12—C11—S1'—C137 (24)
C5—C6—C7—C8177.6 (3)C12'—C11—S1'—C133 (3)
C3—C2—C7—C60.6 (4)C8—C11—S1'—C13179.8 (6)
C1—C2—C7—C6179.2 (3)S1—C11—S1'—C130.2 (17)
C3—C2—C7—C8178.5 (3)C11—C12—C13—C141 (3)
C1—C2—C7—C81.7 (5)C11—C12—C13—S1'175 (17)
C6—C7—C8—C1189.4 (3)C11—S1'—C13—C140.8 (17)
C2—C7—C8—C1189.7 (3)C11—S1'—C13—C124 (14)
C6—C7—C8—C934.2 (4)C12—C13—C14—C12'2 (4)
C2—C7—C8—C9146.7 (3)S1'—C13—C14—C12'1 (3)
C7—C8—C9—C1049.2 (4)C12—C13—C14—S10.3 (18)
C11—C8—C9—C1074.0 (4)S1'—C13—C14—S11.1 (14)
C6—N3—C10—O1175.2 (3)C11—C12'—C14—C133 (5)
C6—N3—C10—C92.4 (4)C11—C12'—C14—S1165 (21)
C8—C9—C10—O1149.4 (3)C11—S1—C14—C130.8 (7)
C8—C9—C10—N333.0 (4)C11—S1—C14—C12'12 (17)
C14—C12'—C11—C123 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.838 (16)170
N3—H3···O1ii0.862.042.863 (4)160
O2—H2···N20.822.052.855 (14)167
C8—H8···S1iii0.982.863.802 (6)162
C9—H9A···N1iii0.972.563.529 (7)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3OS·C2H6O
Mr315.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.3831 (10), 19.138 (2), 8.7490 (9)
β (°) 99.412 (1)
V3)1549.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.38 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
7663, 2707, 1526
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.02
No. of reflections2707
No. of parameters248
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.838 (16)170
N3—H3···O1ii0.862.042.863 (4)160
O2—H2···N20.822.052.855 (14)167
C8—H8···S1iii0.982.863.802 (6)162.2
C9—H9A···N1iii0.972.563.529 (7)175.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the National Science Foundation of China (No. 20672090) for financial support.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChackal, S., Houssin, R. & Henichart, J.-P. (2002). J. Org. Chem. 67, 3502–3505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Il Farmaco 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLarsen, R. D., Corley, E. G., King, A. O., Carrol, J. D., Davis, P., Verhoeven, T. R., Reider, P. J., Labelle, M., Gauthier, J. Y., Xiang, Y. B. & Zamboni, R. J. (1996). J. Org. Chem. 61, 3398–3405.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuarez, M., Ochoa, E., Verdecia, Y., Pita, B., Moran, L., Martin, N., Quinteiro, M., Seoane, C., Soto, J. L., Novoa, H., Blaton, N. & Peters, O. M. (1999). Tetrahedron, 55, 875–884.  Google Scholar
First citationXu, M. X., Wang, X. L., Mo, S. W., Li, R. X. & Cai, S. H. (2000). Chin. J. Med. Chem. 1, 12–15.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds