organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-2-{(E)-[(thio­phen-2-yl)methyl­imino]­meth­yl}phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bYesilyurt Demir Celik Vocational School, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
*Correspondence e-mail: esen.nur@oposta.omu.edu.tr

(Received 19 July 2012; accepted 22 August 2012; online 31 August 2012)

The title Schiff base, C13H13NO2S, adopts the phenol–imine tautomeric form and reveals an intra­molecular O—H⋯N hydrogen bond involving the hy­droxy group and the imino N atom, forming an S(6) ring. The mol­ecule is highly twisted with respect to the central imine group, which is reflected in the dihedral angle of 67.83 (10)° formed by the thienyl and phenol rings. The crystal packing is characterized by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

Schiff bases of salicyl­aldehyde may exhibit thermochromism or photochromism, depending on the planarity or non-planarity, respectively, of the mol­ecule, see: Amimoto & Kawato (2005[Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207-226.]); Schmidt & Cohen (1964[Schmidt, G. M. J. & Cohen, M. D. (1964). J. Chem. Soc. pp. 1996-2000.]). For a related structure, see: Kantar et al. (2012[Kantar, E. N., Köysal, Y., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o1587.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • C13H13NO2S

  • Mr = 247.30

  • Monoclinic, P 21

  • a = 5.6325 (3) Å

  • b = 8.1666 (3) Å

  • c = 13.4836 (6) Å

  • β = 96.798 (4)°

  • V = 615.86 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset) Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.951, Tmax = 0.975

  • 2221 measured reflections

  • 1809 independent reflections

  • 1472 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.109

  • S = 1.06

  • 1809 reflections

  • 159 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 640 Friedel pairs

  • Flack parameter: 0.04 (13)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.10 (6) 1.63 (7) 2.616 (4) 147 (5)
C8—H8A⋯O2i 0.97 2.77 3.592 (4) 143
C2—H2⋯Cg1ii 0.93 3.00 3.631 (4) 127
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title Schiff base, C13H13NO2S, adopts in the crystal structure the phenol-imine tautomeric form and reveals an intramolecular O—H···N hydrogen bond between the hydroxy O atom and the imino N atom (Kantar et al., 2012) generating a nearly planar six-membered ring, a S(6) ring motif according to Bernstein et al. (1995).

It is known that Schiff bases of salicylaldehyde may exhibit thermochromism or photochromism, depending on planarity or non-planarity of the molecule (Schmidt & Cohen, 1964; Amimoto & Kawato, 2005). The X-ray diffraction study of the title compound shows that the molecule is highly twisted with respect to the central imine group, which is reflected in the dihedral angle of 67.83 (10)° formed by the thienyl and phenol rings.

The crystal packing is characterized by weak C—H···O (see Table 1) and C—H···π interactions: the distance between C2—H2 and Cg1ii (C1-C6 ring) is 3.00 Å [symmetry code: ii = 1-x, 0.5+y, 1-z].

Related literature top

Schiff bases of salicylaldehyde may exhibit thermochromism or photochromism, depending on the planarity or non-planarity, respectively, of the molecule, see: Amimoto & Kawato (2005); Schmidt & Cohen (1964). For a related structure, see: Kantar et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995)

Experimental top

The title compound was prepared by refluxing a mixture of a solution containing 2-hydroxy-5-methoxybenzaldehyde (15.22 mg, 0.1 mmol) in ethanol (20 ml) and a solution containing 2-thiophenemethylamine (11.32 mg, 0.1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the ethanol solution (yield 64%; m.p. 353–355 K).

Refinement top

The structure was solved by direct methods and refined by full-matrix least-square techniques. All hydrogen positions, except H1 which was located in a difference Fourier map and freely refined), were calculated after each cycle of refinement using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The Flack x parameter was refined to 0.04 (13) based on 640 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
A view of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids.

Packing diagram of the title compound along the a axis.
4-Methoxy-2-{(E)-[(thiophen-2-yl)methylimino]methyl}phenol top
Crystal data top
C13H13NO2SF(000) = 260
Mr = 247.30Dx = 1.334 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 958 reflections
a = 5.6325 (3) Åθ = 3.6–28.7°
b = 8.1666 (3) ŵ = 0.25 mm1
c = 13.4836 (6) ÅT = 293 K
β = 96.798 (4)°Block, yellow
V = 615.86 (5) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
1809 independent reflections
Radiation source: fine-focus sealed tube1472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 16.0454 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scansh = 36
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 99
Tmin = 0.951, Tmax = 0.975l = 1516
2221 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.009
1809 reflectionsΔρmax = 0.16 e Å3
159 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Flack (1983), 640 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (13)
Crystal data top
C13H13NO2SV = 615.86 (5) Å3
Mr = 247.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.6325 (3) ŵ = 0.25 mm1
b = 8.1666 (3) ÅT = 293 K
c = 13.4836 (6) Å0.20 × 0.15 × 0.10 mm
β = 96.798 (4)°
Data collection top
Oxford Diffraction SuperNova (single source at offset) Eos
diffractometer
1809 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1472 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.975Rint = 0.015
2221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.16 e Å3
S = 1.06Δρmin = 0.20 e Å3
1809 reflectionsAbsolute structure: Flack (1983), 640 Friedel pairs
159 parametersAbsolute structure parameter: 0.04 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3932 (6)0.8415 (4)0.5974 (3)0.0481 (9)
C20.4982 (7)0.9033 (4)0.5174 (3)0.0551 (10)
H20.64170.96040.52890.066*
C30.3927 (7)0.8808 (4)0.4220 (3)0.0562 (10)
H30.46630.92210.36910.067*
C40.1768 (7)0.7970 (4)0.4023 (3)0.0500 (9)
C50.0698 (7)0.7362 (4)0.4812 (2)0.0449 (9)
H50.07380.67950.46890.054*
C60.1748 (6)0.7589 (4)0.5800 (2)0.0415 (8)
C70.0515 (7)0.6993 (4)0.6618 (3)0.0440 (9)
H70.09210.64330.64720.053*
C80.0063 (7)0.6629 (5)0.8305 (3)0.0586 (11)
H8A0.10250.57020.80500.070*
H8B0.11390.74890.84680.070*
C90.1489 (7)0.6132 (4)0.9223 (3)0.0506 (9)
C100.1217 (7)0.6557 (5)1.0203 (3)0.0562 (10)
H100.00140.72321.03890.067*
C110.3051 (8)0.5809 (6)1.0888 (3)0.0726 (13)
H110.31780.59601.15760.087*
C120.4554 (8)0.4878 (7)1.0440 (3)0.0725 (12)
H120.58210.43021.07810.087*
C130.1056 (9)0.6748 (6)0.2794 (3)0.0737 (13)
H13A0.15140.67560.20850.111*
H13B0.23830.70910.31280.111*
H13C0.05870.56610.30040.111*
N10.1345 (6)0.7215 (4)0.7533 (2)0.0528 (8)
O10.5060 (5)0.8643 (3)0.6917 (2)0.0659 (8)
O20.0879 (6)0.7829 (3)0.30331 (18)0.0652 (8)
S10.3895 (2)0.48631 (16)0.91768 (8)0.0757 (4)
H10.386 (11)0.814 (9)0.743 (4)0.17 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.046 (2)0.058 (2)0.0053 (19)0.0061 (18)0.0043 (18)
C20.041 (2)0.056 (2)0.069 (3)0.006 (2)0.009 (2)0.0000 (19)
C30.060 (3)0.049 (2)0.063 (3)0.001 (2)0.022 (2)0.0059 (19)
C40.061 (3)0.044 (2)0.045 (2)0.004 (2)0.0071 (19)0.0015 (16)
C50.050 (2)0.0383 (18)0.047 (2)0.0017 (18)0.0080 (17)0.0000 (16)
C60.0394 (19)0.0395 (18)0.045 (2)0.0054 (18)0.0042 (16)0.0009 (15)
C70.042 (2)0.0389 (19)0.051 (2)0.0017 (18)0.0079 (18)0.0005 (16)
C80.052 (2)0.078 (3)0.047 (2)0.002 (2)0.0097 (19)0.003 (2)
C90.054 (2)0.049 (2)0.050 (2)0.001 (2)0.0098 (19)0.0036 (16)
C100.060 (2)0.064 (2)0.045 (2)0.004 (2)0.0089 (19)0.0020 (18)
C110.078 (3)0.091 (3)0.050 (3)0.005 (3)0.011 (2)0.003 (2)
C120.069 (3)0.080 (3)0.066 (3)0.001 (3)0.001 (2)0.017 (3)
C130.087 (3)0.086 (3)0.045 (2)0.006 (3)0.000 (2)0.008 (2)
N10.0490 (19)0.063 (2)0.0468 (18)0.0014 (17)0.0085 (15)0.0032 (15)
O10.0475 (16)0.085 (2)0.0622 (19)0.0050 (16)0.0050 (14)0.0040 (15)
O20.085 (2)0.0653 (17)0.0457 (16)0.0113 (17)0.0085 (15)0.0064 (13)
S10.0763 (8)0.0815 (8)0.0709 (7)0.0178 (7)0.0153 (6)0.0011 (6)
Geometric parameters (Å, º) top
C1—O11.365 (4)C8—H8A0.9700
C1—C21.385 (5)C8—H8B0.9700
C1—C61.398 (5)C9—C101.392 (5)
C2—C31.364 (5)C9—S11.713 (4)
C2—H20.9300C10—C111.438 (5)
C3—C41.393 (5)C10—H100.9300
C3—H30.9300C11—C121.334 (6)
C4—O21.374 (4)C11—H110.9300
C4—C51.375 (5)C12—S11.699 (4)
C5—C61.404 (4)C12—H120.9300
C5—H50.9300C13—O21.410 (5)
C6—C71.456 (4)C13—H13A0.9600
C7—N11.279 (4)C13—H13B0.9600
C7—H70.9300C13—H13C0.9600
C8—N11.462 (4)O1—H11.10 (6)
C8—C91.486 (5)
O1—C1—C2118.7 (3)C9—C8—H8B109.3
O1—C1—C6121.7 (3)H8A—C8—H8B108.0
C2—C1—C6119.6 (3)C10—C9—C8127.1 (4)
C3—C2—C1120.4 (4)C10—C9—S1111.2 (3)
C3—C2—H2119.8C8—C9—S1121.7 (3)
C1—C2—H2119.8C9—C10—C11110.6 (4)
C2—C3—C4121.2 (4)C9—C10—H10124.7
C2—C3—H3119.4C11—C10—H10124.7
C4—C3—H3119.4C12—C11—C10113.4 (4)
O2—C4—C5125.3 (4)C12—C11—H11123.3
O2—C4—C3115.8 (3)C10—C11—H11123.3
C5—C4—C3118.8 (3)C11—C12—S1112.5 (3)
C4—C5—C6120.8 (3)C11—C12—H12123.7
C4—C5—H5119.6S1—C12—H12123.7
C6—C5—H5119.6O2—C13—H13A109.5
C5—C6—C1119.1 (3)O2—C13—H13B109.5
C5—C6—C7119.4 (3)H13A—C13—H13B109.5
C1—C6—C7121.5 (3)O2—C13—H13C109.5
N1—C7—C6122.1 (3)H13A—C13—H13C109.5
N1—C7—H7119.0H13B—C13—H13C109.5
C6—C7—H7119.0C7—N1—C8118.2 (3)
N1—C8—C9111.6 (3)C1—O1—H1106 (3)
N1—C8—H8A109.3C4—O2—C13117.3 (3)
C9—C8—H8A109.3C12—S1—C992.2 (2)
N1—C8—H8B109.3
O1—C1—C2—C3179.0 (3)C1—C6—C7—N11.1 (5)
C6—C1—C2—C31.5 (5)N1—C8—C9—C10132.6 (4)
C1—C2—C3—C40.6 (5)N1—C8—C9—S149.0 (5)
C2—C3—C4—O2179.7 (3)C8—C9—C10—C11178.8 (3)
C2—C3—C4—C50.1 (5)S1—C9—C10—C110.3 (4)
O2—C4—C5—C6179.3 (3)C9—C10—C11—C120.8 (6)
C3—C4—C5—C60.4 (5)C10—C11—C12—S10.9 (5)
C4—C5—C6—C11.3 (5)C6—C7—N1—C8177.7 (3)
C4—C5—C6—C7177.3 (3)C9—C8—N1—C7149.1 (3)
O1—C1—C6—C5178.7 (3)C5—C4—O2—C1311.4 (5)
C2—C1—C6—C51.8 (5)C3—C4—O2—C13168.9 (3)
O1—C1—C6—C72.7 (5)C11—C12—S1—C90.6 (4)
C2—C1—C6—C7176.8 (3)C10—C9—S1—C120.1 (3)
C5—C6—C7—N1177.5 (3)C8—C9—S1—C12178.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.10 (6)1.63 (7)2.616 (4)147 (5)
C8—H8A···O2i0.972.773.592 (4)143
C2—H2···Cg1ii0.933.003.631 (4)127
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H13NO2S
Mr247.30
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.6325 (3), 8.1666 (3), 13.4836 (6)
β (°) 96.798 (4)
V3)615.86 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction SuperNova (single source at offset) Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.951, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
2221, 1809, 1472
Rint0.015
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 1.06
No. of reflections1809
No. of parameters159
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20
Absolute structureFlack (1983), 640 Friedel pairs
Absolute structure parameter0.04 (13)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.10 (6)1.63 (7)2.616 (4)147 (5)
C8—H8A···O2i0.972.773.592 (4)143
C2—H2···Cg1ii0.933.003.631 (4)127
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Giresun University, Turkey, for the use of the diffractometer.

References

First citationAmimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. C, 6, 207–226.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKantar, E. N., Köysal, Y., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o1587.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSchmidt, G. M. J. & Cohen, M. D. (1964). J. Chem. Soc. pp. 1996–2000.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds