organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­amino­thio­phene-3,4-dicarbo­nitrile

aDepartment of Chemistry, University of Akron, Akron, OH 44325-3601, USA, and bDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
*Correspondence e-mail: ziegler@uakron.edu

(Received 12 July 2012; accepted 3 August 2012; online 11 August 2012)

In the title compound, C6H4N4S, the planar mol­ecule lies across a crystallographic mirror plane. In the crystal, the mol­ecules form centrosymmetric dimers through cyclic amino N—H⋯N hydrogen-bonding associations with cyano N-atom acceptors [graph set R22(12)] and these dimers are extended through amine–cyano N—H⋯N associations into a three-dimensional network.

Related literature

For the synthesis of this and related compounds via the reaction of tetra­cyano­ethyl­ene with hydrogen sulfide, see: Cairns et al. (1957[Cairns, T. L., Carboni, R. A., Coffman, D. D., Engelhardt, V. A., Heckert, R. E., Little, E. L., McGeer, E. G., McKusick, B. C. & Middleton, W. J. (1957). J. Am. Chem. Soc. 79, 2340-2341.]); Middleton et al. (1958[Middleton, W. J., Engelhardt, V. A. & Fisher, B. S. (1958). J. Am. Chem. Soc. 80, 2282-2289.]); Middleton (1959[Middleton, W. J. (1959). Org. Synth. 39, p. 8.]). For the use of this compound as a reagent, see: Nemykin et al. (2012[Nemykin, V. N., Polshyna, A. E., Makarova, E. A., Kobayashi, N. & Lukyanets, E. A. (2012). Chem. Commun. 48, 3650-3652.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For details of the weighting scheme, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 96-106. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4N4S

  • Mr = 164.19

  • Orthorhombic, P b c n

  • a = 3.9231 (2) Å

  • b = 13.8213 (12) Å

  • c = 12.6465 (11) Å

  • V = 685.72 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 123 K

  • 0.41 × 0.24 × 0.16 mm

Data collection
  • Rigaku RAPID II diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.69, Tmax = 0.94

  • 2260 measured reflections

  • 783 independent reflections

  • 492 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.116

  • S = 0.99

  • 769 reflections

  • 51 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯N2i 0.87 2.29 3.106 (5) 156
N1—H1⋯N2ii 0.88 2.38 3.196 (5) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: CrystalClear; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The synthesis of the title compound 2,5-diamino-3,4-dicyanothiophene, C6H4N4S, and similar compounds has previously been reported (Cairns et al., 1957; Middleton, 1959) and chemical transformations of this compound and its usage in macrocyclic chemistry have also been described (Middleton et al., 1958; Nemykin et al., 20120. In the structure of the title compound the planar molecule lies across a crystallograpic mirror plane (Fig. 1). The C—S bond length is 1.750 (4) Å and the C—C bond distances are unequal [1.358 (5) Å for C1—C2 and 1.458 (7) Å for C2—C2i [for symmetry code (i): -x+2, y, -z+3/2]. The C—Namine bond distance [1.358 (5) Å] shows some double-bond character and the C2—C3 bond length [1.422 (5) Å] is shorter than expected for a single bond. The cyanide C3—N2 bond length is 1.149 (5) Å.

In the crystal, the molecules form centrosymmetric cyclic dimers through amino N—H···N hydrogen-bonding associations with cyano N-atom acceptors (Table 1) [graph set R22(12) (Etter et al., 1990)] and these dimers are extended into a three-dimensional structure through N—H···N amine···cyano group associations. The thiophene molecules form antiparallel stacks down a, with a thiophene-thiophene ring centroid separation of 3.923 (2) Å.

Related literature top

For the synthesis of this and related compounds via the reaction of tetracyanoethylene with hydrogen sulfide, see: Cairns et al. (1957); Middleton et al. (1958); Middleton (1959). For the use of this compound as a reagent, see: Nemykin et al. (2012). For graph-set analysis, see : Etter et al. (1990). For details of the weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

The title compound was prepared using an earlier published procedure via the reaction of tetracyanoethylene and hydrogen sulfide (Cairns et al., 1957) and characterized by 1H and 13C NMR spectroscopy. The single crystal used for the X-ray analysis was obtained by slow cooling of a saturated solution in DMSO.

Refinement top

The H atoms were all located in a difference map. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. In the absence of significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. For symmetry code (i): -x+2, y, -z+3/2.
2,5-Diaminothiophene-3,4-dicarbonitrile top
Crystal data top
C6H4N4SDx = 1.590 Mg m3
Mr = 164.19Melting point: 513 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 783 reflections
a = 3.9231 (2) Åθ = 2–27°
b = 13.8213 (12) ŵ = 0.40 mm1
c = 12.6465 (11) ÅT = 123 K
V = 685.72 (9) Å3Plate, brown
Z = 40.41 × 0.24 × 0.16 mm
F(000) = 336
Data collection top
Rigaku RAPID II
diffractometer
783 independent reflections
Radiation source: Mo Ka492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: ψ scan
(North et al., 1968)
h = 55
Tmin = 0.69, Tmax = 0.94k = 1317
2260 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.116 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 57.9 74.5 21.5
S = 0.99(Δ/σ)max = 0.0000992
769 reflectionsΔρmax = 0.65 e Å3
51 parametersΔρmin = 0.63 e Å3
0 restraints
Crystal data top
C6H4N4SV = 685.72 (9) Å3
Mr = 164.19Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 3.9231 (2) ŵ = 0.40 mm1
b = 13.8213 (12) ÅT = 123 K
c = 12.6465 (11) Å0.41 × 0.24 × 0.16 mm
Data collection top
Rigaku RAPID II
diffractometer
783 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
492 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.94Rint = 0.054
2260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.99Δρmax = 0.65 e Å3
769 reflectionsΔρmin = 0.63 e Å3
51 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Rigaku XStream 2000 open-flow nitrogen cryostat with a nominal stability of 0.1 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.00000.75078 (10)0.75000.0189
C10.8517 (10)0.6628 (3)0.6618 (3)0.0184
N10.7035 (9)0.6908 (2)0.5697 (2)0.0205
H20.63260.64730.52460.0500*
H10.67900.75300.55570.0500*
C20.9146 (10)0.5716 (3)0.6988 (3)0.0188
C30.8190 (10)0.4873 (3)0.6416 (3)0.0211
N20.7390 (11)0.4203 (2)0.5938 (3)0.0286
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0243 (7)0.0137 (5)0.0188 (6)0.00000.0041 (6)0.0000
C10.0202 (19)0.0184 (17)0.0166 (16)0.0027 (16)0.0025 (15)0.0009 (13)
N10.0285 (19)0.0152 (14)0.0177 (14)0.0003 (14)0.0060 (14)0.0012 (11)
C20.023 (2)0.0153 (16)0.0181 (17)0.0018 (15)0.0016 (16)0.0027 (14)
C30.024 (2)0.0213 (19)0.0176 (17)0.0006 (17)0.0003 (16)0.0021 (15)
N20.040 (2)0.0205 (16)0.0249 (17)0.0053 (17)0.0034 (18)0.0021 (13)
Geometric parameters (Å, º) top
S1—C1i1.750 (4)N1—H10.884
S1—C11.750 (4)C2—C2i1.458 (7)
C1—N11.358 (5)C2—C31.422 (5)
C1—C21.367 (5)C3—N21.149 (5)
N1—H20.874
C1i—S1—C191.9 (3)H2—N1—H1120.2
S1—C1—N1119.4 (3)C2i—C2—C1112.8 (2)
S1—C1—C2111.3 (3)C2i—C2—C3125.0 (2)
N1—C1—C2129.3 (3)C1—C2—C3122.3 (3)
C1—N1—H2120.0C2—C3—N2178.6 (4)
C1—N1—H1119.8
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N2ii0.872.293.106 (5)156
N1—H1···N2iii0.882.383.196 (5)153
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H4N4S
Mr164.19
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)123
a, b, c (Å)3.9231 (2), 13.8213 (12), 12.6465 (11)
V3)685.72 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.41 × 0.24 × 0.16
Data collection
DiffractometerRigaku RAPID II
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.69, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
2260, 783, 492
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.116, 0.99
No. of reflections769
No. of parameters51
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.63

Computer programs: CrystalClear (Rigaku, 2009), HKL-2000 (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N2i0.872.293.106 (5)156
N1—H1···N2ii0.882.383.196 (5)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

This study was supported by the National Science Foundation (grants CHE-0922366 and CHE-1110455).

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCairns, T. L., Carboni, R. A., Coffman, D. D., Engelhardt, V. A., Heckert, R. E., Little, E. L., McGeer, E. G., McKusick, B. C. & Middleton, W. J. (1957). J. Am. Chem. Soc. 79, 2340–2341.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMiddleton, W. J. (1959). Org. Synth. 39, p. 8.  Google Scholar
First citationMiddleton, W. J., Engelhardt, V. A. & Fisher, B. S. (1958). J. Am. Chem. Soc. 80, 2282–2289.  Google Scholar
First citationNemykin, V. N., Polshyna, A. E., Makarova, E. A., Kobayashi, N. & Lukyanets, E. A. (2012). Chem. Commun. 48, 3650–3652.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 96–106. New York: Springer-Verlag.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds