metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Cyanato-κN){1-[(E)-phen­yl(pyridin-2-yl-κN)methyl­­idene]semicarbazidato-κ2N1,O}copper(II)

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 August 2012; accepted 10 August 2012; online 23 August 2012)

The CuII atom in the title compound, [Cu(C13H11N4O)(NCO)], is N,N′,O-chelated by the mono-deprotonated Schiff base ligand and it is also covalently bonded to the nitro­gen end of the cyanate ion. The CuII atom shows a square-planar coordination that is distorted towards square-pyramidal owing to an inter­molecular Cu⋯Ncyanate inter­action [2.623 (2) Å], which gives a centrosymmetric dimer. In the square-planar description, the CuII atom is displaced out of the square plane [r.m.s. deviation = 0.048 Å] by 0.084 (1) Å in the direction of the apical occupant. In the crystal, adjacent complex dimers are linked by an amine N—H⋯N hydrogen-bond pair, also giving a centrosymmetric cyclic association [graph set R22(8)], generating a linear chain parallel to [110].

Related literature

For the synthesis of the Schiff base, see: de Lima et al. (2008[Lima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, o177.]). For a related copper(II) derivative, see: Peŕez-Rebolledo et al. (2006[Peŕez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18-23.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H11N4O)(NCO)]

  • Mr = 344.82

  • Monoclinic, P 21 /n

  • a = 8.7601 (1) Å

  • b = 7.6732 (1) Å

  • c = 20.0819 (3) Å

  • β = 96.7467 (7)°

  • V = 1340.52 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.638, Tmax = 0.735

  • 11886 measured reflections

  • 3069 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.093

  • S = 1.03

  • 3069 reflections

  • 208 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯N3i 0.88 (1) 2.27 (1) 3.139 (2) 173 (3)
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Benzoylpyridine semicarbazone (de Lima et al., 2008) is a Schiff base that is capable of N,N',O-chelation to transition metal ions. This feature has been documented in a copper(II) dichloride adduct in which the Schiff base exists as a neutral molecule (Peŕez-Rebolledo et al., 2006). However, the CuII atom in the title compound [Cu(NCO)(C13H11N4O)] (Scheme I) is N,N',O-chelated by the mono-deprotonated Schiff base ligand and it is also covalently bonded to the nitrogen end of the cyanate ion. The metal center shows square-planar coordination that is distorted towards square-pyramidal coordination owing to an intermolecular Cu···Ncyanate interaction [2.623 (2) Å], which generates a centrosymmetric dimer (Fig. 1). The geometry is better interpreted as square planar as the Cu···Ncyanate···Cu angle is too acute [93.0 (1)°].

Adjacent dimers are linked by an amine N—H···N hydrogen-bond pair (Table 1), also giving a centrosymmetric cyclic association [graph set R22(8) (Etter et al., 1990], generating a linear chain parallel to [1 1 0].

Related literature top

For the synthesis of the Schiff base, see: de Lima et al. (2008). For a related copper(II) derivative, see: Peŕez-Rebolledo et al. (2006). For graph-set notation, see: Etter et al. (1990).

Experimental top

A methanol solution (20 ml) of 2-benzoylpyridine semicarbazone (0.240 g, 1 mmol) (de Lima et al., 2008), copper sulfate pentahydrate (0.249 g, 1 mmol) and sodium cyanate (0.065 g, 1 mmol) was heated for 5 h. The dark green solid was collected and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å and their displacement parameters refined. Only one H-atom is involved in the formation of a hydrogen bond.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of two molecules of [Cu(NCO)(C13H11N4O)] that are linked by Cu···Ncyanate interactions (dashed bonds), at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
(Cyanato-κN){1-[(E)-phenyl(pyridin-2-yl- κN)methylidene]semicarbazidato-κ2N1,O}copper(II) top
Crystal data top
[Cu(C13H11N4O)(NCO)]F(000) = 700
Mr = 344.82Dx = 1.709 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 838 reflections
a = 8.7601 (1) Åθ = 2.4–28.3°
b = 7.6732 (1) ŵ = 1.64 mm1
c = 20.0819 (3) ÅT = 293 K
β = 96.7467 (7)°Prism, dark green
V = 1340.52 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3069 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.638, Tmax = 0.735k = 99
11886 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.5121P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3069 reflectionsΔρmax = 0.37 e Å3
208 parametersΔρmin = 0.47 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0221 (17)
Crystal data top
[Cu(C13H11N4O)(NCO)]V = 1340.52 (3) Å3
Mr = 344.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7601 (1) ŵ = 1.64 mm1
b = 7.6732 (1) ÅT = 293 K
c = 20.0819 (3) Å0.30 × 0.25 × 0.20 mm
β = 96.7467 (7)°
Data collection top
Bruker Kappa APEXII
diffractometer
3069 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2728 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.735Rint = 0.031
11886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.37 e Å3
3069 reflectionsΔρmin = 0.47 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.31070 (2)0.50325 (3)0.506177 (10)0.03203 (12)
O10.28257 (17)0.3049 (2)0.56285 (6)0.0473 (4)
O20.5831 (2)0.6387 (3)0.67349 (8)0.0696 (6)
N10.26412 (17)0.6848 (2)0.43675 (7)0.0323 (3)
N20.13987 (16)0.38948 (19)0.45304 (7)0.0287 (3)
N30.09476 (17)0.2331 (2)0.47511 (7)0.0332 (3)
N40.1503 (3)0.0571 (3)0.56674 (9)0.0526 (5)
H410.078 (2)0.018 (3)0.5525 (15)0.057 (8)*
H420.196 (3)0.034 (4)0.6065 (8)0.059 (8)*
N50.47729 (18)0.6213 (2)0.56268 (8)0.0391 (4)
C10.3226 (2)0.8437 (3)0.43590 (10)0.0425 (4)
H10.39720.87730.47030.051*
C20.2763 (3)0.9611 (3)0.38550 (13)0.0480 (5)
H20.31781.07270.38620.058*
C30.1682 (2)0.9104 (3)0.33440 (11)0.0448 (5)
H30.13540.98750.29990.054*
C40.1084 (2)0.7441 (3)0.33435 (9)0.0383 (4)
H40.03640.70710.29950.046*
C50.15699 (19)0.6327 (2)0.38691 (8)0.0299 (3)
C60.09472 (19)0.4563 (3)0.39498 (8)0.0289 (3)
C70.00451 (19)0.3697 (2)0.34034 (8)0.0295 (3)
C80.0435 (2)0.3596 (3)0.27703 (9)0.0373 (4)
H80.13600.41060.26910.045*
C90.0453 (2)0.2744 (3)0.22558 (9)0.0438 (5)
H90.01190.26740.18340.053*
C100.1826 (2)0.2003 (3)0.23667 (10)0.0453 (5)
H100.24190.14240.20210.054*
C110.2324 (2)0.2114 (3)0.29881 (11)0.0438 (5)
H110.32630.16260.30600.053*
C120.1440 (2)0.2947 (3)0.35081 (9)0.0351 (4)
H120.17790.30060.39290.042*
C130.1784 (2)0.2042 (3)0.53522 (8)0.0369 (4)
C140.5253 (2)0.6252 (3)0.61718 (10)0.0396 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03601 (17)0.03610 (18)0.02273 (15)0.00921 (8)0.00184 (10)0.00184 (7)
O10.0603 (9)0.0532 (9)0.0253 (6)0.0211 (7)0.0086 (6)0.0083 (6)
O20.0639 (10)0.1105 (17)0.0313 (7)0.0030 (10)0.0079 (7)0.0060 (9)
N10.0361 (7)0.0323 (8)0.0282 (7)0.0055 (6)0.0017 (6)0.0025 (6)
N20.0310 (7)0.0321 (7)0.0227 (6)0.0053 (6)0.0020 (5)0.0012 (5)
N30.0399 (7)0.0341 (8)0.0250 (6)0.0089 (6)0.0013 (6)0.0017 (6)
N40.0713 (13)0.0508 (11)0.0329 (9)0.0212 (10)0.0060 (8)0.0121 (8)
N50.0370 (8)0.0480 (10)0.0316 (8)0.0072 (7)0.0011 (6)0.0007 (7)
C10.0503 (11)0.0374 (10)0.0396 (10)0.0124 (8)0.0041 (8)0.0064 (8)
C20.0609 (13)0.0314 (9)0.0536 (13)0.0093 (10)0.0149 (10)0.0014 (9)
C30.0528 (11)0.0375 (11)0.0452 (11)0.0039 (9)0.0104 (9)0.0092 (9)
C40.0400 (9)0.0381 (10)0.0358 (9)0.0018 (8)0.0002 (7)0.0037 (8)
C50.0295 (7)0.0314 (9)0.0288 (7)0.0007 (6)0.0034 (6)0.0017 (6)
C60.0270 (7)0.0332 (8)0.0261 (8)0.0013 (7)0.0014 (6)0.0013 (7)
C70.0296 (7)0.0297 (8)0.0273 (7)0.0003 (6)0.0041 (6)0.0010 (6)
C80.0344 (9)0.0473 (11)0.0295 (8)0.0053 (8)0.0008 (7)0.0012 (8)
C90.0500 (11)0.0512 (12)0.0285 (8)0.0002 (9)0.0031 (8)0.0051 (8)
C100.0465 (11)0.0454 (12)0.0396 (10)0.0040 (9)0.0142 (8)0.0070 (8)
C110.0317 (9)0.0455 (11)0.0515 (11)0.0083 (8)0.0062 (8)0.0002 (9)
C120.0309 (8)0.0368 (10)0.0368 (9)0.0022 (7)0.0013 (7)0.0002 (7)
C130.0456 (10)0.0403 (10)0.0247 (8)0.0078 (8)0.0039 (7)0.0023 (7)
C140.0350 (9)0.0442 (11)0.0398 (10)0.0061 (8)0.0060 (7)0.0032 (8)
Geometric parameters (Å, º) top
Cu1—O11.9335 (14)C2—H20.9300
Cu1—N21.9404 (14)C3—C41.379 (3)
Cu1—N51.9618 (16)C3—H30.9300
Cu1—N11.9790 (15)C4—C51.385 (2)
Cu1—N5i2.6225 (17)C4—H40.9300
O1—C131.272 (2)C5—C61.475 (2)
O2—C141.188 (2)C6—C71.475 (2)
N1—C11.324 (2)C7—C81.388 (2)
N1—C51.349 (2)C7—C121.388 (2)
N2—C61.293 (2)C8—C91.382 (3)
N2—N31.354 (2)C8—H80.9300
N3—C131.355 (2)C9—C101.372 (3)
N4—C131.331 (3)C9—H90.9300
N4—H410.876 (10)C10—C111.372 (3)
N4—H420.869 (10)C10—H100.9300
N5—C141.126 (2)C11—C121.382 (3)
C1—C21.380 (3)C11—H110.9300
C1—H10.9300C12—H120.9300
C2—C31.368 (3)
O1—Cu1—N279.99 (6)C3—C4—C5119.16 (18)
O1—Cu1—N599.25 (6)C3—C4—H4120.4
N2—Cu1—N5177.52 (6)C5—C4—H4120.4
O1—Cu1—N1159.83 (6)N1—C5—C4120.48 (17)
N2—Cu1—N181.22 (6)N1—C5—C6115.08 (15)
N5—Cu1—N199.23 (7)C4—C5—C6124.40 (16)
O1—Cu1—N5i99.82 (6)N2—C6—C7125.67 (17)
N2—Cu1—N5i95.41 (6)N2—C6—C5112.66 (15)
N5—Cu1—N5i87.05 (6)C7—C6—C5121.65 (15)
N1—Cu1—N5i89.15 (6)C8—C7—C12118.85 (16)
C13—O1—Cu1110.84 (11)C8—C7—C6119.40 (16)
C1—N1—C5119.97 (16)C12—C7—C6121.74 (16)
C1—N1—Cu1127.54 (13)C9—C8—C7120.43 (18)
C5—N1—Cu1112.47 (12)C9—C8—H8119.8
C6—N2—N3125.23 (14)C7—C8—H8119.8
C6—N2—Cu1116.88 (12)C10—C9—C8120.13 (19)
N3—N2—Cu1117.03 (10)C10—C9—H9119.9
N2—N3—C13106.76 (14)C8—C9—H9119.9
C13—N4—H41124 (2)C9—C10—C11120.02 (17)
C13—N4—H42121 (2)C9—C10—H10120.0
H41—N4—H42114 (3)C11—C10—H10120.0
C14—N5—Cu1137.89 (16)C10—C11—C12120.38 (18)
N1—C1—C2121.99 (19)C10—C11—H11119.8
N1—C1—H1119.0C12—C11—H11119.8
C2—C1—H1119.0C11—C12—C7120.18 (18)
C3—C2—C1118.8 (2)C11—C12—H12119.9
C3—C2—H2120.6C7—C12—H12119.9
C1—C2—H2120.6O1—C13—N4118.09 (17)
C2—C3—C4119.53 (19)O1—C13—N3125.08 (17)
C2—C3—H3120.2N4—C13—N3116.82 (17)
C4—C3—H3120.2N5—C14—O2175.1 (2)
N2—Cu1—O1—C133.55 (14)Cu1—N1—C5—C4179.09 (14)
N5—Cu1—O1—C13178.85 (14)C1—N1—C5—C6177.08 (16)
N1—Cu1—O1—C1325.1 (3)Cu1—N1—C5—C61.45 (19)
N5i—Cu1—O1—C1390.27 (14)C3—C4—C5—N11.5 (3)
O1—Cu1—N1—C1150.16 (19)C3—C4—C5—C6175.87 (18)
N2—Cu1—N1—C1171.58 (18)N3—N2—C6—C74.9 (3)
N5—Cu1—N1—C15.94 (18)Cu1—N2—C6—C7164.10 (13)
N5i—Cu1—N1—C192.81 (17)N3—N2—C6—C5176.72 (15)
O1—Cu1—N1—C528.2 (3)Cu1—N2—C6—C514.28 (19)
N2—Cu1—N1—C56.80 (12)N1—C5—C6—N28.2 (2)
N5—Cu1—N1—C5175.67 (12)C4—C5—C6—N2169.37 (17)
N5i—Cu1—N1—C588.80 (12)N1—C5—C6—C7170.28 (15)
O1—Cu1—N2—C6175.17 (14)C4—C5—C6—C712.2 (3)
N1—Cu1—N2—C612.18 (13)N2—C6—C7—C8126.9 (2)
N5i—Cu1—N2—C676.12 (14)C5—C6—C7—C851.4 (2)
O1—Cu1—N2—N35.25 (12)N2—C6—C7—C1251.9 (3)
N1—Cu1—N2—N3177.90 (13)C5—C6—C7—C12129.86 (18)
N5i—Cu1—N2—N393.80 (12)C12—C7—C8—C90.8 (3)
C6—N2—N3—C13174.42 (17)C6—C7—C8—C9178.00 (19)
Cu1—N2—N3—C135.43 (18)C7—C8—C9—C100.5 (3)
O1—Cu1—N5—C1422.4 (3)C8—C9—C10—C110.4 (3)
N1—Cu1—N5—C14149.4 (2)C9—C10—C11—C121.0 (3)
N5i—Cu1—N5—C14121.9 (3)C10—C11—C12—C70.8 (3)
C5—N1—C1—C20.7 (3)C8—C7—C12—C110.2 (3)
Cu1—N1—C1—C2177.57 (16)C6—C7—C12—C11178.62 (18)
N1—C1—C2—C31.0 (3)Cu1—O1—C13—N4176.97 (17)
C1—C2—C3—C40.0 (3)Cu1—O1—C13—N31.7 (3)
C2—C3—C4—C51.3 (3)N2—N3—C13—O12.4 (3)
C1—N1—C5—C40.6 (3)N2—N3—C13—N4178.93 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N3ii0.88 (1)2.27 (1)3.139 (2)173 (3)
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C13H11N4O)(NCO)]
Mr344.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.7601 (1), 7.6732 (1), 20.0819 (3)
β (°) 96.7467 (7)
V3)1340.52 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.638, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
11886, 3069, 2728
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.093, 1.03
No. of reflections3069
No. of parameters208
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.47

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···N3i0.88 (1)2.27 (1)3.139 (2)173 (3)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

RJK thanks the University Grants Commission (India) for a Junior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeŕez-Rebolledo, A., Piro, O. E., Castellano, E. E., Teixeira, L. R., Batista, A. A. & Beraldo, H. (2006). J. Mol. Struct. 794, 18–23.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds