organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Leucinium fluoride monohydrate

aUnité de Recherche Chimie de l'Environnement et Molculaire Structurale (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr

(Received 20 May 2012; accepted 12 September 2012; online 19 September 2012)

The asymmetric unit of the title hydrated salt, C6H14NO2+·F·H2O, contains a discrete cation with a protonated amino group, a halide anion and one water mol­ecule. The crystal structure is composed of double layers parallel to (010) held together by N—H⋯O, N—H⋯F, O—H⋯F and C—H⋯F hydrogen bonds, forming a two-dimensional network, and stacked along the c axis, viz. hydro­philic layers at z = 0 and 1/2 and hydro­phobic layers at z = 1/3 and 2/3.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to carb­oxy­lic acids, see: Miller & Orgel (1974[Miller, S. L. & Orgel, E. L. (1974). The Origins of Life on The Earth, p. 83. New Jersey: Prentice-Hall.]); Kvenvolden et al. (1971[Kvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486-490.]). For our research on organic salts of amino acids, see: Guenifa et al. (2009[Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264-o2265.]); Moussa Slimane et al. (2009[Moussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180-o2181.]). For L-leucinium oxalate, see: Rajagopal et al. (2003[Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Malathi, R., Rajan, S. S. & Natarajan, S. (2003). Acta Cryst. E59, o878-o880.]) and for L-leucinium perchlorate, see: Janczak & Perpétuo (2007[Janczak, J. & Perpétuo, G. J. (2007). Acta Cryst. C63, o117-o119.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14NO2+·F·H2O

  • Mr = 169.20

  • Orthorhombic, P 21 21 21

  • a = 5.7058 (1) Å

  • b = 5.8289 (1) Å

  • c = 27.3150 (4) Å

  • V = 908.46 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.3 × 0.03 × 0.02 mm

Data collection
  • Oxford Diffraction Super Nova diffractometer with an Atlas detector

  • 27972 measured reflections

  • 2771 independent reflections

  • 2584 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.06

  • 2771 reflections

  • 118 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1Wi 0.91 (2) 1.94 (2) 2.8428 (11) 174 (2)
N1—H2N⋯F1ii 0.879 (17) 1.878 (17) 2.7277 (10) 162.1 (16)
N1—H3N⋯O1Wiii 0.89 (2) 1.95 (2) 2.8152 (11) 166 (2)
O1—H1⋯F1iv 0.88 (2) 1.57 (2) 2.4410 (10) 174 (2)
O1W—H1W⋯F1 0.84 (1) 1.87 (1) 2.7090 (9) 174 (1)
O1W—H2W⋯F1ii 0.83 (1) 1.90 (1) 2.7271 (9) 170 (1)
C4—H4⋯F1ii 0.98 2.45 3.3813 (12) 159
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x, y+1, z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and POVRay (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/.]).

Supporting information


Comment top

Leucine is one of the most important amino acids, essential for the growth and maintenance of living organisms. Simple carboxylic acids, which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971), form crystalline complexes with amino acids. The present paper is a part of our research with organic salts of amino acids (Guenifa et al., 2009; Moussa Slimane et al., 2009).

The asymmetric unit of the title compound contains a leucinium cation, fluoride anion and one water molecule (Fig. 1). As expected, leucine form the protonated unit with the transfer of an H atom from the inorganic acid. The similar situation is observed in L-leucinium oxalate (Rajagopal et al., 2003) and L-leucinium perchlorate (Janczak & Perpétuo, 2007).

In the supramolecular structure of the title compound, the ions are connected into a two-dimensional hydrogen-bonded network via N—H···O, N—H···F, O—H···F and C—H···F hydrogen bonds (Table 1). The leucinium cations are interlinked by two intermolecular N—H···F and O—H···F hydrogen bonds to form a double layers [C12(7) motif] (Bernstein et al.,, 1995), (Fig. 2), resulting in an overall one-dimensional hydrogen-bonded network.

In the title compound, the water molecules and floride anions bridges in two-dimensional hydrogen bonded network, forming a non centrosymmetric hydrogen-bonded R35(13) and R35(10) motifs, which run into zigzag parallel to the [010] direction (Fig. 3).

The molecular packing of the title compound consists of double layers is stacked along the c axis, viz. hydrophilic layers at z = 0 and 1/2 and hydrophobic layers at z = 1/3 and 2/3. The hydrophilic layers include the head of the leucinium residue (ammonium and carboxylic groups), floride anion and water molecule.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to carboxylic acids, see: Miller & Orgel (1974); Kvenvolden et al. (1971). For our research on organic salts of amino acids, see: Guenifa et al. (2009); Moussa Slimane et al. (2009). For L-leucinium oxalate, see: Rajagopal et al. (2003) and for L-leucinium perchlorate, see: Janczak & Perpétuo (2007).

Experimental top

The experiment consists of heating an equimolar solution of leucine and hydrofluoric acid acid until the reaction is complete. Colourless crystal with melting points of 618 K were obtained by evaporation of the solution at room temperature over the course of a few days.

Refinement top

The H atoms attached to C atoms were placed at calculated positions with C—H fixed at 0.93 – 0.98 Å The H atoms attached to N and O were initially located from difference maps and refined with distance restraint for the N—H bond length 0.90 (2) Å and O—H bond length 0.85 (2) Å. The Uiso(H) were set to 1.5Ueq(C, O) for methyl and amino groups and to 1.2Ueq(C, N) for the rest atoms.

Structure description top

Leucine is one of the most important amino acids, essential for the growth and maintenance of living organisms. Simple carboxylic acids, which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971), form crystalline complexes with amino acids. The present paper is a part of our research with organic salts of amino acids (Guenifa et al., 2009; Moussa Slimane et al., 2009).

The asymmetric unit of the title compound contains a leucinium cation, fluoride anion and one water molecule (Fig. 1). As expected, leucine form the protonated unit with the transfer of an H atom from the inorganic acid. The similar situation is observed in L-leucinium oxalate (Rajagopal et al., 2003) and L-leucinium perchlorate (Janczak & Perpétuo, 2007).

In the supramolecular structure of the title compound, the ions are connected into a two-dimensional hydrogen-bonded network via N—H···O, N—H···F, O—H···F and C—H···F hydrogen bonds (Table 1). The leucinium cations are interlinked by two intermolecular N—H···F and O—H···F hydrogen bonds to form a double layers [C12(7) motif] (Bernstein et al.,, 1995), (Fig. 2), resulting in an overall one-dimensional hydrogen-bonded network.

In the title compound, the water molecules and floride anions bridges in two-dimensional hydrogen bonded network, forming a non centrosymmetric hydrogen-bonded R35(13) and R35(10) motifs, which run into zigzag parallel to the [010] direction (Fig. 3).

The molecular packing of the title compound consists of double layers is stacked along the c axis, viz. hydrophilic layers at z = 0 and 1/2 and hydrophobic layers at z = 1/3 and 2/3. The hydrophilic layers include the head of the leucinium residue (ammonium and carboxylic groups), floride anion and water molecule.

For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to carboxylic acids, see: Miller & Orgel (1974); Kvenvolden et al. (1971). For our research on organic salts of amino acids, see: Guenifa et al. (2009); Moussa Slimane et al. (2009). For L-leucinium oxalate, see: Rajagopal et al. (2003) and for L-leucinium perchlorate, see: Janczak & Perpétuo (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure, showing the aggregation of C12(7) for the title compound. [Symmetry codes: (ii) x + 1/2, -y + 1/2, -z + 1; (iv) x - 1/2, -y + 3/2, -z + 1]. For the sake of clarity, the water molecules and H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Packing view of the title compound showing the aggregation of R35(10) and R35(15) hydrogen-bonding motifs. [Symmetry codes:(i) x - 1/2, -y + 1/2, -z + 1; (iv) x - 1/2, -y + 3/2, -z + 1].
L-Leucinium fluoride monohydrate top
Crystal data top
C6H14NO2+·F·H2OF(000) = 368
Mr = 169.20Dx = 1.237 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 27972 reflections
a = 5.7058 (1) Åθ = 3.6–30.5°
b = 5.8289 (1) ŵ = 0.11 mm1
c = 27.3150 (4) ÅT = 100 K
V = 908.46 (3) Å3Needle, colourless
Z = 40.3 × 0.03 × 0.02 mm
Data collection top
Oxford Diffraction Super Nova
diffractometer with an Atlas detector
2584 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.039
Graphite monochromatorθmax = 30.5°, θmin = 3.6°
Detector resolution: 10.4508 pixels mm-1h = 88
ω scansk = 88
27972 measured reflectionsl = 3939
2771 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.045P)2 + 0.0976P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.28 e Å3
2771 reflectionsΔρmin = 0.14 e Å3
118 parameters
Crystal data top
C6H14NO2+·F·H2OV = 908.46 (3) Å3
Mr = 169.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7058 (1) ŵ = 0.11 mm1
b = 5.8289 (1) ÅT = 100 K
c = 27.3150 (4) Å0.3 × 0.03 × 0.02 mm
Data collection top
Oxford Diffraction Super Nova
diffractometer with an Atlas detector
2584 reflections with I > 2σ(I)
27972 measured reflectionsRint = 0.039
2771 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0307 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
2771 reflectionsΔρmin = 0.14 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.01929 (10)0.16104 (10)0.56810 (2)0.01618 (13)
O10.18388 (14)1.11050 (12)0.38989 (3)0.01957 (16)
O1W0.35872 (12)0.05014 (12)0.50292 (3)0.01595 (15)
H1W0.248 (2)0.090 (2)0.5214 (4)0.024*
H2W0.404 (2)0.152 (2)0.4837 (4)0.024*
O20.16963 (15)0.93446 (14)0.46240 (3)0.02415 (18)
N10.20572 (15)0.68869 (14)0.44249 (3)0.01236 (15)
C20.10845 (16)0.82520 (16)0.40113 (3)0.01163 (16)
H20.22880.93190.38940.014*
C30.02982 (17)0.67306 (17)0.35844 (3)0.01419 (17)
H3B0.04590.76940.33420.017*
H3A0.08670.56580.37050.017*
C10.09782 (17)0.96280 (16)0.42137 (3)0.01297 (17)
C40.2246 (2)0.5363 (2)0.33310 (4)0.0212 (2)
H40.30180.43930.35760.025*
C50.1160 (2)0.38189 (19)0.29402 (4)0.0269 (2)
H5A0.23730.2960.2780.04*
H5C0.03510.47460.27040.04*
H5B0.00720.2780.30910.04*
C60.4082 (2)0.6941 (3)0.31019 (5)0.0349 (3)
H6A0.47460.79060.33510.052*
H6B0.33560.78770.28560.052*
H6C0.52970.60320.29550.052*
H10.294 (3)1.184 (3)0.4060 (7)0.052*
H2N0.317 (3)0.593 (3)0.4337 (6)0.042*
H1N0.090 (3)0.610 (3)0.4578 (6)0.042*
H3N0.263 (3)0.784 (3)0.4649 (5)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0160 (3)0.0144 (3)0.0181 (3)0.0065 (2)0.0001 (2)0.0000 (2)
O10.0231 (4)0.0191 (3)0.0164 (3)0.0124 (3)0.0043 (3)0.0044 (3)
O1W0.0147 (3)0.0115 (3)0.0216 (3)0.0002 (3)0.0031 (3)0.0007 (3)
O20.0285 (4)0.0232 (4)0.0207 (4)0.0140 (3)0.0102 (3)0.0085 (3)
N10.0130 (4)0.0112 (3)0.0129 (3)0.0033 (3)0.0003 (3)0.0004 (3)
C20.0121 (4)0.0102 (3)0.0126 (4)0.0032 (3)0.0014 (3)0.0015 (3)
C30.0152 (4)0.0143 (4)0.0130 (4)0.0026 (4)0.0006 (3)0.0015 (3)
C10.0136 (4)0.0093 (4)0.0160 (4)0.0023 (3)0.0007 (3)0.0001 (3)
C40.0251 (5)0.0235 (5)0.0149 (4)0.0123 (4)0.0013 (4)0.0040 (4)
C50.0398 (6)0.0215 (5)0.0193 (5)0.0034 (5)0.0028 (5)0.0061 (4)
C60.0188 (5)0.0536 (8)0.0322 (6)0.0022 (5)0.0076 (5)0.0192 (6)
Geometric parameters (Å, º) top
O1—C11.3121 (12)C4—C51.5276 (16)
O2—C11.2047 (12)C4—C61.5281 (18)
O1—H10.879 (18)C2—H20.9800
O1W—H1W0.841 (11)C3—H3B0.9700
O1W—H2W0.834 (11)C3—H3A0.9700
N1—C21.4891 (12)C4—H40.9800
N1—H2N0.879 (17)C5—H5B0.9600
N1—H3N0.889 (16)C5—H5C0.9600
N1—H1N0.906 (17)C5—H5A0.9600
C1—C21.5278 (13)C6—H6C0.9600
C2—C31.5321 (12)C6—H6A0.9600
C3—C41.5329 (15)C6—H6B0.9600
C1—O1—H1105.0 (12)C2—C3—H3A108.00
H1W—O1W—H2W114.5 (11)C2—C3—H3B108.00
H2N—N1—H3N108.6 (16)C4—C3—H3B108.00
H1N—N1—H3N105.5 (15)H3A—C3—H3B107.00
C2—N1—H1N110.4 (11)C4—C3—H3A108.00
C2—N1—H2N113.7 (11)C5—C4—H4109.00
C2—N1—H3N109.0 (10)C6—C4—H4109.00
H1N—N1—H2N109.4 (16)C3—C4—H4109.00
O1—C1—O2124.92 (9)C4—C5—H5A109.00
O2—C1—C2121.78 (8)C4—C5—H5B110.00
O1—C1—C2113.30 (7)H5A—C5—H5B109.00
N1—C2—C3112.16 (8)H5A—C5—H5C110.00
C1—C2—C3110.71 (7)C4—C5—H5C109.00
N1—C2—C1107.04 (7)H5B—C5—H5C109.00
C2—C3—C4115.62 (8)C4—C6—H6B109.00
C3—C4—C5109.14 (9)C4—C6—H6C110.00
C3—C4—C6111.65 (10)C4—C6—H6A109.00
C5—C4—C6110.28 (10)H6A—C6—H6C110.00
N1—C2—H2109.00H6B—C6—H6C109.00
C3—C2—H2109.00H6A—C6—H6B109.00
C1—C2—H2109.00
O1—C1—C2—N1172.87 (8)N1—C2—C3—C463.80 (10)
O1—C1—C2—C364.60 (10)C1—C2—C3—C4176.70 (8)
O2—C1—C2—N16.99 (12)C2—C3—C4—C5176.10 (8)
O2—C1—C2—C3115.54 (10)C2—C3—C4—C661.73 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.91 (2)1.94 (2)2.8428 (11)174 (2)
N1—H2N···F1ii0.879 (17)1.878 (17)2.7277 (10)162.1 (16)
N1—H3N···O1Wiii0.89 (2)1.95 (2)2.8152 (11)166 (2)
O1—H1···F1iv0.88 (2)1.57 (2)2.4410 (10)174 (2)
O1W—H1W···F10.84 (1)1.87 (1)2.7090 (9)174 (1)
O1W—H2W···F1ii0.83 (1)1.90 (1)2.7271 (9)170 (1)
C4—H4···F1ii0.982.453.3813 (12)159
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z; (iv) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H14NO2+·F·H2O
Mr169.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.7058 (1), 5.8289 (1), 27.3150 (4)
V3)908.46 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.03 × 0.02
Data collection
DiffractometerOxford Diffraction Super Nova
diffractometer with an Atlas detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27972, 2771, 2584
Rint0.039
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.06
No. of reflections2771
No. of parameters118
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1Wi0.906 (17)1.940 (17)2.8428 (11)173.9 (15)
N1—H2N···F1ii0.879 (17)1.878 (17)2.7277 (10)162.1 (16)
N1—H3N···O1Wiii0.889 (16)1.945 (16)2.8152 (11)165.8 (15)
O1—H1···F1iv0.879 (18)1.566 (18)2.4410 (10)173.8 (18)
O1W—H1W···F10.841 (11)1.871 (11)2.7090 (9)173.6 (11)
O1W—H2W···F1ii0.834 (11)1.903 (11)2.7271 (9)169.5 (11)
C4—H4···F1ii0.98002.45003.3813 (12)159.00
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z; (iv) x1/2, y+3/2, z+1.
 

Acknowledgements

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, France, is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2007). Acta Cryst. C63, o117–o119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486–490.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiller, S. L. & Orgel, E. L. (1974). The Origins of Life on The Earth, p. 83. New Jersey: Prentice-Hall.  Google Scholar
First citationMoussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180–o2181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationRajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Malathi, R., Rajan, S. S. & Natarajan, S. (2003). Acta Cryst. E59, o878–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds