organic compounds
L-Leucinium fluoride monohydrate
aUnité de Recherche Chimie de l'Environnement et Molculaire Structurale (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr
The 6H14NO2+·F−·H2O, contains a discrete cation with a protonated amino group, a halide anion and one water molecule. The is composed of double layers parallel to (010) held together by N—H⋯O, N—H⋯F, O—H⋯F and C—H⋯F hydrogen bonds, forming a two-dimensional network, and stacked along the c axis, viz. hydrophilic layers at z = 0 and 1/2 and hydrophobic layers at z = 1/3 and 2/3.
of the title hydrated salt, CRelated literature
For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to carboxylic acids, see: Miller & Orgel (1974); Kvenvolden et al. (1971). For our research on organic salts of amino acids, see: Guenifa et al. (2009); Moussa Slimane et al. (2009). For L-leucinium oxalate, see: Rajagopal et al. (2003) and for L-leucinium perchlorate, see: Janczak & Perpétuo (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).
Supporting information
https://doi.org/10.1107/S1600536812039001/aa2065sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812039001/aa2065Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812039001/aa2065Isup3.cml
The experiment consists of heating an equimolar solution of leucine and hydrofluoric acid acid until the reaction is complete. Colourless crystal with melting points of 618 K were obtained by evaporation of the solution at room temperature over the course of a few days.
The H atoms attached to C atoms were placed at calculated positions with C—H fixed at 0.93 – 0.98 Å The H atoms attached to N and O were initially located from difference maps and refined with distance restraint for the N—H bond length 0.90 (2) Å and O—H bond length 0.85 (2) Å. The Uiso(H) were set to 1.5Ueq(C, O) for methyl and amino groups and to 1.2Ueq(C, N) for the rest atoms.
Leucine is one of the most important amino acids, essential for the growth and maintenance of living organisms. Simple
which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971), form crystalline complexes with amino acids. The present paper is a part of our research with organic salts of amino acids (Guenifa et al., 2009; Moussa Slimane et al., 2009).The
of the title compound contains a leucinium cation, fluoride anion and one water molecule (Fig. 1). As expected, leucine form the protonated unit with the transfer of an H atom from the inorganic acid. The similar situation is observed in L-leucinium oxalate (Rajagopal et al., 2003) and L-leucinium perchlorate (Janczak & Perpétuo, 2007).In the supramolecular structure of the title compound, the ions are connected into a two-dimensional hydrogen-bonded network via N—H···O, N—H···F, O—H···F and C—H···F hydrogen bonds (Table 1). The leucinium cations are interlinked by two intermolecular N—H···F and O—H···F hydrogen bonds to form a double layers [C12(7) motif] (Bernstein et al.,, 1995), (Fig. 2), resulting in an overall one-dimensional hydrogen-bonded network.
In the title compound, the water molecules and floride anions bridges in two-dimensional hydrogen bonded network, forming a non centrosymmetric hydrogen-bonded R35(13) and R35(10) motifs, which run into zigzag parallel to the [010] direction (Fig. 3).
The molecular packing of the title compound consists of double layers is stacked along the c axis, viz. hydrophilic layers at z = 0 and 1/2 and hydrophobic layers at z = 1/3 and 2/3. The hydrophilic layers include the head of the leucinium residue (ammonium and carboxylic groups), floride anion and water molecule.
For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to
see: Miller & Orgel (1974); Kvenvolden et al. (1971). For our research on organic salts of amino acids, see: Guenifa et al. (2009); Moussa Slimane et al. (2009). For L-leucinium oxalate, see: Rajagopal et al. (2003) and for L-leucinium perchlorate, see: Janczak & Perpétuo (2007).Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).Fig. 1. The asymmetric unit of the title compound, showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. | |
Fig. 2. Part of the crystal structure, showing the aggregation of C12(7) for the title compound. [Symmetry codes: (ii) x + 1/2, -y + 1/2, -z + 1; (iv) x - 1/2, -y + 3/2, -z + 1]. For the sake of clarity, the water molecules and H atoms not involved in hydrogen bonding have been omitted. | |
Fig. 3. Packing view of the title compound showing the aggregation of R35(10) and R35(15) hydrogen-bonding motifs. [Symmetry codes:(i) x - 1/2, -y + 1/2, -z + 1; (iv) x - 1/2, -y + 3/2, -z + 1]. |
C6H14NO2+·F−·H2O | F(000) = 368 |
Mr = 169.20 | Dx = 1.237 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 27972 reflections |
a = 5.7058 (1) Å | θ = 3.6–30.5° |
b = 5.8289 (1) Å | µ = 0.11 mm−1 |
c = 27.3150 (4) Å | T = 100 K |
V = 908.46 (3) Å3 | Needle, colourless |
Z = 4 | 0.3 × 0.03 × 0.02 mm |
Oxford Diffraction Super Nova diffractometer with an Atlas detector | 2584 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.039 |
Graphite monochromator | θmax = 30.5°, θmin = 3.6° |
Detector resolution: 10.4508 pixels mm-1 | h = −8→8 |
ω scans | k = −8→8 |
27972 measured reflections | l = −39→39 |
2771 independent reflections |
Refinement on F2 | 7 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.045P)2 + 0.0976P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.28 e Å−3 |
2771 reflections | Δρmin = −0.14 e Å−3 |
118 parameters |
C6H14NO2+·F−·H2O | V = 908.46 (3) Å3 |
Mr = 169.20 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.7058 (1) Å | µ = 0.11 mm−1 |
b = 5.8289 (1) Å | T = 100 K |
c = 27.3150 (4) Å | 0.3 × 0.03 × 0.02 mm |
Oxford Diffraction Super Nova diffractometer with an Atlas detector | 2584 reflections with I > 2σ(I) |
27972 measured reflections | Rint = 0.039 |
2771 independent reflections |
R[F2 > 2σ(F2)] = 0.030 | 7 restraints |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.28 e Å−3 |
2771 reflections | Δρmin = −0.14 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.01929 (10) | 0.16104 (10) | 0.56810 (2) | 0.01618 (13) | |
O1 | −0.18388 (14) | 1.11050 (12) | 0.38989 (3) | 0.01957 (16) | |
O1W | 0.35872 (12) | 0.05014 (12) | 0.50292 (3) | 0.01595 (15) | |
H1W | 0.248 (2) | 0.090 (2) | 0.5214 (4) | 0.024* | |
H2W | 0.404 (2) | 0.152 (2) | 0.4837 (4) | 0.024* | |
O2 | −0.16963 (15) | 0.93446 (14) | 0.46240 (3) | 0.02415 (18) | |
N1 | 0.20572 (15) | 0.68869 (14) | 0.44249 (3) | 0.01236 (15) | |
C2 | 0.10845 (16) | 0.82520 (16) | 0.40113 (3) | 0.01163 (16) | |
H2 | 0.2288 | 0.9319 | 0.3894 | 0.014* | |
C3 | 0.02982 (17) | 0.67306 (17) | 0.35844 (3) | 0.01419 (17) | |
H3B | −0.0459 | 0.7694 | 0.3342 | 0.017* | |
H3A | −0.0867 | 0.5658 | 0.3705 | 0.017* | |
C1 | −0.09782 (17) | 0.96280 (16) | 0.42137 (3) | 0.01297 (17) | |
C4 | 0.2246 (2) | 0.5363 (2) | 0.33310 (4) | 0.0212 (2) | |
H4 | 0.3018 | 0.4393 | 0.3576 | 0.025* | |
C5 | 0.1160 (2) | 0.38189 (19) | 0.29402 (4) | 0.0269 (2) | |
H5A | 0.2373 | 0.296 | 0.278 | 0.04* | |
H5C | 0.0351 | 0.4746 | 0.2704 | 0.04* | |
H5B | 0.0072 | 0.278 | 0.3091 | 0.04* | |
C6 | 0.4082 (2) | 0.6941 (3) | 0.31019 (5) | 0.0349 (3) | |
H6A | 0.4746 | 0.7906 | 0.3351 | 0.052* | |
H6B | 0.3356 | 0.7877 | 0.2856 | 0.052* | |
H6C | 0.5297 | 0.6032 | 0.2955 | 0.052* | |
H1 | −0.294 (3) | 1.184 (3) | 0.4060 (7) | 0.052* | |
H2N | 0.317 (3) | 0.593 (3) | 0.4337 (6) | 0.042* | |
H1N | 0.090 (3) | 0.610 (3) | 0.4578 (6) | 0.042* | |
H3N | 0.263 (3) | 0.784 (3) | 0.4649 (5) | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0160 (3) | 0.0144 (3) | 0.0181 (3) | −0.0065 (2) | 0.0001 (2) | 0.0000 (2) |
O1 | 0.0231 (4) | 0.0191 (3) | 0.0164 (3) | 0.0124 (3) | 0.0043 (3) | 0.0044 (3) |
O1W | 0.0147 (3) | 0.0115 (3) | 0.0216 (3) | 0.0002 (3) | 0.0031 (3) | 0.0007 (3) |
O2 | 0.0285 (4) | 0.0232 (4) | 0.0207 (4) | 0.0140 (3) | 0.0102 (3) | 0.0085 (3) |
N1 | 0.0130 (4) | 0.0112 (3) | 0.0129 (3) | 0.0033 (3) | 0.0003 (3) | 0.0004 (3) |
C2 | 0.0121 (4) | 0.0102 (3) | 0.0126 (4) | 0.0032 (3) | 0.0014 (3) | 0.0015 (3) |
C3 | 0.0152 (4) | 0.0143 (4) | 0.0130 (4) | 0.0026 (4) | −0.0006 (3) | −0.0015 (3) |
C1 | 0.0136 (4) | 0.0093 (4) | 0.0160 (4) | 0.0023 (3) | 0.0007 (3) | −0.0001 (3) |
C4 | 0.0251 (5) | 0.0235 (5) | 0.0149 (4) | 0.0123 (4) | −0.0013 (4) | −0.0040 (4) |
C5 | 0.0398 (6) | 0.0215 (5) | 0.0193 (5) | 0.0034 (5) | 0.0028 (5) | −0.0061 (4) |
C6 | 0.0188 (5) | 0.0536 (8) | 0.0322 (6) | −0.0022 (5) | 0.0076 (5) | −0.0192 (6) |
O1—C1 | 1.3121 (12) | C4—C5 | 1.5276 (16) |
O2—C1 | 1.2047 (12) | C4—C6 | 1.5281 (18) |
O1—H1 | 0.879 (18) | C2—H2 | 0.9800 |
O1W—H1W | 0.841 (11) | C3—H3B | 0.9700 |
O1W—H2W | 0.834 (11) | C3—H3A | 0.9700 |
N1—C2 | 1.4891 (12) | C4—H4 | 0.9800 |
N1—H2N | 0.879 (17) | C5—H5B | 0.9600 |
N1—H3N | 0.889 (16) | C5—H5C | 0.9600 |
N1—H1N | 0.906 (17) | C5—H5A | 0.9600 |
C1—C2 | 1.5278 (13) | C6—H6C | 0.9600 |
C2—C3 | 1.5321 (12) | C6—H6A | 0.9600 |
C3—C4 | 1.5329 (15) | C6—H6B | 0.9600 |
C1—O1—H1 | 105.0 (12) | C2—C3—H3A | 108.00 |
H1W—O1W—H2W | 114.5 (11) | C2—C3—H3B | 108.00 |
H2N—N1—H3N | 108.6 (16) | C4—C3—H3B | 108.00 |
H1N—N1—H3N | 105.5 (15) | H3A—C3—H3B | 107.00 |
C2—N1—H1N | 110.4 (11) | C4—C3—H3A | 108.00 |
C2—N1—H2N | 113.7 (11) | C5—C4—H4 | 109.00 |
C2—N1—H3N | 109.0 (10) | C6—C4—H4 | 109.00 |
H1N—N1—H2N | 109.4 (16) | C3—C4—H4 | 109.00 |
O1—C1—O2 | 124.92 (9) | C4—C5—H5A | 109.00 |
O2—C1—C2 | 121.78 (8) | C4—C5—H5B | 110.00 |
O1—C1—C2 | 113.30 (7) | H5A—C5—H5B | 109.00 |
N1—C2—C3 | 112.16 (8) | H5A—C5—H5C | 110.00 |
C1—C2—C3 | 110.71 (7) | C4—C5—H5C | 109.00 |
N1—C2—C1 | 107.04 (7) | H5B—C5—H5C | 109.00 |
C2—C3—C4 | 115.62 (8) | C4—C6—H6B | 109.00 |
C3—C4—C5 | 109.14 (9) | C4—C6—H6C | 110.00 |
C3—C4—C6 | 111.65 (10) | C4—C6—H6A | 109.00 |
C5—C4—C6 | 110.28 (10) | H6A—C6—H6C | 110.00 |
N1—C2—H2 | 109.00 | H6B—C6—H6C | 109.00 |
C3—C2—H2 | 109.00 | H6A—C6—H6B | 109.00 |
C1—C2—H2 | 109.00 | ||
O1—C1—C2—N1 | 172.87 (8) | N1—C2—C3—C4 | −63.80 (10) |
O1—C1—C2—C3 | −64.60 (10) | C1—C2—C3—C4 | 176.70 (8) |
O2—C1—C2—N1 | −6.99 (12) | C2—C3—C4—C5 | 176.10 (8) |
O2—C1—C2—C3 | 115.54 (10) | C2—C3—C4—C6 | −61.73 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1Wi | 0.91 (2) | 1.94 (2) | 2.8428 (11) | 174 (2) |
N1—H2N···F1ii | 0.879 (17) | 1.878 (17) | 2.7277 (10) | 162.1 (16) |
N1—H3N···O1Wiii | 0.89 (2) | 1.95 (2) | 2.8152 (11) | 166 (2) |
O1—H1···F1iv | 0.88 (2) | 1.57 (2) | 2.4410 (10) | 174 (2) |
O1W—H1W···F1 | 0.84 (1) | 1.87 (1) | 2.7090 (9) | 174 (1) |
O1W—H2W···F1ii | 0.83 (1) | 1.90 (1) | 2.7271 (9) | 170 (1) |
C4—H4···F1ii | 0.98 | 2.45 | 3.3813 (12) | 159 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) x, y+1, z; (iv) x−1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H14NO2+·F−·H2O |
Mr | 169.20 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 5.7058 (1), 5.8289 (1), 27.3150 (4) |
V (Å3) | 908.46 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.3 × 0.03 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Super Nova diffractometer with an Atlas detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27972, 2771, 2584 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.713 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.078, 1.06 |
No. of reflections | 2771 |
No. of parameters | 118 |
No. of restraints | 7 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.14 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1Wi | 0.906 (17) | 1.940 (17) | 2.8428 (11) | 173.9 (15) |
N1—H2N···F1ii | 0.879 (17) | 1.878 (17) | 2.7277 (10) | 162.1 (16) |
N1—H3N···O1Wiii | 0.889 (16) | 1.945 (16) | 2.8152 (11) | 165.8 (15) |
O1—H1···F1iv | 0.879 (18) | 1.566 (18) | 2.4410 (10) | 173.8 (18) |
O1W—H1W···F1 | 0.841 (11) | 1.871 (11) | 2.7090 (9) | 173.6 (11) |
O1W—H2W···F1ii | 0.834 (11) | 1.903 (11) | 2.7271 (9) | 169.5 (11) |
C4—H4···F1ii | 0.9800 | 2.4500 | 3.3813 (12) | 159.00 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) x, y+1, z; (iv) x−1/2, −y+3/2, −z+1. |
Acknowledgements
Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, France, is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Janczak, J. & Perpétuo, G. J. (2007). Acta Cryst. C63, o117–o119. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kvenvolden, K. A., Lawless, J. G. & Ponnamperuma, C. (1971). Proc. Natl Acad. Sci. USA, 68, 486–490. CrossRef PubMed CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Miller, S. L. & Orgel, E. L. (1974). The Origins of Life on The Earth, p. 83. New Jersey: Prentice-Hall. Google Scholar
Moussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180–o2181. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland. Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/. Google Scholar
Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Malathi, R., Rajan, S. S. & Natarajan, S. (2003). Acta Cryst. E59, o878–o880. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Leucine is one of the most important amino acids, essential for the growth and maintenance of living organisms. Simple carboxylic acids, which are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971), form crystalline complexes with amino acids. The present paper is a part of our research with organic salts of amino acids (Guenifa et al., 2009; Moussa Slimane et al., 2009).
The asymmetric unit of the title compound contains a leucinium cation, fluoride anion and one water molecule (Fig. 1). As expected, leucine form the protonated unit with the transfer of an H atom from the inorganic acid. The similar situation is observed in L-leucinium oxalate (Rajagopal et al., 2003) and L-leucinium perchlorate (Janczak & Perpétuo, 2007).
In the supramolecular structure of the title compound, the ions are connected into a two-dimensional hydrogen-bonded network via N—H···O, N—H···F, O—H···F and C—H···F hydrogen bonds (Table 1). The leucinium cations are interlinked by two intermolecular N—H···F and O—H···F hydrogen bonds to form a double layers [C12(7) motif] (Bernstein et al.,, 1995), (Fig. 2), resulting in an overall one-dimensional hydrogen-bonded network.
In the title compound, the water molecules and floride anions bridges in two-dimensional hydrogen bonded network, forming a non centrosymmetric hydrogen-bonded R35(13) and R35(10) motifs, which run into zigzag parallel to the [010] direction (Fig. 3).
The molecular packing of the title compound consists of double layers is stacked along the c axis, viz. hydrophilic layers at z = 0 and 1/2 and hydrophobic layers at z = 1/3 and 2/3. The hydrophilic layers include the head of the leucinium residue (ammonium and carboxylic groups), floride anion and water molecule.