organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(Phenyl­sulfon­yl)eth­yl]benzyl­amine1

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 6 August 2012; accepted 10 September 2012; online 15 September 2012)

The title compound, C15H17NO2S, exhibits intra­molecular hydrogen bonding between the amine H atom and a sulfonyl O atom. The conformation of the mol­ecule is described by the four PhCH2—NH—CH2—CH2—SO2Ph torsion angles of 79.6 (2), −166.21 (14), −70.29 (17) and −58.93 (13)°.

Related literature

For the synthesis, see: Bandini et al. (2008[Bandini, M., Eichholzer, A., Tragni, M. & Umani-Ronchi, A. (2008). Angew. Chem. Int. Ed. 47, 3238-3241.]). For reactions of benzyl­amine and vinyl­sulfonyl­benzene, see: Makosza et al. (2008[Makosza, M., Bobryk, K. & Krajewski, D. (2008). Heterocycles, 76, 1511-1524.]); Ni et al. (2003[Ni, L., Zheng, X. S., Somers, P. K., Hoong, L. K., Hill, R. R., Marino, E. M., Suen, K., Saxena, U. & Meng, C. Q. (2003). Bioorg. Med. Chem. Lett. 13, 745-748.]). For the determination of absolute structure from Bijvoet pairs, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For inter­molecular inter­actions, see: Steiner (1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-57.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Monoclinic, P 21

  • a = 5.7428 (11) Å

  • b = 10.170 (2) Å

  • c = 12.486 (2) Å

  • β = 102.09 (3)°

  • V = 713.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.50 × 0.45 × 0.32 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.896, Tmax = 0.932

  • 5320 measured reflections

  • 3264 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 60 min intensity decay: 4.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.086

  • S = 0.99

  • 3264 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2081 Bijvoet pairs

  • Flack parameter: 0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.87 (2) 2.52 (2) 3.071 (2) 121.9 (17)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The most striking feature of title compound (I), a secondary amine, is the intramolecular hydrogen bond between a sulfonyl oxygen and the amine hydrogen. The complete geometry of this system is: N—H = 0.87 (2) Å, H···O = 2.52 (2) Å, N—H···O = 122 (2)°, SO···H = 97 (2)°. The two six-rings are flat: C1—C6, δr.m.s. = 0.0049 Å, C10—C15, δr.m.s. = 0.0024 Å. The absolute structure was determined by analysis of 2081 Bijvoet pairs.

In addition to the intramolecular hydrogen bond, weaker intermolecular C—H···O and C—H···π interactions (Steiner, 1996) are present. The geometry of the C—H···O interaction is C7–H7A···O1 (at x + 1, y, z), C7···O1 3.3896 (18) Å, H7A···O1 2.44 Å, angle about H 166°, forming chains in the [100] direction. The C—H···π interaction involves the phenyl C4—H as donor and the other phenyl ring C10—C15 (at 1 - x, y - 1/2, 1 - z) as acceptor. The C4···Cg distance is 3.731 (2) Å, and the contact is fairly linear, with angle about H 174°. This interaction forms chains in the [010] direction, propagated by the screw axis.

Related literature top

For the synthesis, see: Bandini et al. (2008). For reactions of benzylamine and vinylsulfonylbenzene, see: Makosza et al. (2008); Ni et al. (2003). For the determination of absolute structure from Bijvoet pairs, see: Hooft et al. (2008). For intermolecular interactions, see: Steiner (1996).

Experimental top

This compound was synthesized from benzylamine and vinylsulfonylbenzene by Dr. J. Gabriel Garcia. It was recrystallized by very slow cooling of an ethanol solution.

Refinement top

The coordinates and isotropic displacement parameter of the amine hydrogen atom were refined without constraint. All other H atoms were placed in calculated positions with C(sp2)—H = 0.930 Å, C(sp3)—H = 0.970 Å, Uiso(H) = 1.2Ueq(C), and thereafter allowed to ride the attached C atom. The absolute structure is supported by analysis of 2081 Bijvoet pairs, with Flack (1983) parameter x = 0.07 (6) and Hooft (Hooft et al., 2008) parameter y = 0.12 (2).

Structure description top

The most striking feature of title compound (I), a secondary amine, is the intramolecular hydrogen bond between a sulfonyl oxygen and the amine hydrogen. The complete geometry of this system is: N—H = 0.87 (2) Å, H···O = 2.52 (2) Å, N—H···O = 122 (2)°, SO···H = 97 (2)°. The two six-rings are flat: C1—C6, δr.m.s. = 0.0049 Å, C10—C15, δr.m.s. = 0.0024 Å. The absolute structure was determined by analysis of 2081 Bijvoet pairs.

In addition to the intramolecular hydrogen bond, weaker intermolecular C—H···O and C—H···π interactions (Steiner, 1996) are present. The geometry of the C—H···O interaction is C7–H7A···O1 (at x + 1, y, z), C7···O1 3.3896 (18) Å, H7A···O1 2.44 Å, angle about H 166°, forming chains in the [100] direction. The C—H···π interaction involves the phenyl C4—H as donor and the other phenyl ring C10—C15 (at 1 - x, y - 1/2, 1 - z) as acceptor. The C4···Cg distance is 3.731 (2) Å, and the contact is fairly linear, with angle about H 174°. This interaction forms chains in the [010] direction, propagated by the screw axis.

For the synthesis, see: Bandini et al. (2008). For reactions of benzylamine and vinylsulfonylbenzene, see: Makosza et al. (2008); Ni et al. (2003). For the determination of absolute structure from Bijvoet pairs, see: Hooft et al. (2008). For intermolecular interactions, see: Steiner (1996).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Farrugia, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
N-[2-(Phenylsulfonyl)ethyl]benzylamine top
Crystal data top
C15H17NO2SF(000) = 292
Mr = 275.36Dx = 1.282 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 5.7428 (11) Åθ = 2.6–27.5°
b = 10.170 (2) ŵ = 0.22 mm1
c = 12.486 (2) ÅT = 298 K
β = 102.09 (3)°Prism, colorless
V = 713.1 (2) Å30.50 × 0.45 × 0.32 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2990 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
θ/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.896, Tmax = 0.932l = 1616
5320 measured reflections3 standard reflections every 60 min
3264 independent reflections intensity decay: 4.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.0525P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3264 reflectionsΔρmax = 0.15 e Å3
177 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 2081 Bijvoet pairs
0 constraintsAbsolute structure parameter: 0.07 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H17NO2SV = 713.1 (2) Å3
Mr = 275.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7428 (11) ŵ = 0.22 mm1
b = 10.170 (2) ÅT = 298 K
c = 12.486 (2) Å0.50 × 0.45 × 0.32 mm
β = 102.09 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2990 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.896, Tmax = 0.9323 standard reflections every 60 min
5320 measured reflections intensity decay: 4.0%
3264 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Δρmax = 0.15 e Å3
S = 0.99Δρmin = 0.22 e Å3
3264 reflectionsAbsolute structure: Flack (1983), 2081 Bijvoet pairs
177 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1957 (3)0.01813 (15)0.34724 (12)0.0424 (3)
C20.0482 (3)0.08893 (17)0.34717 (13)0.0533 (4)
H20.06570.08840.39030.064*
C30.0698 (4)0.1963 (2)0.28342 (15)0.0657 (5)
H30.03050.26820.28260.079*
C40.2404 (4)0.1973 (2)0.22054 (14)0.0639 (5)
H40.2540.26990.1770.077*
C50.3912 (4)0.0917 (2)0.22157 (15)0.0656 (5)
H50.50780.0940.17990.079*
C60.3693 (3)0.01759 (19)0.28437 (14)0.0561 (4)
H60.4690.08970.28470.067*
C70.4077 (2)0.1536 (2)0.53880 (12)0.0522 (3)
H7A0.55180.16290.51050.063*
H7B0.39770.22930.58480.063*
C80.4311 (3)0.03164 (18)0.60956 (14)0.0560 (4)
H8A0.42150.04520.56280.067*
H8B0.5870.03160.6580.067*
C90.3093 (4)0.0788 (2)0.76111 (17)0.0691 (5)
H9A0.3740.15580.7320.083*
H9B0.16510.10490.78430.083*
C100.4876 (3)0.02798 (17)0.85863 (14)0.0554 (4)
C110.7095 (4)0.0864 (2)0.88806 (17)0.0698 (5)
H110.74880.1560.84690.084*
C120.8722 (4)0.0421 (3)0.97776 (19)0.0892 (8)
H121.0210.08190.99640.107*
C130.8185 (5)0.0584 (3)1.03905 (17)0.0914 (8)
H130.92930.08681.10.11*
C140.6002 (5)0.1187 (3)1.01140 (17)0.0836 (7)
H140.56370.18871.05290.1*
C150.4339 (4)0.0746 (2)0.92103 (16)0.0670 (5)
H150.28540.11470.90270.08*
N10.2511 (3)0.02105 (18)0.67505 (12)0.0610 (4)
H10.122 (4)0.001 (2)0.6295 (17)0.059 (5)*
O10.05605 (19)0.13963 (16)0.46634 (10)0.0646 (4)
O20.1828 (3)0.27332 (14)0.36372 (13)0.0725 (4)
S10.16006 (6)0.15714 (4)0.42668 (3)0.04876 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0372 (7)0.0472 (8)0.0405 (6)0.0003 (6)0.0032 (5)0.0037 (6)
C20.0498 (8)0.0577 (9)0.0529 (8)0.0103 (7)0.0121 (7)0.0007 (7)
C30.0720 (11)0.0584 (10)0.0625 (10)0.0135 (9)0.0046 (9)0.0038 (8)
C40.0772 (12)0.0615 (10)0.0479 (8)0.0123 (9)0.0017 (8)0.0040 (8)
C50.0635 (10)0.0825 (13)0.0540 (9)0.0153 (10)0.0195 (8)0.0043 (9)
C60.0481 (8)0.0630 (10)0.0598 (9)0.0047 (7)0.0170 (7)0.0065 (8)
C70.0383 (6)0.0595 (8)0.0546 (7)0.0006 (9)0.0004 (5)0.0105 (9)
C80.0480 (8)0.0631 (10)0.0521 (8)0.0157 (7)0.0006 (7)0.0062 (7)
C90.0672 (11)0.0664 (11)0.0689 (11)0.0122 (9)0.0035 (9)0.0035 (9)
C100.0537 (9)0.0578 (9)0.0535 (8)0.0053 (7)0.0082 (7)0.0125 (7)
C110.0607 (10)0.0811 (13)0.0670 (11)0.0066 (10)0.0123 (9)0.0108 (10)
C120.0620 (12)0.129 (2)0.0703 (13)0.0054 (13)0.0007 (10)0.0235 (15)
C130.0837 (16)0.133 (2)0.0498 (10)0.0307 (16)0.0048 (10)0.0129 (13)
C140.1094 (19)0.0896 (16)0.0552 (10)0.0127 (13)0.0251 (11)0.0065 (10)
C150.0675 (12)0.0706 (12)0.0636 (10)0.0038 (9)0.0152 (9)0.0075 (9)
N10.0474 (8)0.0746 (10)0.0560 (8)0.0048 (7)0.0005 (6)0.0003 (7)
O10.0386 (5)0.0823 (10)0.0720 (7)0.0089 (6)0.0094 (5)0.0116 (7)
O20.0716 (9)0.0513 (7)0.0871 (9)0.0056 (6)0.0010 (7)0.0134 (7)
S10.03744 (16)0.04880 (18)0.05641 (19)0.00474 (16)0.00158 (12)0.00009 (18)
Geometric parameters (Å, º) top
C1—C21.379 (2)C9—N11.465 (3)
C1—C61.392 (2)C9—C101.508 (3)
C1—S11.7634 (16)C9—H9A0.97
C2—C31.372 (3)C9—H9B0.97
C2—H20.93C10—C151.375 (3)
C3—C41.378 (3)C10—C111.384 (3)
C3—H30.93C11—C121.376 (3)
C4—C51.378 (3)C11—H110.93
C4—H40.93C12—C131.351 (4)
C5—C61.381 (3)C12—H120.93
C5—H50.93C13—C141.373 (4)
C6—H60.93C13—H130.93
C7—C81.512 (3)C14—C151.391 (3)
C7—S11.7748 (15)C14—H140.93
C7—H7A0.97C15—H150.93
C7—H7B0.97N1—H10.87 (2)
C8—N11.450 (2)O1—S11.4404 (12)
C8—H8A0.97O2—S11.4402 (15)
C8—H8B0.97
C2—C1—C6120.57 (16)C10—C9—H9A109.3
C2—C1—S1119.32 (12)N1—C9—H9B109.3
C6—C1—S1120.10 (13)C10—C9—H9B109.3
C3—C2—C1119.89 (16)H9A—C9—H9B108
C3—C2—H2120.1C15—C10—C11118.58 (19)
C1—C2—H2120.1C15—C10—C9121.49 (18)
C2—C3—C4119.87 (18)C11—C10—C9119.93 (19)
C2—C3—H3120.1C12—C11—C10120.4 (2)
C4—C3—H3120.1C12—C11—H11119.8
C5—C4—C3120.62 (18)C10—C11—H11119.8
C5—C4—H4119.7C13—C12—C11120.8 (2)
C3—C4—H4119.7C13—C12—H12119.6
C4—C5—C6120.05 (17)C11—C12—H12119.6
C4—C5—H5120C12—C13—C14120.0 (2)
C6—C5—H5120C12—C13—H13120
C5—C6—C1118.99 (16)C14—C13—H13120
C5—C6—H6120.5C13—C14—C15119.7 (2)
C1—C6—H6120.5C13—C14—H14120.2
C8—C7—S1115.86 (13)C15—C14—H14120.2
C8—C7—H7A108.3C10—C15—C14120.5 (2)
S1—C7—H7A108.3C10—C15—H15119.8
C8—C7—H7B108.3C14—C15—H15119.8
S1—C7—H7B108.3C8—N1—C9112.65 (15)
H7A—C7—H7B107.4C8—N1—H1105.3 (13)
N1—C8—C7113.80 (13)C9—N1—H1109.5 (14)
N1—C8—H8A108.8O2—S1—O1118.19 (9)
C7—C8—H8A108.8O2—S1—C1108.44 (8)
N1—C8—H8B108.8O1—S1—C1107.70 (8)
C7—C8—H8B108.8O2—S1—C7107.33 (10)
H8A—C8—H8B107.7O1—S1—C7109.39 (8)
N1—C9—C10111.51 (16)C1—S1—C7105.02 (8)
N1—C9—H9A109.3
C6—C1—C2—C31.0 (3)C12—C13—C14—C150.9 (4)
S1—C1—C2—C3178.24 (14)C11—C10—C15—C140.3 (3)
C1—C2—C3—C40.7 (3)C9—C10—C15—C14179.22 (18)
C2—C3—C4—C50.5 (3)C13—C14—C15—C100.7 (3)
C3—C4—C5—C61.2 (3)C7—C8—N1—C9166.21 (14)
C4—C5—C6—C10.9 (3)C10—C9—N1—C879.6 (2)
C2—C1—C6—C50.2 (2)C2—C1—S1—O2138.39 (14)
S1—C1—C6—C5179.02 (13)C6—C1—S1—O240.86 (14)
S1—C7—C8—N170.29 (17)C2—C1—S1—O19.40 (15)
N1—C9—C10—C1564.2 (2)C6—C1—S1—O1169.85 (13)
N1—C9—C10—C11116.9 (2)C2—C1—S1—C7107.12 (14)
C15—C10—C11—C120.1 (3)C6—C1—S1—C773.64 (14)
C9—C10—C11—C12179.06 (19)C8—C7—S1—O2174.19 (12)
C10—C11—C12—C130.4 (4)C8—C7—S1—O156.42 (15)
C11—C12—C13—C140.7 (4)C8—C7—S1—C158.93 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.87 (2)2.52 (2)3.071 (2)121.9 (17)

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)5.7428 (11), 10.170 (2), 12.486 (2)
β (°) 102.09 (3)
V3)713.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.45 × 0.32
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.896, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
5320, 3264, 2990
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.086, 0.99
No. of reflections3264
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.22
Absolute structureFlack (1983), 2081 Bijvoet pairs
Absolute structure parameter0.07 (6)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Farrugia, 1999), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.87 (2)2.52 (2)3.071 (2)121.9 (17)
 

Footnotes

1CAS 550350-59-9.

Acknowledgements

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Improvements to the LSU X-ray Crystallography Facility were supported by grant No. LEQSF(1196–97)-ENH-TR-10, administered by the Louisiana Board of Regents. We thank Dr J. Gabriel Garcia for providing the sample.

References

First citationBandini, M., Eichholzer, A., Tragni, M. & Umani-Ronchi, A. (2008). Angew. Chem. Int. Ed. 47, 3238–3241.  Web of Science CrossRef CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakosza, M., Bobryk, K. & Krajewski, D. (2008). Heterocycles, 76, 1511–1524.  CrossRef CAS Google Scholar
First citationNi, L., Zheng, X. S., Somers, P. K., Hoong, L. K., Hill, R. R., Marino, E. M., Suen, K., Saxena, U. & Meng, C. Q. (2003). Bioorg. Med. Chem. Lett. 13, 745–748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–57.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds