organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­methyl­ammonium hydrogen terephthalate

aDepartment of Chemistry, Zanjan Branch, Islamic Azad University, PO Box 49195-467, Zanjan, Iran, bDepartment of Chemistry, Faculty of Sciences, Azarbaijan University of Shahid Madani, 35 Km Tabriz-Maragheh Road, PO Box 53714-161, Tabriz, Iran, cDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, dDepartment of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14155-4838, Tehran, Iran, eDepartment of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and fDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy
*Correspondence e-mail: liladolatyari1351@yahoo.com

(Received 12 August 2012; accepted 17 September 2012; online 26 September 2012)

The asymmetric unit of the title salt, C4H12N+·C8H5O4, contains one half of a tetra­methyl­ammonium cation and one half of a hydrogen terephthalate monoanion. The N atom of the ammonium cation lies on a twofold rotation axis and the centre of mass of the terephthalate anion is on a centre of inversion. In the crystal, the centrosymmetric terephthalate ions are linked by a very short symmetric O—H⋯O hydrogen bond [O⋯O = 2.4610 (19) Å] into a one-dimensional polymeric chain along [1-12]. The tetra­methyl­ammonium cations and terephthalate anions are then connected through a pair of bifurcated acceptor C—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular network. The carboxyl­ate groups at both ends of the terephthalate anion are charge-shared with an equal probability of 0.5.

Related literature

For a review of very short O—H⋯O hydrogen bonds, see: Speakman (1972[Speakman, J. C. (1972). Struct. Bond. 12, 141-199.]). For recent reports of acidic salts of dicarb­oxy­lic acids with short intra- and inter­molecular O—H⋯O hydrogen bonds, see: Starosta & Leciejewicz (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561-m1562.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2192-o2193.]); Sun et al. (2002[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o904-o906.]); Sharma et al. (2006[Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148-o152.]); Wang et al. (2004[Wang, Y., Odoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1178-m1180.]); Taka et al. (1998[Taka, J.-I., Ogino, S. & Kashino, S. (1998). Acta Cryst. C54, 384-386.]). For examples of diphospho­nates with strong O—H⋯O hydrogen bonds, see: Tsaryk et al. (2011[Tsaryk, N. V., Dudko, A. V., Kozachkova, A. N. & Pekhnyo, V. I. (2011). Acta Cryst. E67, o1651-o1652.]); Courtney et al. (2006[Courtney, B. H., Juma, B. W. O., Watkins, S. F., Fronczek, F. R. & Stanley, G. G. (2006). Acta Cryst. C62, o268-o270.]); Cheng & Lin (2006[Cheng, C.-Y. & Lin, K.-J. (2006). Acta Cryst. C62, m363-m365.]). For background to symmetric and asymmetric O—H⋯O hydrogen bonds, see: Misaki et al. (1986[Misaki, S., Kashino, S. & Haisa, M. (1986). Bull. Chem. Soc. Jpn, 59, 1059-1065.]); Catti & Ferraris (1976[Catti, M. & Ferraris, G. (1976). Acta Cryst. B32, 2754-2756.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of the 5,5′-(o-phenyl­ene)di-1H-tetra­zole ligand, see: Demko & Sharpless (2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12N+·C8H5O4

  • Mr = 239.27

  • Monoclinic, C 2/c

  • a = 16.0585 (4) Å

  • b = 9.1527 (2) Å

  • c = 11.5866 (3) Å

  • β = 132.915 (2)°

  • V = 1247.21 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.42 × 0.37 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.746

  • 20680 measured reflections

  • 1360 independent reflections

  • 1269 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.147

  • S = 1.07

  • 1360 reflections

  • 80 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O2i 1.23 1.23 2.4610 (19) 180 (1)
C8—H8A⋯O1ii 0.96 2.39 3.267 (3) 152
C9—H9A⋯O1ii 0.96 2.47 3.321 (3) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XPW (Siemens, 1996[Siemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338. ]).

Supporting information


Comment top

Acid salts of dicarboxylic acids usually form very short O—H···O hydrogen bonds (with O···O distances between 2.4 and 2.5 Å) in their crystal structures (Speakman, 1972). This type of hydrogen bond is formed between the carboxyl and carboxylate groups by intramolecular (Starosta & Leciejewicz, 2010; Hemamalini & Fun, 2010; Sun et al., 2002) or intermolecular (Sharma et al., 2006; Wang et al., 2004; Taka et al., 1998) interactions. However, diphosphonates can also display such short and strong hydrogen bonds between neighbouring phosphonate groups (Tsaryk et al., 2011; Courtney et al., 2006; Cheng & Lin, 2006). There are two types of short O—H···O hydrogen bonds: symmetric, in which two O atoms are related by crystallographic symmetry and asymmetric, in which crystal symmetry does not impose the O—H···O hydrogen bond to be symmetric. Furthermore, symmetric hydrogen bonds typically display a shorter (2.43–2.51 Å) O···O distance than asymmetric ones (2.44–2.57 Å) (Misaki et al., 1986). In this work, we report the crystal structure of the title compound, whose structure contains a strong symmetric O—H···O hydrogen bond (Catti & Ferraris, 1976): atom H2 lies on a center of symmetry, located between two crystallographic equivalent carboxyl O2 atoms. The H atom, clearly visible on the Fourier map, is involved in a symmetric O2—H2···O2i [symmetry code: (i) -x + 1/2, -y + 3/2, -z] hydrogen bond with an O—H bond distance of 1.23 Å (Table 1).

The title compound (Fig. 1), [N(CH3)4]+[4-COOH-C6H4COO]-, consists of one half tetramethylammonium cation and one half terephthalate anion in the asymmetric unit. The cation lies on a twofold rotation axis and the anion on an inversion center. In the terephthalate anions, the two carboxyl groups are twisted from the mean plane of the benzene ring by a dihedral angle of 6.57 (2)°. Carboxyl atom O2 lies slightly farther [0.083 Å] from this plane than atom O1 [0.065 Å], owing to the strong O—H···O hydrogen bond between the terephthalate anions.

In the crystal, the terephthalate anions are linked end-to-end to form a one-dimensional polymeric chain in which adjacent ions are interconnected by a strong symmetric O—H···O (O···O distance of 2.4610 (19) Å) hydrogen bond (Table 1). Then the weak C—H···O hydrogen bonds link the ammonium cations and terephthalate anions together in a three-dimensional crystal structure. The C8—H8A···O1 and C9—H9A···O1 interactions form a pair of bifurcated acceptor bonds (Fig. 2), involving two C—H donor from an ammonium ion and an acceptor O atom from the terephthalate ion, generating an R21(6) ring motif (Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For a review of very short O—H···O hydrogen bonds, see: Speakman (1972). For recent reports of acid salts of dicarboxylic acids with short intra- and intermolecular O—H···O hydrogen bonds, see: Starosta & Leciejewicz (2010); Hemamalini & Fun (2010); Sun et al. (2002); Sharma et al. (2006); Wang et al. (2004); Taka et al. (1998). For examples of diphosphonates with strong O—H···O hydrogen bonds, see: Tsaryk et al. (2011); Courtney et al. (2006); Cheng & Lin (2006). For background to symmetric and asymmetric O—H···O hydrogen bonds, see: Misaki et al. (1986); Catti & Ferraris (1976). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the 5,5'-(o-phenylene)di-1H-tetrazole (H2L) ligand, see: Demko & Sharpless (2001).

Experimental top

In an attempt to synthesize metal–organic framework materials, we obtained the title compound as a side-product.

The ligand H2L [5,5'-(o-Phenylene)di-1H-tetrazole] used in this work was synthesized according to literature procedures (Demko & Sharpless, 2001).

A mixture of Zn(NO3)2.6H2O (0.357 g, 1.2 mmol), H2L (0.086 g, 0.4 mmol), terephthalic acid (0.066 g, 0.4 mmol), 1,4-diazabicyclo[2.2.2]octane (0.045 g, 0.4 mmol) and CH3OH/DMF (1/2, 15 ml) were sealed in a 25 ml Teflon-lined stainless steel autoclave, heated at 433 K for 40 h, and then cooled to room temperature over a period of 90 h. The resulting solution was filtered and the filtrate was allowed to stand in air at room temperature. After several days, colorless single crystals of the title compound were isolated.

Refinement top

C-H atoms were located on a ΔF map, further idealized and finally refined in the riding model aproximation d(C—H) = 0.93Å; U(H) = 1.2U(C)eq; d(C—H3) = 0.96Å; U(H) = 1.5U(C)eq. Atom H2 is fixed by symmetry, and its isotropic displacement factor was freely refined.

Structure description top

Acid salts of dicarboxylic acids usually form very short O—H···O hydrogen bonds (with O···O distances between 2.4 and 2.5 Å) in their crystal structures (Speakman, 1972). This type of hydrogen bond is formed between the carboxyl and carboxylate groups by intramolecular (Starosta & Leciejewicz, 2010; Hemamalini & Fun, 2010; Sun et al., 2002) or intermolecular (Sharma et al., 2006; Wang et al., 2004; Taka et al., 1998) interactions. However, diphosphonates can also display such short and strong hydrogen bonds between neighbouring phosphonate groups (Tsaryk et al., 2011; Courtney et al., 2006; Cheng & Lin, 2006). There are two types of short O—H···O hydrogen bonds: symmetric, in which two O atoms are related by crystallographic symmetry and asymmetric, in which crystal symmetry does not impose the O—H···O hydrogen bond to be symmetric. Furthermore, symmetric hydrogen bonds typically display a shorter (2.43–2.51 Å) O···O distance than asymmetric ones (2.44–2.57 Å) (Misaki et al., 1986). In this work, we report the crystal structure of the title compound, whose structure contains a strong symmetric O—H···O hydrogen bond (Catti & Ferraris, 1976): atom H2 lies on a center of symmetry, located between two crystallographic equivalent carboxyl O2 atoms. The H atom, clearly visible on the Fourier map, is involved in a symmetric O2—H2···O2i [symmetry code: (i) -x + 1/2, -y + 3/2, -z] hydrogen bond with an O—H bond distance of 1.23 Å (Table 1).

The title compound (Fig. 1), [N(CH3)4]+[4-COOH-C6H4COO]-, consists of one half tetramethylammonium cation and one half terephthalate anion in the asymmetric unit. The cation lies on a twofold rotation axis and the anion on an inversion center. In the terephthalate anions, the two carboxyl groups are twisted from the mean plane of the benzene ring by a dihedral angle of 6.57 (2)°. Carboxyl atom O2 lies slightly farther [0.083 Å] from this plane than atom O1 [0.065 Å], owing to the strong O—H···O hydrogen bond between the terephthalate anions.

In the crystal, the terephthalate anions are linked end-to-end to form a one-dimensional polymeric chain in which adjacent ions are interconnected by a strong symmetric O—H···O (O···O distance of 2.4610 (19) Å) hydrogen bond (Table 1). Then the weak C—H···O hydrogen bonds link the ammonium cations and terephthalate anions together in a three-dimensional crystal structure. The C8—H8A···O1 and C9—H9A···O1 interactions form a pair of bifurcated acceptor bonds (Fig. 2), involving two C—H donor from an ammonium ion and an acceptor O atom from the terephthalate ion, generating an R21(6) ring motif (Etter et al., 1990; Bernstein et al., 1995).

For a review of very short O—H···O hydrogen bonds, see: Speakman (1972). For recent reports of acid salts of dicarboxylic acids with short intra- and intermolecular O—H···O hydrogen bonds, see: Starosta & Leciejewicz (2010); Hemamalini & Fun (2010); Sun et al. (2002); Sharma et al. (2006); Wang et al. (2004); Taka et al. (1998). For examples of diphosphonates with strong O—H···O hydrogen bonds, see: Tsaryk et al. (2011); Courtney et al. (2006); Cheng & Lin (2006). For background to symmetric and asymmetric O—H···O hydrogen bonds, see: Misaki et al. (1986); Catti & Ferraris (1976). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the synthesis of the 5,5'-(o-phenylene)di-1H-tetrazole (H2L) ligand, see: Demko & Sharpless (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the asymmetric unit of title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The occupancy factor for atom H2 is 0.5. Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, y, -z + 1/2.
[Figure 2] Fig. 2. A view of crystal packing of the title compound, showing symmetric O—H···H hydrogen bonds (formed between terephthalate anions, dotted lines) and weak C—H···O hydrogen bonds (formed between cations and anions, dashed lines). The latter contains a pair of bifurcated acceptor hydrogen bonds, leading to an R21(6) ring motif.
Tetramethylammonium hydrogen terephthalate top
Crystal data top
C4H12N+·C8H5O4F(000) = 512
Mr = 239.27Dx = 1.274 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9931 reflections
a = 16.0585 (4) Åθ = 2.8–30.3°
b = 9.1527 (2) ŵ = 0.10 mm1
c = 11.5866 (3) ÅT = 298 K
β = 132.915 (2)°Irregular, colourless
V = 1247.21 (7) Å30.42 × 0.37 × 0.32 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1360 independent reflections
Radiation source: fine-focus sealed tube1269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2020
Tmin = 0.708, Tmax = 0.746k = 1111
20680 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0714P)2 + 1.1167P]
where P = (Fo2 + 2Fc2)/3
1360 reflections(Δ/σ)max < 0.001
80 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C4H12N+·C8H5O4V = 1247.21 (7) Å3
Mr = 239.27Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.0585 (4) ŵ = 0.10 mm1
b = 9.1527 (2) ÅT = 298 K
c = 11.5866 (3) Å0.42 × 0.37 × 0.32 mm
β = 132.915 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1360 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1269 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.746Rint = 0.022
20680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.07Δρmax = 0.57 e Å3
1360 reflectionsΔρmin = 0.43 e Å3
80 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.32784 (9)0.78319 (13)0.13940 (12)0.0451 (4)
C50.51647 (12)0.89007 (16)0.43479 (16)0.0341 (4)
H50.52780.81650.39140.041*
C40.40806 (11)0.94633 (15)0.34990 (15)0.0312 (3)
C60.30731 (12)0.89045 (17)0.18691 (16)0.0363 (4)
O10.21412 (12)0.94615 (19)0.11216 (16)0.0789 (6)
N0.50000.3608 (2)0.25000.0416 (5)
C90.4511 (2)0.4550 (3)0.2947 (3)0.0794 (8)
H9A0.50970.51550.38230.119*
H9B0.41880.39510.32390.119*
H9C0.39280.51570.20700.119*
C30.39205 (12)1.05665 (16)0.41571 (16)0.0353 (4)
H30.31981.09500.35940.042*
C80.58943 (19)0.2666 (3)0.3849 (3)0.0695 (6)
H8A0.64730.32660.47370.104*
H8B0.62240.20710.35650.104*
H8C0.55650.20490.41200.104*
H20.25000.75000.00000.098 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0364 (6)0.0526 (7)0.0300 (6)0.0050 (5)0.0162 (5)0.0175 (5)
C50.0348 (7)0.0345 (7)0.0276 (7)0.0003 (5)0.0191 (6)0.0076 (5)
C40.0315 (7)0.0324 (7)0.0218 (6)0.0030 (5)0.0150 (6)0.0043 (5)
C60.0319 (7)0.0405 (8)0.0235 (6)0.0026 (6)0.0138 (6)0.0054 (5)
O10.0420 (7)0.0938 (12)0.0411 (7)0.0188 (7)0.0048 (6)0.0263 (7)
N0.0410 (10)0.0367 (9)0.0405 (10)0.0000.0252 (9)0.000
C90.0718 (15)0.0875 (17)0.0706 (14)0.0197 (12)0.0452 (13)0.0130 (12)
C30.0292 (7)0.0373 (8)0.0278 (7)0.0024 (5)0.0149 (6)0.0043 (5)
C80.0627 (13)0.0587 (12)0.0605 (13)0.0133 (10)0.0315 (11)0.0174 (10)
Geometric parameters (Å, º) top
O2—C61.2739 (19)N—C81.481 (2)
C5—C41.390 (2)C9—H9A0.9600
C5—C3i1.3896 (19)C9—H9B0.9600
C5—H50.9300C9—H9C0.9600
C4—C31.391 (2)C3—C5i1.3896 (19)
C4—C61.5115 (18)C3—H30.9300
C6—O11.218 (2)C8—H8A0.9600
N—C9ii1.478 (2)C8—H8B0.9600
N—C91.478 (2)C8—H8C0.9600
N—C8ii1.481 (2)
C4—C5—C3i120.25 (13)N—C9—H9A109.5
C4—C5—H5119.9N—C9—H9B109.5
C3i—C5—H5119.9H9A—C9—H9B109.5
C5—C4—C3119.41 (12)N—C9—H9C109.5
C5—C4—C6121.22 (12)H9A—C9—H9C109.5
C3—C4—C6119.37 (13)H9B—C9—H9C109.5
O1—C6—O2124.70 (13)C5i—C3—C4120.33 (13)
O1—C6—C4119.89 (14)C5i—C3—H3119.8
O2—C6—C4115.39 (13)C4—C3—H3119.8
C9ii—N—C9108.6 (3)N—C8—H8A109.5
C9ii—N—C8ii109.57 (15)N—C8—H8B109.5
C9—N—C8ii110.17 (15)H8A—C8—H8B109.5
C9ii—N—C8110.17 (15)N—C8—H8C109.5
C9—N—C8109.57 (15)H8A—C8—H8C109.5
C8ii—N—C8108.7 (2)H8B—C8—H8C109.5
C3i—C5—C4—C30.2 (3)C5—C4—C6—O24.7 (2)
C3i—C5—C4—C6179.82 (13)C3—C4—C6—O2175.69 (14)
C5—C4—C6—O1176.70 (17)C5—C4—C3—C5i0.2 (3)
C3—C4—C6—O12.9 (2)C6—C4—C3—C5i179.83 (13)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2iii1.231.232.4610 (19)180 (1)
C8—H8A···O1iv0.962.393.267 (3)152
C9—H9A···O1iv0.962.473.321 (3)148
Symmetry codes: (iii) x+1/2, y+3/2, z; (iv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H12N+·C8H5O4
Mr239.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.0585 (4), 9.1527 (2), 11.5866 (3)
β (°) 132.915 (2)
V3)1247.21 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.37 × 0.32
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.708, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
20680, 1360, 1269
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.147, 1.07
No. of reflections1360
No. of parameters80
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2i1.231.232.4610 (19)180.000 (1)
C8—H8A···O1ii0.962.393.267 (3)151.9
C9—H9A···O1ii0.962.473.321 (3)148.2
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, Zanjan Branch, for financial support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.   Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatti, M. & Ferraris, G. (1976). Acta Cryst. B32, 2754–2756.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCheng, C.-Y. & Lin, K.-J. (2006). Acta Cryst. C62, m363–m365.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCourtney, B. H., Juma, B. W. O., Watkins, S. F., Fronczek, F. R. & Stanley, G. G. (2006). Acta Cryst. C62, o268–o270.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2192–o2193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMisaki, S., Kashino, S. & Haisa, M. (1986). Bull. Chem. Soc. Jpn, 59, 1059–1065.  CrossRef CAS Web of Science Google Scholar
First citationSharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XPW. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpeakman, J. C. (1972). Struct. Bond. 12, 141–199.  CAS Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561–m1562.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2002). Acta Cryst. E58, o904–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTaka, J.-I., Ogino, S. & Kashino, S. (1998). Acta Cryst. C54, 384–386.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTsaryk, N. V., Dudko, A. V., Kozachkova, A. N. & Pekhnyo, V. I. (2011). Acta Cryst. E67, o1651–o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Odoko, M. & Okabe, N. (2004). Acta Cryst. E60, m1178–m1180.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds