organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tautomerism in 10-(hy­dr­oxy­imino)­phenanthren-9-one

aDepartment of Chemistry, University at Buffalo, Buffalo, NY 14260-3000, USA
*Correspondence e-mail: jbb6@buffalo.edu

(Received 19 July 2012; accepted 30 August 2012; online 8 September 2012)

In the title compound, C14H9NO2, a static disorder exists between the keto–oxime and hy­droxy–nitroso tautomers, in an approximate ratio of 4.6:1, based on refined occupancies for disordered parts. No inter­molecular hydrogen bonding is present in the crystal structure. Instead, both tautomers exhibit similar intra­molecular O—H⋯O hydrogen bonds.

Related literature

For information on tautomerization in ortho-hy­droxy­nitroso aromatic compounds, see: Enchev et al. (2003[Enchev, V., Ivanova, G. & Stoyanov, N. (2003). J. Mol. Struct. (THEOCHEM), 640, 149-162.]); Terent'ev & Stankyavichyus (1988[Terent'ev, P. B. & Stankyavichyus, A. P. (1988). Chem. Heterocycl. Compd, 24, 1258-1262.]). For the role of ortho-hy­droxy­nitroso aromatic compounds in metal complexation and in photochromic spiro­oxazines, see: Barjesteh et al. (1996[Barjesteh, H., Chakrabarti, J., Charalambous, J., Carugo, O. & Castellani, C. B. (1996). Polyhedron, 15, 1323-1330.]); Patel et al. (2005[Patel, D. G., Benedict, J. B., Kopelman, R. A. & Frank, N. L. (2005). Chem. Commun. pp. 2208-2210.], 2010[Patel, D. G., Paquette, M. M., Kopelman, R. A., Kaminsky, W., Ferguson, M. J. & Frank, N. L. (2010). J. Am. Chem. Soc. 132, 12568-12586.]). For the spectrochemical characterization of the title compound, see: Kumar et al. (2009[Kumar, S., Watkins, D. L. & Fujiwara, T. (2009). Chem. Commun. pp. 4369-4371.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9NO2

  • Mr = 223.22

  • Orthorhombic, P c a 21

  • a = 17.4505 (15) Å

  • b = 3.7875 (3) Å

  • c = 15.1669 (13) Å

  • V = 1002.44 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 90 K

  • 0.24 × 0.10 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.994

  • 16616 measured reflections

  • 1068 independent reflections

  • 989 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.07

  • 1068 reflections

  • 166 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 1.76 2.499 (8) 146
O1A—H1A⋯O2A 0.84 1.93 2.54 (2) 128

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound (Fig. 1) is an ortho-hydroxynitroso aromatic compound, which may have a role in metal complexation and in photochromic spirooxazines (Barjesteh et al., 1996; Patel et al., 2005, 2010). A tautomeric disorder was observed in this structure (Enchev et al., 2003; Terent'ev & Stankyavichyus, 1988). Without accounting for the disorder, a Q-peak of approximately 0.9 electron/Å3 was located at the position of O2A in the disorder model. Prior to modeling the disorder, R1 residual was approximately 0.06. With the chemically sensible disorder model, the final residual is R1 = 0.0361, justifying the reduced number of parameters and minimal EADP constraints and FLAT restraint (see Experimental). The final refinement indicated the two tautomers are present in an 0.827 (3) to 0.173 (3) ratio.

Related literature top

For information on tautomerization in ortho-hydroxynitroso aromatic compounds, see: Enchev et al. (2003); Terent'ev & Stankyavichyus (1988). For the role of ortho-hydroxynitroso aromatic compounds in metal complexation and in photochromic spirooxazines, see: Barjesteh et al. (1996); Patel et al. (2005, 2010). For the spectrochemical characterization of the title compound, see: Kumar et al. (2009).

Experimental top

The title compound was synthesized according to a previously published procedure (Terent'ev & Stankyavichyus, 1988). Briefly, commercially available phenanthrene-9,10-quinone (1.500 g, 7.20 mmol) was refluxed in ethanol (100 ml) and chloroform (20 ml). To this solution was added hydroxylamine hydrochloride (0.500 g, 7.20 mmol dissolved in 20 ml of water) dropwise. After refluxing overnight, solvent was removed and the resulting orange solid was recrystallized from aqueous ethanol (1.086 g, 68%). Spectral characterization matched that in the literature (Kumar et al., 2009).

Refinement top

All H atoms were initially located in a difference Fourier map and were refined with a riding model. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances fixed to 0.95 Å and O—H distances fixed to 0.84 Å. Uiso values were fixed as Uiso(H) = 1.2Ueq(parent C) and Uiso(H) = 1.5Ueq(parent O). Atoms N1A, O2A, H1A and O1A were restrained to be coplanar, and the same anisotropic displacement parameters were used for pairs of disordered atoms N1/O1A, O2/O2A and N1A/O1. Measured Friedel pairs (983) were merged in the final refinement.

Structure description top

The title compound (Fig. 1) is an ortho-hydroxynitroso aromatic compound, which may have a role in metal complexation and in photochromic spirooxazines (Barjesteh et al., 1996; Patel et al., 2005, 2010). A tautomeric disorder was observed in this structure (Enchev et al., 2003; Terent'ev & Stankyavichyus, 1988). Without accounting for the disorder, a Q-peak of approximately 0.9 electron/Å3 was located at the position of O2A in the disorder model. Prior to modeling the disorder, R1 residual was approximately 0.06. With the chemically sensible disorder model, the final residual is R1 = 0.0361, justifying the reduced number of parameters and minimal EADP constraints and FLAT restraint (see Experimental). The final refinement indicated the two tautomers are present in an 0.827 (3) to 0.173 (3) ratio.

For information on tautomerization in ortho-hydroxynitroso aromatic compounds, see: Enchev et al. (2003); Terent'ev & Stankyavichyus (1988). For the role of ortho-hydroxynitroso aromatic compounds in metal complexation and in photochromic spirooxazines, see: Barjesteh et al. (1996); Patel et al. (2005, 2010). For the spectrochemical characterization of the title compound, see: Kumar et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view (Dolomanov et al., 2009) of the title molecule. Dashed lines represent intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The tautomerism in the title compound.
10-(Hydroxyimino)phenanthren-9-one top
Crystal data top
C14H9NO2F(000) = 464
Mr = 223.22Dx = 1.479 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 250 reflections
a = 17.4505 (15) Åθ = 2.3–26.0°
b = 3.7875 (3) ŵ = 0.10 mm1
c = 15.1669 (13) ÅT = 90 K
V = 1002.44 (15) Å3Plate, yellow
Z = 40.24 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1068 independent reflections
Radiation source: rotating anode989 reflections with I > 2σ(I)
Optics monochromatorRint = 0.032
w scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.976, Tmax = 0.994k = 44
16616 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.3852P]
where P = (Fo2 + 2Fc2)/3
1068 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.15 e Å3
18 constraints
Crystal data top
C14H9NO2V = 1002.44 (15) Å3
Mr = 223.22Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 17.4505 (15) ŵ = 0.10 mm1
b = 3.7875 (3) ÅT = 90 K
c = 15.1669 (13) Å0.24 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1068 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
989 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.032
16616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
1068 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Experimental. Data were collected with five ω scans in 0.5° increments with 20 s. exposures per degree. Crystal-to-detector distance was 40 mm. 18620 full and partial reflections were integrated.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7027 (5)0.491 (3)0.5919 (3)0.0366 (12)0.827 (5)
O1A0.5549 (10)0.199 (7)0.6677 (16)0.0362 (9)0.173 (5)
H1A0.59110.23110.70330.054*0.173 (5)
O20.63991 (15)0.2459 (9)0.72678 (18)0.0500 (8)0.827 (5)
H20.67620.31500.69470.075*0.827 (5)
O2A0.6923 (8)0.414 (5)0.6788 (9)0.0500 (8)0.173 (5)
N10.5786 (2)0.1557 (14)0.6749 (3)0.0362 (9)0.827 (5)
N1A0.707 (4)0.494 (19)0.611 (3)0.0366 (12)0.173 (5)
C10.64614 (15)0.4012 (7)0.5486 (2)0.0309 (6)
C20.64506 (14)0.4585 (7)0.45317 (18)0.0258 (6)
C30.70969 (14)0.6130 (7)0.4138 (2)0.0286 (6)
H30.75230.67910.44920.034*
C40.71138 (15)0.6687 (7)0.3247 (2)0.0320 (6)
H40.75540.76960.29790.038*
C50.64841 (16)0.5767 (7)0.27380 (19)0.0312 (6)
H50.64950.61670.21200.037*
C60.58366 (15)0.4269 (7)0.31197 (19)0.0281 (6)
H60.54070.37010.27620.034*
C70.58119 (14)0.3592 (7)0.40243 (18)0.0244 (6)
C80.51377 (13)0.1929 (7)0.44476 (18)0.0257 (6)
C90.45080 (15)0.0821 (7)0.3952 (2)0.0292 (6)
H90.45110.11390.33300.035*
C100.38781 (15)0.0737 (8)0.4350 (2)0.0325 (7)
H100.34580.14980.40000.039*
C110.38582 (16)0.1190 (8)0.5257 (2)0.0356 (7)
H110.34210.22000.55310.043*
C120.44774 (15)0.0164 (8)0.5756 (2)0.0328 (7)
H120.44660.05000.63770.039*
C130.51259 (15)0.1372 (7)0.53659 (19)0.0286 (6)
C140.57893 (17)0.2359 (7)0.59059 (19)0.0319 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0292 (16)0.0496 (13)0.031 (3)0.0041 (12)0.007 (2)0.003 (3)
O1A0.023 (2)0.050 (2)0.0349 (16)0.001 (2)0.0061 (19)0.0011 (15)
O20.0401 (14)0.073 (2)0.0368 (15)0.0153 (15)0.0084 (11)0.0053 (14)
O2A0.0401 (14)0.073 (2)0.0368 (15)0.0153 (15)0.0084 (11)0.0053 (14)
N10.023 (2)0.050 (2)0.0349 (16)0.001 (2)0.0061 (19)0.0011 (15)
N1A0.0292 (16)0.0496 (13)0.031 (3)0.0041 (12)0.007 (2)0.003 (3)
C10.0330 (15)0.0237 (13)0.0359 (15)0.0060 (11)0.0007 (12)0.0048 (12)
C20.0236 (12)0.0177 (12)0.0360 (15)0.0036 (10)0.0021 (10)0.0013 (12)
C30.0228 (13)0.0207 (13)0.0424 (17)0.0024 (9)0.0010 (11)0.0014 (12)
C40.0256 (13)0.0234 (13)0.0470 (17)0.0010 (10)0.0088 (13)0.0020 (12)
C50.0320 (13)0.0253 (14)0.0364 (16)0.0055 (11)0.0077 (12)0.0058 (12)
C60.0253 (13)0.0230 (13)0.0360 (15)0.0049 (10)0.0024 (11)0.0015 (12)
C70.0215 (13)0.0152 (12)0.0364 (15)0.0056 (9)0.0022 (10)0.0026 (11)
C80.0222 (12)0.0152 (12)0.0397 (16)0.0066 (10)0.0035 (11)0.0020 (11)
C90.0253 (12)0.0214 (13)0.0408 (16)0.0050 (10)0.0015 (12)0.0016 (12)
C100.0214 (12)0.0233 (13)0.0530 (19)0.0023 (10)0.0000 (12)0.0045 (12)
C110.0272 (14)0.0235 (14)0.056 (2)0.0049 (11)0.0128 (12)0.0020 (13)
C120.0334 (14)0.0235 (13)0.0415 (17)0.0033 (11)0.0090 (12)0.0004 (12)
C130.0296 (14)0.0192 (12)0.0370 (15)0.0071 (10)0.0074 (11)0.0014 (12)
C140.0384 (15)0.0259 (14)0.0315 (15)0.0033 (12)0.0033 (11)0.0010 (12)
Geometric parameters (Å, º) top
O1—C11.233 (8)C5—C61.391 (4)
O1A—C141.25 (2)C5—H50.9500
O1A—H1A0.8400C6—C71.396 (4)
O2—N11.371 (5)C6—H60.9500
O2—H20.8400C7—C81.481 (3)
O2A—N1A1.11 (5)C8—C91.396 (4)
N1—C141.314 (6)C8—C131.409 (4)
N1A—C11.46 (5)C9—C101.386 (4)
C1—C21.464 (4)C9—H90.9500
C1—C141.474 (4)C10—C111.386 (4)
C2—C31.404 (4)C10—H100.9500
C2—C71.406 (4)C11—C121.376 (4)
C3—C41.369 (4)C11—H110.9500
C3—H30.9500C12—C131.403 (4)
C4—C51.387 (4)C12—H120.9500
C4—H40.9500C13—C141.467 (4)
C14—O1A—H1A109.5C2—C7—C8120.4 (2)
C14—N1—O2119.9 (4)C9—C8—C13118.4 (3)
O2A—N1A—C1112 (5)C9—C8—C7121.3 (2)
O1—C1—C2119.7 (4)C13—C8—C7120.3 (2)
N1A—C1—C2128 (2)C10—C9—C8121.1 (3)
O1—C1—C14121.6 (4)C10—C9—H9119.4
N1A—C1—C14114 (2)C8—C9—H9119.4
C2—C1—C14118.7 (2)C11—C10—C9120.3 (3)
C3—C2—C7121.1 (2)C11—C10—H10119.8
C3—C2—C1118.1 (2)C9—C10—H10119.8
C7—C2—C1120.8 (2)C12—C11—C10119.4 (3)
C4—C3—C2120.1 (3)C12—C11—H11120.3
C4—C3—H3120.0C10—C11—H11120.3
C2—C3—H3120.0C11—C12—C13121.2 (3)
C3—C4—C5119.6 (3)C11—C12—H12119.4
C3—C4—H4120.2C13—C12—H12119.4
C5—C4—H4120.2C12—C13—C8119.4 (3)
C4—C5—C6121.0 (3)C12—C13—C14120.4 (3)
C4—C5—H5119.5C8—C13—C14120.2 (2)
C6—C5—H5119.5O1A—C14—C13103.3 (9)
C5—C6—C7120.6 (3)N1—C14—C13118.8 (3)
C5—C6—H6119.7O1A—C14—C1135.9 (10)
C7—C6—H6119.7N1—C14—C1121.4 (3)
C6—C7—C2117.7 (2)C13—C14—C1119.7 (2)
C6—C7—C8121.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.762.499 (8)146
O1A—H1A···O2A0.841.932.54 (2)128

Experimental details

Crystal data
Chemical formulaC14H9NO2
Mr223.22
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)90
a, b, c (Å)17.4505 (15), 3.7875 (3), 15.1669 (13)
V3)1002.44 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.10 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
16616, 1068, 989
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.07
No. of reflections1068
No. of parameters166
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.762.499 (8)146.1
O1A—H1A···O2A0.841.932.54 (2)128.0
 

Acknowledgements

Partial support of this work was provided by the University at Buffalo, The State University of New York.

References

First citationBarjesteh, H., Chakrabarti, J., Charalambous, J., Carugo, O. & Castellani, C. B. (1996). Polyhedron, 15, 1323–1330.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnchev, V., Ivanova, G. & Stoyanov, N. (2003). J. Mol. Struct. (THEOCHEM), 640, 149–162.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S., Watkins, D. L. & Fujiwara, T. (2009). Chem. Commun. pp. 4369–4371.  Web of Science CrossRef Google Scholar
First citationPatel, D. G., Benedict, J. B., Kopelman, R. A. & Frank, N. L. (2005). Chem. Commun. pp. 2208–2210.  Web of Science CSD CrossRef Google Scholar
First citationPatel, D. G., Paquette, M. M., Kopelman, R. A., Kaminsky, W., Ferguson, M. J. & Frank, N. L. (2010). J. Am. Chem. Soc. 132, 12568–12586.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerent'ev, P. B. & Stankyavichyus, A. P. (1988). Chem. Heterocycl. Compd, 24, 1258–1262.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds