organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,7S)-10-Ethyl-1,8,10,12-tetra­aza­tetra­cyclo­[8.3.1.18,12.02,7]penta­decan-10-ium iodide

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No.45-03, Bogotá, Código Postal 111321, Colombia, bUniversidad Nacional de Colombia, Sede Manizales, Colombia, cDepartment of Solid State Chemistry, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic, and dInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 13 August 2012; accepted 21 September 2012; online 29 September 2012)

The title chiral quaternary ammonium salt, C13H25N4+·I, was synthesized through the Menschutkin reaction between the cage aminal (2S,7S)-1,8,10,12-tetra­aza­tetra­cyclo­[8.3.1.18,12.02,7]penta­decane and ethyl iodide. The quaternization occurred regioselectively on the nitrogen with major sp3 character. The crystal structure consists of anions and cations separated by normal distances. Ions are not linked through C—H⋯I hydrogen bonds.

Related literature

For related structures, see: Becka et al. (1963[Becka, L. N. & Cruickshank, D. W. J. (1963). Proc. R. Soc. London Ser. A, 273, 435-455.]); Rivera et al. (2011b[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011b). J. Chem. Crystallogr. 41, 591-595.],c[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011c). Acta Cryst. E67, o2629.]); Rivera, Sadat-Bernal et al. (2012[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o17.]). For the synthesis of the precursor (2S,7S)-1,8,10,12-tetra­aza­tetra­cyclo [8.3.1.18,12.02,7]penta­decane, see: Rivera, Quiroga et al. (2012[Rivera, A., Quiroga, D., Jiménez-Cruz, L., Fejfarová, K. & Dušek, M. (2012). Tetrahedron Lett. 53, 345-348.]). For the preparation of the title salt, see: Rivera et al. (2011a[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Palatinus, L. (2011a). Chem. Cent. J. 5, article number 55.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the structural consequences of the anomeric effect, see: Kakanejadifard & Farnia (1997[Kakanejadifard, A. & Farnia, S. M. F. (1997). Tetrahedron, 53, 2551-2556.]); Rivera et al. (2011b[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011b). J. Chem. Crystallogr. 41, 591-595.]). For synthetic applications of chiral quaternary ammonium salts, see: Lygo Andrews (2004[Lygo, B. & Andrews, B. I. (2004). Acc. Chem. Res. 37, 518-525.]); Park et al. (2004[Park, E. J., Kim, M. H. & Kim, D. Y. (2004). J. Org. Chem. 69, 6897-6899.]); Kim & Huh (2001[Kim, D. Y. & Huh, S. C. (2001). Tetrahedron, 57, 8933-8938.]).

[Scheme 1]

Experimental

Crystal data
  • C13H25N4+·I

  • Mr = 364.3

  • Orthorhombic, P 21 21 21

  • a = 10.2227 (5) Å

  • b = 12.0375 (6) Å

  • c = 12.0941 (6) Å

  • V = 1488.25 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.14 mm−1

  • T = 120 K

  • 0.24 × 0.06 × 0.04 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.746, Tmax = 1

  • 5935 measured reflections

  • 3223 independent reflections

  • 3093 reflections with I > 3σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.041

  • S = 1.19

  • 3223 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1353 Friedel pairs

  • Flack parameter: 0.026 (15)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The aminal (2S,7S)-1,8,10,12-tetraazatetracyclo [8.3.1.18,12.02,7]pentadecane is interesting because it presents a chiral molecular structure, which contains two pairs of non equivalent nitrogen atoms. (Rivera, Quiroga et al., 2012). Employing the method described, (Rivera et al., 2011a) the title compound (I) was readily prepared from (2S,7S)-1,8,10,12-tetraazatetracyclo [8.3.1.18,12.02,7]pentadecane by alkylation with iodo ethane in dry acetonitrile, at room temperature. The chiral quaternary ammonium salts are used as asymmetric phase-transfer catalysis (Lygo Andrews, 2004) and enantioselective reactions (Kim & Huh, 2001; Park et al., 2004).The molecular structure and atom-numbering scheme for (I) are shown in Fig 1.

The compound (I) crystallizes in the orthorhombic P212121 chiral space group. The asymmetric unit of title molecule, C13H25N4+.I-, contains 10-ethyl-(2S,7S)-1,8,10,12-tetraazatetracyclo- [8.3.1.18,12.02,7]pentadecan-10-ium cation and one iodide anion. The N-monoalkylation produces ions where one nitrogen atom carries a full positive charge resulting in a distortion of the bond lengths and angles in the heterocyclic ring, compared to the molecular structure in the solid state of hexamethylenetetramine (Becka et al., 1963). The C—N distances and bond angles (C—N—C and N—C—N) vary from 1.426 (3) to 1.575 (3) Å and from 104.97 (15) to 118.54 (16)°, respectively.

Crystallographic data indicate the existence of an anomeric effect (Kakanejadifard & Farnia, 1997; Rivera et al., 2011b) in (I), manifest in the following facts: a lengthening of N4—C bond lengths [N4—C3, 1.575 (3) Å; N4—C5, 1.531 (3) Å; N4—C15, 1.529 (3) Å], and shortening of bond lengths N4C—N [C3—N2, 1.432 (3) Å; C5—N6, 1.426 (3) Å; C15—N13, 1.434 (3) Å] comparable with normal bond distances (Allen et al., 1987). Distortion of the C—N—C bond angles decreased the p character of non charged N atoms and reduces the N-pyramidality [α (CNC) around N2 = 341.47°; N6 = 342.22°; N13 = 332.7°] as occurring in other aminal derived salts (Rivera et al., 2011b,c; Rivera, Sadat-Bernal et al., 2012).The geometry of the N—C—C—N moiety is close to the syn-periplanar conformation, evidenced by the N2—C1—C7—N6 torsion angle, 37.7 (2)°. The organization of the crystal packing for the title compound exhibits a network connecting ions through C—H···I and C—H···C short contacts (Fig. 2).

Related literature top

For related structures, see: Becka et al. (1963); Rivera et al. (2011b,c); Rivera, Sadat-Bernal et al. (2012). For the synthesis of the precursor (2S,7S)-1,8,10,12-tetraazatetracyclo [8.3.1.18,12.02,7]pentadecane, see: Rivera, Quiroga et al. (2012). For the preparation of the title salt, see: Rivera et al. (2011a). For bond-length data, see: Allen et al. (1987). For the structural consequences of the anomeric effect, see: Kakanejadifard & Farnia (1997); Rivera et al. (2011b). For synthetic applications of chiral quaternary ammonium salts, see: Lygo Andrews (2004); Park et al. (2004); Kim & Huh (2001).

Experimental top

Preparation of 10-ethyl-(2S,7S)-1,8,10,12-tetraazatetracyclo [8.3.1.18,12.02,7] pentadecan-10-ium iodide

The title compound was synthesized according to the published procedure (Rivera et al., 2011a) by reacting (2S,7S)-1,8,10,12-tetraazatetracyclo[8.3.1.18,12.02,7]pentadecane and iodoethane. After work up a solid was obtained and then dissolved in water. After standing for several days at room temperature, crystals suitable for X-ray diffraction were obtained in 45% yield. Mp = 450–452 K.

Refinement top

All H atoms were discernible in difference Fourier maps and could be refined to reasonable geometry, but according to common practice H atoms bonded to C atoms were kept in ideal positions with C—H = 0.96 Å. Uiso(H) was set to 1.2Ueq(carrier atom). The absolute configuration for chiral centers C1 and C7 was determined using the anomalous dispersion of the iodine site, by refining a Flack parameter (Flack, 1983) based on 1353 Friedel pairs.

Structure description top

The aminal (2S,7S)-1,8,10,12-tetraazatetracyclo [8.3.1.18,12.02,7]pentadecane is interesting because it presents a chiral molecular structure, which contains two pairs of non equivalent nitrogen atoms. (Rivera, Quiroga et al., 2012). Employing the method described, (Rivera et al., 2011a) the title compound (I) was readily prepared from (2S,7S)-1,8,10,12-tetraazatetracyclo [8.3.1.18,12.02,7]pentadecane by alkylation with iodo ethane in dry acetonitrile, at room temperature. The chiral quaternary ammonium salts are used as asymmetric phase-transfer catalysis (Lygo Andrews, 2004) and enantioselective reactions (Kim & Huh, 2001; Park et al., 2004).The molecular structure and atom-numbering scheme for (I) are shown in Fig 1.

The compound (I) crystallizes in the orthorhombic P212121 chiral space group. The asymmetric unit of title molecule, C13H25N4+.I-, contains 10-ethyl-(2S,7S)-1,8,10,12-tetraazatetracyclo- [8.3.1.18,12.02,7]pentadecan-10-ium cation and one iodide anion. The N-monoalkylation produces ions where one nitrogen atom carries a full positive charge resulting in a distortion of the bond lengths and angles in the heterocyclic ring, compared to the molecular structure in the solid state of hexamethylenetetramine (Becka et al., 1963). The C—N distances and bond angles (C—N—C and N—C—N) vary from 1.426 (3) to 1.575 (3) Å and from 104.97 (15) to 118.54 (16)°, respectively.

Crystallographic data indicate the existence of an anomeric effect (Kakanejadifard & Farnia, 1997; Rivera et al., 2011b) in (I), manifest in the following facts: a lengthening of N4—C bond lengths [N4—C3, 1.575 (3) Å; N4—C5, 1.531 (3) Å; N4—C15, 1.529 (3) Å], and shortening of bond lengths N4C—N [C3—N2, 1.432 (3) Å; C5—N6, 1.426 (3) Å; C15—N13, 1.434 (3) Å] comparable with normal bond distances (Allen et al., 1987). Distortion of the C—N—C bond angles decreased the p character of non charged N atoms and reduces the N-pyramidality [α (CNC) around N2 = 341.47°; N6 = 342.22°; N13 = 332.7°] as occurring in other aminal derived salts (Rivera et al., 2011b,c; Rivera, Sadat-Bernal et al., 2012).The geometry of the N—C—C—N moiety is close to the syn-periplanar conformation, evidenced by the N2—C1—C7—N6 torsion angle, 37.7 (2)°. The organization of the crystal packing for the title compound exhibits a network connecting ions through C—H···I and C—H···C short contacts (Fig. 2).

For related structures, see: Becka et al. (1963); Rivera et al. (2011b,c); Rivera, Sadat-Bernal et al. (2012). For the synthesis of the precursor (2S,7S)-1,8,10,12-tetraazatetracyclo [8.3.1.18,12.02,7]pentadecane, see: Rivera, Quiroga et al. (2012). For the preparation of the title salt, see: Rivera et al. (2011a). For bond-length data, see: Allen et al. (1987). For the structural consequences of the anomeric effect, see: Kakanejadifard & Farnia (1997); Rivera et al. (2011b). For synthetic applications of chiral quaternary ammonium salts, see: Lygo Andrews (2004); Park et al. (2004); Kim & Huh (2001).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the ions of the title compound viewed along a axis. C—H···I and C—H···C short contacts are drawn as dashed lines.
(2S,7S)-10-Ethyl-1,8,10,12- tetraazatetracyclo[8.3.1.18,12.02,7]pentadecan-10-ium iodide top
Crystal data top
C13H25N4+·IDx = 1.625 Mg m3
Mr = 364.3Melting point: 450 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 3457 reflections
a = 10.2227 (5) Åθ = 3.1–27.0°
b = 12.0375 (6) ŵ = 2.14 mm1
c = 12.0941 (6) ÅT = 120 K
V = 1488.25 (13) Å3Prism, colourless
Z = 40.24 × 0.06 × 0.04 mm
F(000) = 736
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3223 independent reflections
Radiation source: Enhance (Mo) X-ray Source3093 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.3784 pixels mm-1θmax = 27.1°, θmin = 3.1°
ω scansh = 139
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1415
Tmin = 0.746, Tmax = 1l = 1015
5935 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F > 3σ(F)] = 0.017Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F) = 0.041(Δ/σ)max = 0.018
S = 1.19Δρmax = 0.23 e Å3
3223 reflectionsΔρmin = 0.47 e Å3
164 parametersAbsolute structure: Flack (1983), 1353 Friedel pairs
0 restraintsAbsolute structure parameter: 0.026 (15)
0 constraints
Crystal data top
C13H25N4+·IV = 1488.25 (13) Å3
Mr = 364.3Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.2227 (5) ŵ = 2.14 mm1
b = 12.0375 (6) ÅT = 120 K
c = 12.0941 (6) Å0.24 × 0.06 × 0.04 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3223 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3093 reflections with I > 3σ(I)
Tmin = 0.746, Tmax = 1Rint = 0.016
5935 measured reflections
Refinement top
R[F > 3σ(F)] = 0.017H-atom parameters constrained
wR(F) = 0.041Δρmax = 0.23 e Å3
S = 1.19Δρmin = 0.47 e Å3
3223 reflectionsAbsolute structure: Flack (1983), 1353 Friedel pairs
164 parametersAbsolute structure parameter: 0.026 (15)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.995575 (12)0.462386 (9)0.966324 (9)0.01806 (4)
C10.4852 (2)0.29285 (13)0.73421 (15)0.0153 (5)
N20.36266 (17)0.33495 (15)0.78149 (16)0.0157 (5)
C30.2959 (2)0.26756 (17)0.86111 (18)0.0170 (6)
N40.20151 (16)0.17701 (14)0.81134 (14)0.0141 (5)
C50.2742 (2)0.08504 (16)0.74916 (17)0.0146 (6)
N60.35735 (17)0.12860 (15)0.66504 (15)0.0148 (5)
C70.4840 (2)0.16841 (14)0.70831 (15)0.0142 (5)
C80.6008 (2)0.13825 (18)0.63737 (19)0.0198 (7)
C90.7262 (2)0.16905 (18)0.6984 (2)0.0213 (7)
C100.7278 (2)0.28974 (16)0.73715 (19)0.0212 (7)
C110.6056 (2)0.31806 (19)0.8036 (2)0.0180 (6)
C120.2718 (2)0.37477 (18)0.69715 (19)0.0211 (6)
N130.19918 (17)0.28513 (15)0.64344 (16)0.0194 (5)
C140.2834 (2)0.20109 (17)0.58957 (18)0.0191 (6)
C150.1162 (2)0.23336 (18)0.72399 (18)0.0186 (6)
C160.1232 (2)0.13179 (17)0.90618 (18)0.0203 (6)
C170.0267 (2)0.04169 (19)0.87726 (19)0.0289 (7)
H1c10.4909120.3332280.665930.0183*
H1c30.2478720.3143690.910960.0204*
H2c30.3586540.2324040.9086410.0204*
H1c50.3253560.0424130.800470.0175*
H2c50.2120230.0350030.7166460.0175*
H1c70.4931270.1286630.7766870.017*
H1c80.6000740.0598420.622890.0237*
H2c80.5965570.1783450.5688410.0237*
H1c90.8001260.1557180.6512760.0256*
H2c90.7373330.1207810.7609160.0256*
H1c100.8040040.3025560.7816950.0254*
H2c100.7334830.3380240.6741580.0254*
H1c110.6066240.3955380.8224220.0216*
H2c110.6036620.2740330.8697990.0216*
H1c120.2114590.4263010.7298180.0254*
H2c120.3190.4163330.6423930.0254*
H1c140.231520.1563430.5406520.0229*
H2c140.3428430.2373560.5398220.0229*
H1c150.0622510.1787190.6884390.0224*
H2c150.0624160.2887070.75860.0224*
H1c160.0783970.1915560.94260.0243*
H2c160.1814370.1054590.9626930.0243*
H1c170.0197590.0194830.9425860.0346*
H2c170.0341680.0692350.8234150.0346*
H3c170.0726730.0210420.8473440.0346*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01928 (7)0.01921 (7)0.01568 (7)0.00180 (7)0.00111 (8)0.00244 (4)
C10.0163 (11)0.0137 (9)0.0159 (8)0.0011 (8)0.0006 (11)0.0009 (7)
N20.0173 (9)0.0108 (9)0.0188 (10)0.0020 (7)0.0016 (8)0.0008 (8)
C30.0184 (10)0.0152 (10)0.0174 (10)0.0000 (8)0.0010 (9)0.0024 (8)
N40.0139 (9)0.0150 (9)0.0133 (8)0.0001 (7)0.0012 (8)0.0007 (7)
C50.0180 (10)0.0118 (10)0.0140 (10)0.0001 (8)0.0006 (9)0.0012 (8)
N60.0158 (9)0.0147 (9)0.0138 (9)0.0025 (7)0.0021 (8)0.0006 (7)
C70.0168 (11)0.0124 (8)0.0132 (8)0.0004 (9)0.0006 (10)0.0005 (7)
C80.0216 (11)0.0155 (11)0.0222 (12)0.0011 (9)0.0048 (10)0.0031 (9)
C90.0167 (11)0.0211 (12)0.0260 (12)0.0019 (9)0.0039 (10)0.0022 (10)
C100.0165 (11)0.0212 (12)0.0257 (12)0.0032 (8)0.0022 (10)0.0010 (10)
C110.0203 (11)0.0150 (11)0.0187 (11)0.0033 (9)0.0002 (10)0.0007 (9)
C120.0218 (11)0.0143 (11)0.0274 (11)0.0025 (9)0.0003 (10)0.0061 (9)
N130.0180 (9)0.0201 (9)0.0200 (9)0.0011 (7)0.0001 (8)0.0059 (7)
C140.0218 (11)0.0234 (11)0.0121 (10)0.0023 (9)0.0013 (9)0.0027 (9)
C150.0147 (11)0.0216 (11)0.0196 (11)0.0034 (8)0.0044 (9)0.0028 (9)
C160.0206 (11)0.0254 (12)0.0148 (10)0.0005 (9)0.0045 (9)0.0005 (9)
C170.0255 (12)0.0346 (12)0.0265 (11)0.0074 (11)0.0048 (10)0.0037 (9)
Geometric parameters (Å, º) top
C1—C71.530 (2)C9—H2c90.96
C1—C111.521 (3)C10—C91.527 (3)
C1—H1c10.96C10—C111.524 (3)
N2—C11.467 (3)C10—H1c100.96
N2—C31.432 (3)C10—H2c100.96
N2—C121.460 (3)C11—H1c110.96
C3—H1c30.96C11—H2c110.96
C3—H2c30.96C12—H1c120.96
N4—C31.575 (3)C12—H2c120.96
N4—C51.531 (3)N13—C121.462 (3)
N4—C151.529 (3)N13—C141.480 (3)
N4—C161.501 (3)N13—C151.434 (3)
C5—H1c50.96C14—H1c140.96
C5—H2c50.96C14—H2c140.96
N6—C51.426 (3)C15—H1c150.96
N6—C71.476 (3)C15—H2c150.96
N6—C141.472 (3)C16—H1c160.96
C7—H1c70.96C16—H2c160.96
C8—C71.514 (3)C17—C161.507 (3)
C8—C91.526 (3)C17—H1c170.96
C8—H1c80.96C17—H2c170.96
C8—H2c80.96C17—H3c170.96
C9—H1c90.96
N2—C1—C7114.27 (17)H1c9—C9—H2c9105.87
N2—C1—C11114.02 (16)C9—C10—H1c10109.47
N2—C1—H1c1102.26C9—C10—H2c10109.47
C7—C1—C11108.35 (17)C11—C10—C9111.49 (18)
C7—C1—H1c1108.66C11—C10—H1c10109.47
C11—C1—H1c1108.95C11—C10—H2c10109.47
C1—N2—C3118.26 (16)H1c10—C10—H2c10107.37
C1—N2—C12112.59 (17)C1—C11—C10109.11 (18)
C12—N2—C3110.62 (17)C1—C11—H1c11109.47
N2—C3—N4115.28 (17)C1—C11—H2c11109.47
N2—C3—H1c3109.47C10—C11—H1c11109.47
N2—C3—H2c3109.47C10—C11—H2c11109.47
N4—C3—H1c3109.47H1c11—C11—H2c11109.83
N4—C3—H2c3109.47N2—C12—N13113.02 (17)
H1c3—C3—H2c3102.97N2—C12—H1c12109.47
C3—N4—C5113.01 (15)N2—C12—H2c12109.47
C3—N4—C15107.85 (15)N13—C12—H1c12109.47
C3—N4—C16106.58 (15)N13—C12—H2c12109.47
C5—N4—C15104.97 (15)H1c12—C12—H2c12105.67
C16—N4—C5111.84 (15)C12—N13—C14113.87 (17)
C16—N4—C15112.64 (15)C12—N13—C15108.62 (17)
N4—C5—H1c5109.47C14—N13—C15110.25 (17)
N4—C5—H2c5109.47N6—C14—N13115.54 (18)
N6—C5—N4111.96 (16)N6—C14—H1c14109.47
N6—C5—H1c5109.47N6—C14—H2c14109.47
N6—C5—H2c5109.47N13—C14—H1c14109.47
H1c5—C5—H2c5106.87N13—C14—H2c14109.47
C7—N6—C5112.91 (16)H1c14—C14—H2c14102.63
C7—N6—C14118.54 (16)N4—C15—H1c15109.47
C14—N6—C5110.77 (16)N4—C15—H2c15109.47
C1—C7—H1c7108.1N13—C15—N4108.96 (17)
N6—C7—C1113.40 (17)N13—C15—H1c15109.47
N6—C7—C8114.37 (16)N13—C15—H2c15109.47
N6—C7—H1c7103.22H1c15—C15—H2c15109.98
C8—C7—C1110.15 (17)N4—C16—C17115.63 (18)
C8—C7—H1c7106.98N4—C16—H1c16109.47
C7—C8—C9109.28 (18)N4—C16—H2c16109.47
C7—C8—H1c8109.47C17—C16—H1c16109.47
C7—C8—H2c8109.47C17—C16—H2c16109.47
C9—C8—H1c8109.47H1c16—C16—H2c16102.52
C9—C8—H2c8109.47C16—C17—H1c17109.47
H1c8—C8—H2c8109.66C16—C17—H2c17109.47
C8—C9—C10112.85 (18)C16—C17—H3c17109.47
C8—C9—H1c9109.47H1c17—C17—H2c17109.47
C8—C9—H2c9109.47H1c17—C17—H3c17109.47
C10—C9—H1c9109.47H2c17—C17—H3c17109.47
C10—C9—H2c9109.47

Experimental details

Crystal data
Chemical formulaC13H25N4+·I
Mr364.3
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)10.2227 (5), 12.0375 (6), 12.0941 (6)
V3)1488.25 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.24 × 0.06 × 0.04
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.746, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
5935, 3223, 3093
Rint0.016
(sin θ/λ)max1)0.641
Refinement
R[F > 3σ(F)], wR(F), S 0.017, 0.041, 1.19
No. of reflections3223
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.47
Absolute structureFlack (1983), 1353 Friedel pairs
Absolute structure parameter0.026 (15)

Computer programs: CrysAlis PRO (Agilent, 2010), Superflip (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005), JANA2006 (Petříček et al., 2006).

 

Footnotes

Other affiliation: Institute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic.

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) y Sede Manizales (DIMA) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic (ASCR).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBecka, L. N. & Cruickshank, D. W. J. (1963). Proc. R. Soc. London Ser. A, 273, 435–455.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKakanejadifard, A. & Farnia, S. M. F. (1997). Tetrahedron, 53, 2551–2556.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, D. Y. & Huh, S. C. (2001). Tetrahedron, 57, 8933–8938.  Web of Science CrossRef CAS Google Scholar
First citationLygo, B. & Andrews, B. I. (2004). Acc. Chem. Res. 37, 518–525.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, E. J., Kim, M. H. & Kim, D. Y. (2004). J. Org. Chem. 69, 6897–6899.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPetříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Jiménez-Cruz, L., Fejfarová, K. & Dušek, M. (2012). Tetrahedron Lett. 53, 345–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011b). J. Chem. Crystallogr. 41, 591–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Palatinus, L. (2011a). Chem. Cent. J. 5, article number 55.  Web of Science CSD CrossRef Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2011c). Acta Cryst. E67, o2629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o17.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds