organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Naphthalen-1-yl)-3-[(thio­phen-2-yl)carbon­yl]thio­urea

aDepartment of Chemistry, M. M. V., Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 29 June 2012; accepted 9 August 2012; online 8 September 2012)

In the title compound, C16H12N2OS2, the dihedral angles between the mean planes of the central thio­urea core and the thio­phene ring and the naphthalene ring system are 1.8 (2) and 6.45 (18)°, respectively. The mol­ecule adopts a trans–cis conformation with respect to the position of thio­phenoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. Both the thio­phene ring and the sulfanyl­idene S atom are disordered over two sets of sites with occupancies of 0.862 (3):0.138 (3) and 0.977 (3):0.023 (3), respectively. An intra­molecular N—H⋯O hydrogen bond is observed. The crystal packing features two N—H⋯S hydrogen bonds.

Related literature

For heterocyclic thiourea derivatives, metal complexes and their applications, see: D'hooghe et al. (2005[D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227-232.]); Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]); Estévez-Hernández et al. (2007[Estévez-Hernández, O., Hidalgo-Hidalgo de Cisneros, J. L., Reguera, E. & Naranjo-Rodríguez, I. (2007). Sens. Actuators B Chem. 120, 766-772.]); Saeed et al. (2008a[Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.],b[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.],c[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566.]). For related structures, see: Singh et al. (2012[Singh, D. P., Pratap, S., Butcher, R. J. & Gupta, S. K. (2012). Acta Cryst. E68, o1765.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o513.]). For the synthesis, see: Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2OS2

  • Mr = 312.40

  • Monoclinic, P 21 /c

  • a = 14.929 (2) Å

  • b = 5.9086 (8) Å

  • c = 17.071 (3) Å

  • β = 104.030 (14)°

  • V = 1460.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 173 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.712, Tmax = 1.000

  • 4822 measured reflections

  • 2625 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.165

  • S = 1.09

  • 2625 reflections

  • 210 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.88 1.86 2.615 (3) 143
N2—H2A⋯S2B 0.88 2.57 3.026 (14) 113
N2—H2A⋯S1Ai 0.88 2.56 3.41 (4) 164
N2—H2A⋯S1Bi 0.88 2.80 3.557 (3) 145
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aroylythiourea and its derivatives are an important class of organic compounds due to their ability to form a variety of heterocyclic compounds (D'hooghe et al., 2005) and metal complexes that can be used as ionophores in potentiometric and amperometric sensors (Aly et al., 2007; Estévez-Hernández et al., 2007) and as epoxy resin curing agents and accelerators (Saeed et al., 2008a, 2008b, 2008c). The title compound, N-(naphthalen-1-yl)-3-oxo-3-(thiophen-2-yl)propanethioamide is an important precursor with O and S as potential donor sites, and can be used to form heterocycles and metal complexes. We have reported recently the synthesis and crystal structure of methyl 2-(thiophene-2-carboxamido)benzoate (Singh et al., 2012). We herein report the synthesis and crystal structure of the biologically active title compound.

In the title compound (Fig.1) the bond lengths and angles are within the ranges observed for similar compounds (Koch, 2001; Pérez et al., 2008). The C11—S1B [1.661 (3) Å] and C12—O1 [1.230 (3) Å] bonds show typical double-bond character. However, the C—N bond lengths, C12—N2 [1.376 (4) Å], C11—N1 [1.326 (4) Å], C11—N2 [1.397 (4) Å] and C1—N1 [1.419 (4) Å] are all shorter than the normal C—N single-bond length of about 1.48 Å and indicate some degree of delocalization. The central thiourea fragment (N1/C11/N2/C12/O1) makes a dihedral angle of 2.03 (41)° with the major part of the 2-thiophenoyl group (S2/C13/C14/C15/C16) and 6.51 (16)° with the naphthalene ring (C1/C2/C3/C4/C5/C6/C7/C8/C9/C10), respectively. Thus, the conformation is almost planar and adopts a trans-cis configuration with respect to the position of the thiophenoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. This geometry is stabilized by both an N1—H1···O1 intramolecular hydrogen bond and two intermolecular N—H···S hydrogen bonds (Fig.2). In addition, both the thiophene ring and the thio S are disordered over two positions with occupancies of 0.862 (3)/0.138 (3) and 0.977 (3)/0.023 (3), respectively.

Related literature top

For heterocyclic derivatives, metal complexes and their applications, see: D'hooghe et al. (2005); Aly et al. (2007); Estévez-Hernández et al. (2007); Saeed et al. (2008a,b,c). For related structures, see: Singh et al. (2012); Koch (2001); Pérez et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Experimental top

The title compound was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with α-naphthylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (M.P.: 459 K). Anal. Calc. for C16H12N2OS2 (%): C, 61.51; H, 3.87; N, 8.97. Found: C, 61.20; H, 3.80; N, 9.10.

Refinement top

H1 was located by a Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93 Å (CH). Isotropic displacement parameters for these atoms were set to 1.20 (CH) times Ueq of the parent atom. Both the thiophene ring and the thio S are disordered over two positions with occupancies of 0.867 (3)/0.133 (3) and 0.84 (3)/0.16 (3), respectively.

Structure description top

Aroylythiourea and its derivatives are an important class of organic compounds due to their ability to form a variety of heterocyclic compounds (D'hooghe et al., 2005) and metal complexes that can be used as ionophores in potentiometric and amperometric sensors (Aly et al., 2007; Estévez-Hernández et al., 2007) and as epoxy resin curing agents and accelerators (Saeed et al., 2008a, 2008b, 2008c). The title compound, N-(naphthalen-1-yl)-3-oxo-3-(thiophen-2-yl)propanethioamide is an important precursor with O and S as potential donor sites, and can be used to form heterocycles and metal complexes. We have reported recently the synthesis and crystal structure of methyl 2-(thiophene-2-carboxamido)benzoate (Singh et al., 2012). We herein report the synthesis and crystal structure of the biologically active title compound.

In the title compound (Fig.1) the bond lengths and angles are within the ranges observed for similar compounds (Koch, 2001; Pérez et al., 2008). The C11—S1B [1.661 (3) Å] and C12—O1 [1.230 (3) Å] bonds show typical double-bond character. However, the C—N bond lengths, C12—N2 [1.376 (4) Å], C11—N1 [1.326 (4) Å], C11—N2 [1.397 (4) Å] and C1—N1 [1.419 (4) Å] are all shorter than the normal C—N single-bond length of about 1.48 Å and indicate some degree of delocalization. The central thiourea fragment (N1/C11/N2/C12/O1) makes a dihedral angle of 2.03 (41)° with the major part of the 2-thiophenoyl group (S2/C13/C14/C15/C16) and 6.51 (16)° with the naphthalene ring (C1/C2/C3/C4/C5/C6/C7/C8/C9/C10), respectively. Thus, the conformation is almost planar and adopts a trans-cis configuration with respect to the position of the thiophenoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. This geometry is stabilized by both an N1—H1···O1 intramolecular hydrogen bond and two intermolecular N—H···S hydrogen bonds (Fig.2). In addition, both the thiophene ring and the thio S are disordered over two positions with occupancies of 0.862 (3)/0.138 (3) and 0.977 (3)/0.023 (3), respectively.

For heterocyclic derivatives, metal complexes and their applications, see: D'hooghe et al. (2005); Aly et al. (2007); Estévez-Hernández et al. (2007); Saeed et al. (2008a,b,c). For related structures, see: Singh et al. (2012); Koch (2001); Pérez et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (major component only) showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate an intramolecular N—H···O hydrogen bond.
[Figure 2] Fig. 2. Crystal packing for the title compound viewed along b axis. Dashed lines indicate intramolecular N—H···O and intermolecular N—H···S hydrogen bonds.
1-(Naphthalen-1-yl)-3-[(thiophen-2-yl)carbonyl]thiourea top
Crystal data top
C16H12N2OS2F(000) = 648
Mr = 312.40Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.929 (2) ÅCell parameters from 1174 reflections
b = 5.9086 (8) Åθ = 3.3–27.3°
c = 17.071 (3) ŵ = 0.36 mm1
β = 104.030 (14)°T = 173 K
V = 1460.9 (4) Å3Prism, colorless
Z = 40.35 × 0.25 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2625 independent reflections
Radiation source: Enhance (Mo) X-ray Source1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.0938 pixels mm-1θmax = 25.5°, θmin = 3.7°
ω scansh = 1810
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 67
Tmin = 0.712, Tmax = 1.000l = 1720
4822 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3695P]
where P = (Fo2 + 2Fc2)/3
2625 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.33 e Å3
10 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H12N2OS2V = 1460.9 (4) Å3
Mr = 312.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.929 (2) ŵ = 0.36 mm1
b = 5.9086 (8) ÅT = 173 K
c = 17.071 (3) Å0.35 × 0.25 × 0.15 mm
β = 104.030 (14)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2625 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1626 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 1.000Rint = 0.052
4822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04910 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
2625 reflectionsΔρmin = 0.31 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.962 (3)0.732 (11)0.421 (4)0.0764 (5)0.023 (3)
S1B0.98334 (7)0.6323 (3)0.38685 (9)0.0764 (5)0.977 (3)
S2A0.66455 (8)0.0348 (2)0.46547 (8)0.0582 (4)0.862 (3)
C13A0.7707 (3)0.0902 (7)0.4715 (3)0.0404 (11)0.862 (3)
C14A0.8378 (4)0.0413 (13)0.5210 (5)0.0655 (19)0.862 (3)
H14A0.90180.00830.53100.079*0.862 (3)
C15A0.8041 (4)0.2228 (11)0.5543 (4)0.0655 (15)0.862 (3)
H15A0.84190.32700.59000.079*0.862 (3)
C16A0.7114 (4)0.2380 (12)0.5309 (6)0.0695 (14)0.862 (3)
H16A0.67650.35150.54960.083*0.862 (3)
S2B0.8612 (8)0.036 (2)0.5239 (9)0.0582 (4)0.138 (3)
C13B0.7593 (17)0.051 (5)0.4590 (19)0.0404 (11)0.138 (3)
C14B0.6895 (17)0.046 (5)0.488 (2)0.0655 (19)0.138 (3)
H14B0.62940.01740.48030.079*0.138 (3)
C15B0.716 (2)0.242 (7)0.530 (4)0.0655 (15)0.138 (3)
H15B0.67670.36580.53380.079*0.138 (3)
C16B0.807 (2)0.233 (7)0.566 (3)0.0695 (14)0.138 (3)
H16B0.83730.32730.60970.083*0.138 (3)
O10.69721 (14)0.3590 (3)0.37691 (14)0.0546 (6)
N10.79871 (16)0.6726 (4)0.33310 (16)0.0440 (7)
H1A0.74620.60940.33600.053*
N20.85320 (16)0.3884 (4)0.42315 (16)0.0452 (7)
H2A0.90090.33000.45790.054*
C10.7879 (2)0.8627 (5)0.28085 (19)0.0432 (8)
C20.8584 (2)1.0074 (5)0.2753 (2)0.0541 (9)
H20.91960.97740.30540.065*
C30.8401 (3)1.1985 (5)0.2255 (2)0.0585 (10)
H30.88941.29730.22230.070*
C40.7537 (3)1.2454 (5)0.1817 (2)0.0570 (9)
H40.74291.37780.14920.068*
C50.6798 (2)1.0997 (5)0.1838 (2)0.0468 (8)
C60.5901 (3)1.1427 (6)0.1368 (2)0.0594 (10)
H60.57881.27410.10380.071*
C70.5189 (3)0.9981 (6)0.1379 (2)0.0659 (11)
H70.45871.02970.10600.079*
C80.5347 (2)0.8048 (6)0.1857 (2)0.0574 (10)
H80.48510.70440.18590.069*
C90.6200 (2)0.7578 (5)0.2319 (2)0.0494 (9)
H90.62910.62490.26420.059*
C100.6962 (2)0.9031 (5)0.23326 (19)0.0416 (8)
C110.8727 (2)0.5719 (5)0.37841 (19)0.0434 (8)
C120.7696 (2)0.2864 (5)0.4203 (2)0.0433 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0282 (5)0.1166 (10)0.0801 (9)0.0049 (6)0.0048 (5)0.0291 (8)
S1B0.0282 (5)0.1166 (10)0.0801 (9)0.0049 (6)0.0048 (5)0.0291 (8)
S2A0.0543 (7)0.0566 (6)0.0598 (9)0.0107 (6)0.0061 (5)0.0071 (6)
C13A0.0405 (19)0.035 (2)0.041 (2)0.0003 (16)0.0015 (16)0.0068 (18)
C14A0.057 (4)0.064 (3)0.077 (4)0.000 (3)0.020 (4)0.010 (2)
C15A0.091 (4)0.048 (2)0.051 (3)0.023 (3)0.004 (3)0.006 (2)
C16A0.090 (4)0.053 (3)0.063 (3)0.015 (3)0.015 (3)0.002 (2)
S2B0.0543 (7)0.0566 (6)0.0598 (9)0.0107 (6)0.0061 (5)0.0071 (6)
C13B0.0405 (19)0.035 (2)0.041 (2)0.0003 (16)0.0015 (16)0.0068 (18)
C14B0.057 (4)0.064 (3)0.077 (4)0.000 (3)0.020 (4)0.010 (2)
C15B0.091 (4)0.048 (2)0.051 (3)0.023 (3)0.004 (3)0.006 (2)
C16B0.090 (4)0.053 (3)0.063 (3)0.015 (3)0.015 (3)0.002 (2)
O10.0340 (12)0.0537 (13)0.0694 (16)0.0034 (10)0.0006 (11)0.0150 (12)
N10.0286 (13)0.0453 (14)0.0541 (17)0.0030 (11)0.0021 (12)0.0007 (13)
N20.0302 (13)0.0547 (15)0.0472 (16)0.0030 (12)0.0026 (11)0.0113 (13)
C10.0381 (17)0.0383 (15)0.0503 (19)0.0019 (14)0.0050 (14)0.0047 (14)
C20.0455 (19)0.0503 (18)0.067 (2)0.0095 (16)0.0136 (17)0.0035 (17)
C30.063 (2)0.0504 (18)0.068 (2)0.0188 (18)0.0281 (19)0.0075 (18)
C40.072 (2)0.0452 (17)0.059 (2)0.0030 (19)0.0254 (19)0.0032 (16)
C50.0516 (19)0.0406 (16)0.050 (2)0.0058 (16)0.0165 (16)0.0023 (15)
C60.062 (2)0.057 (2)0.059 (2)0.0175 (19)0.0146 (19)0.0156 (18)
C70.051 (2)0.075 (2)0.067 (3)0.018 (2)0.0062 (19)0.017 (2)
C80.0409 (19)0.064 (2)0.065 (2)0.0007 (17)0.0078 (17)0.0111 (19)
C90.0421 (18)0.0506 (17)0.052 (2)0.0010 (16)0.0044 (15)0.0080 (16)
C100.0387 (17)0.0380 (15)0.0477 (19)0.0024 (14)0.0092 (14)0.0061 (14)
C110.0342 (16)0.0593 (18)0.0356 (17)0.0004 (15)0.0065 (13)0.0002 (15)
C120.0322 (16)0.0423 (16)0.0513 (19)0.0028 (14)0.0023 (14)0.0017 (15)
Geometric parameters (Å, º) top
S1A—C111.65 (5)N1—H1A0.8800
S1B—C111.661 (3)N2—C121.376 (4)
S2A—C16A1.674 (6)N2—C111.397 (4)
S2A—C13A1.729 (4)N2—H2A0.8800
C13A—C14A1.383 (7)C1—C21.377 (4)
C13A—C121.449 (5)C1—C101.432 (4)
C14A—C15A1.365 (8)C2—C31.401 (5)
C14A—H14A0.9500C2—H20.9500
C15A—C16A1.347 (6)C3—C41.353 (5)
C15A—H15A0.9500C3—H30.9500
C16A—H16A0.9500C4—C51.408 (5)
S2B—C16B1.67 (2)C4—H40.9500
S2B—C13B1.728 (19)C5—C61.407 (4)
C13B—C14B1.39 (2)C5—C101.422 (4)
C13B—C121.56 (3)C6—C71.367 (5)
C14B—C15B1.37 (2)C6—H60.9500
C14B—H14B0.9500C7—C81.390 (5)
C15B—C16B1.350 (18)C7—H70.9500
C15B—H15B0.9500C8—C91.354 (4)
C16B—H16B0.9500C8—H80.9500
O1—C121.230 (3)C9—C101.421 (4)
N1—C111.326 (4)C9—H90.9500
N1—C11.419 (4)
C16A—S2A—C13A92.2 (2)C3—C2—H2119.9
C14A—C13A—C12136.0 (5)C4—C3—C2121.3 (3)
C14A—C13A—S2A108.3 (4)C4—C3—H3119.3
C12—C13A—S2A115.4 (3)C2—C3—H3119.3
C15A—C14A—C13A114.2 (5)C3—C4—C5120.6 (3)
C15A—C14A—H14A122.9C3—C4—H4119.7
C13A—C14A—H14A122.9C5—C4—H4119.7
C16A—C15A—C14A112.6 (5)C4—C5—C6121.3 (3)
C16A—C15A—H15A123.7C4—C5—C10119.4 (3)
C14A—C15A—H15A123.7C6—C5—C10119.3 (3)
C15A—C16A—S2A112.5 (5)C7—C6—C5121.0 (3)
C15A—C16A—H16A123.7C7—C6—H6119.5
S2A—C16A—H16A123.7C5—C6—H6119.5
C16B—S2B—C13B92.5 (12)C6—C7—C8119.9 (3)
C14B—C13B—C12133 (2)C6—C7—H7120.0
C14B—C13B—S2B105.6 (15)C8—C7—H7120.0
C12—C13B—S2B112.0 (16)C9—C8—C7120.8 (3)
C15B—C14B—C13B113 (2)C9—C8—H8119.6
C15B—C14B—H14B123.6C7—C8—H8119.6
C13B—C14B—H14B123.6C8—C9—C10121.4 (3)
C16B—C15B—C14B110 (2)C8—C9—H9119.3
C16B—C15B—H15B125.2C10—C9—H9119.3
C14B—C15B—H15B125.2C9—C10—C5117.5 (3)
C15B—C16B—S2B112 (2)C9—C10—C1124.0 (3)
C15B—C16B—H16B124.2C5—C10—C1118.5 (3)
S2B—C16B—H16B124.2N1—C11—N2114.4 (3)
C11—N1—C1132.4 (3)N1—C11—S1A118 (2)
C11—N1—H1A113.8N2—C11—S1A117.1 (18)
C1—N1—H1A113.8N1—C11—S1B128.6 (3)
C12—N2—C11128.9 (2)N2—C11—S1B117.0 (2)
C12—N2—H2A115.5S1A—C11—S1B33 (3)
C11—N2—H2A115.5O1—C12—N2121.7 (3)
C2—C1—N1124.2 (3)O1—C12—C13A121.5 (3)
C2—C1—C10119.9 (3)N2—C12—C13A116.8 (3)
N1—C1—C10115.9 (3)O1—C12—C13B113.8 (9)
C1—C2—C3120.2 (3)N2—C12—C13B123.8 (9)
C1—C2—H2119.9C13A—C12—C13B11.9 (13)
C16A—S2A—C13A—C14A3.3 (6)C4—C5—C10—C9178.4 (3)
C16A—S2A—C13A—C12178.1 (5)C6—C5—C10—C90.4 (5)
C12—C13A—C14A—C15A176.1 (6)C4—C5—C10—C11.4 (4)
S2A—C13A—C14A—C15A2.9 (8)C6—C5—C10—C1179.8 (3)
C13A—C14A—C15A—C16A0.8 (11)C2—C1—C10—C9176.9 (3)
C14A—C15A—C16A—S2A1.9 (11)N1—C1—C10—C94.5 (5)
C13A—S2A—C16A—C15A3.0 (8)C2—C1—C10—C52.8 (5)
C16B—S2B—C13B—C14B13 (4)N1—C1—C10—C5175.8 (3)
C16B—S2B—C13B—C12164 (3)C1—N1—C11—N2178.7 (3)
C12—C13B—C14B—C15B169 (4)C1—N1—C11—S1A35 (3)
S2B—C13B—C14B—C15B27 (5)C1—N1—C11—S1B2.6 (5)
C13B—C14B—C15B—C16B30 (6)C12—N2—C11—N17.1 (5)
C14B—C15B—C16B—S2B19 (7)C12—N2—C11—S1A151 (3)
C13B—S2B—C16B—C15B3 (5)C12—N2—C11—S1B171.6 (3)
C11—N1—C1—C29.6 (5)C11—N2—C12—O13.4 (5)
C11—N1—C1—C10171.8 (3)C11—N2—C12—C13A177.1 (3)
N1—C1—C2—C3176.2 (3)C11—N2—C12—C13B165.9 (17)
C10—C1—C2—C32.3 (5)C14A—C13A—C12—O1174.0 (6)
C1—C2—C3—C40.2 (5)S2A—C13A—C12—O11.2 (5)
C2—C3—C4—C51.3 (5)C14A—C13A—C12—N26.5 (8)
C3—C4—C5—C6178.1 (3)S2A—C13A—C12—N2179.4 (3)
C3—C4—C5—C100.7 (5)C14A—C13A—C12—C13B122 (7)
C4—C5—C6—C7178.6 (4)S2A—C13A—C12—C13B51 (6)
C10—C5—C6—C70.2 (5)C14B—C13B—C12—O136 (4)
C5—C6—C7—C80.3 (6)S2B—C13B—C12—O1176.6 (15)
C6—C7—C8—C90.4 (6)C14B—C13B—C12—N2154 (3)
C7—C8—C9—C100.2 (5)S2B—C13B—C12—N213 (3)
C8—C9—C10—C50.3 (5)C14B—C13B—C12—C13A96 (9)
C8—C9—C10—C1180.0 (3)S2B—C13B—C12—C13A44 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.881.862.615 (3)143
N2—H2A···S2B0.882.573.026 (14)113
N2—H2A···S1Ai0.882.563.41 (4)164
N2—H2A···S1Bi0.882.803.557 (3)145
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H12N2OS2
Mr312.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.929 (2), 5.9086 (8), 17.071 (3)
β (°) 104.030 (14)
V3)1460.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.712, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4822, 2625, 1626
Rint0.052
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.165, 1.09
No. of reflections2625
No. of parameters210
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.881.862.615 (3)142.7
N2—H2A···S2B0.882.573.026 (14)112.9
N2—H2A···S1Ai0.882.563.41 (4)163.7
N2—H2A···S1Bi0.882.803.557 (3)145.2
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

DPS and SP are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationD'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232.  Web of Science PubMed CAS Google Scholar
First citationEstévez-Hernández, O., Hidalgo-Hidalgo de Cisneros, J. L., Reguera, E. & Naranjo-Rodríguez, I. (2007). Sens. Actuators B Chem. 120, 766–772.  Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, D. P., Pratap, S., Butcher, R. J. & Gupta, S. K. (2012). Acta Cryst. E68, o1765.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds