inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Caesium diuranium hexa­telluride

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 28 August 2012; accepted 7 September 2012; online 19 September 2012)

Single crystals of CsU2Te6 were synthesized from the reaction of U, Te, and Cs2Te3 at 1273 K. CsU2Te6 crystallizes in the space group Cmcm in the CsTh2Te6 structure type. The asymmetric unit comprises one U (site symmetry m2m), one Cs (m2m; half-occupancy) and two Te atoms (m.. and m2m). The structure of CsU2Te6 consists of infinite [U2Te6] layers perpendicular to [010] separated by Cs atoms. There are infinite Te—Te—Te linear chains along [001].

Related literature

For related structures, see: Narducci & Ibers (1998[Narducci, A. A. & Ibers, J. A. (1998). Inorg. Chem. 37, 3798-3801.]); Chan et al. (2004[Chan, B. C., Hulvey, Z., Abney, K. D. & Dorhout, P. K. (2004). Inorg. Chem. 43, 2453-2455.]); Bugaris et al. (2010[Bugaris, D. E., Wells, D. M., Yao, J., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. (2010). Inorg. Chem. 49, 8381-8388.]); Choi et al. (1998[Choi, K.-S., Patschke, R., Billinge, S. J. L., Waner, M. J., Dantus, M. & Kanatzidis, M. G. (1998). J. Am. Chem. Soc. 120, 10706-10714.]); Cody & Ibers (1996[Cody, J. A. & Ibers, J. A. (1996). Inorg. Chem. 35, 3836-3838.]); Mizoguchi et al. (2006[Mizoguchi, H., Gray, D., Huang, F. Q. & Ibers, J. A. (2006). Inorg. Chem. 45, 3307-3311.]); Tougait et al. (1997[Tougait, O., Daoudi, A., Potel, M. & Noël, H. (1997). Mater. Res. Bull. 32, 1239-1245.]); Krönert & Plieth (1965[Krönert, W. & Plieth, K. (1965). Z. Anorg. Allg. Chem. 336, 207-218.]); Wu et al. (1997[Wu, E. J., Pell, M. A. & Ibers, J. A. (1997). J. Alloys Compd, 255, 106-109.]). For synthetic details, see: Bugaris & Ibers (2008[Bugaris, D. E. & Ibers, J. A. (2008). J. Solid State Chem. 181, 3189-3193.]); Haneveld & Jellinek (1969[Haneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123-129.]). For standardization of structural data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • CsU2Te6

  • Mr = 1374.57

  • Orthorhombic, C m c m

  • a = 4.2129 (2) Å

  • b = 25.6317 (11) Å

  • c = 6.0385 (2) Å

  • V = 652.06 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 40.65 mm−1

  • T = 100 K

  • 0.21 × 0.03 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical face-indexed (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.043, Tmax = 0.482

  • 5645 measured reflections

  • 611 independent reflections

  • 574 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.22

  • 611 reflections

  • 19 parameters

  • Δρmax = 3.89 e Å−3

  • Δρmin = −1.87 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

CsU2Te6 (Figure 1) belongs to the AAn2Q6 (A= K, Rb, Cs, or Tl; An = U, Th, or Np; Q = S, Se, or Te) family. Compounds in this family crystallize in two different structures types: CsTh2Te6 (Cody & Ibers, 1996) (space group Cmcm) and KTh2Se6 (Choi et al., 1998; Wu et al., 1997) (space group Immm). Both structure types have AnQ3 layers intercalated with A atoms. The difference between the two structure types is that each successive AnQ3 layer in the Cmcm structure type is shifted by a/2, whereas each successive AnQ3 layer in the Immm structure type is shifted by (a + b)/2 (Mizoguchi et al., 2006). The AnQ3 layers are analogous to those in the structure of ZrSe3 (Krönert & Plieth, 1965). The CsTh2Te6 structure type is adopted by KTh2Te6 (Wu et al., 1997) and Tl1.12UTe6 (Tougait et al., 1997). The KTh2Se6 structure type is adopted by RbTh2Se6 (Choi et al., 1998), K0.91U1.79S6 (Mizoguchi et al., 2006), KU2Se6 (Chan et al., 2004; Mizoguchi et al., 2006), CsU2Se6 (Choi et al., 1998), CsTh2Se6, Rb0.85U1.74S6, RbU2Se6, Cs0.88(La0.68U1.32)Se6, KNp2Se6, CsNp2Se6, and TlU2Se6 (Bugaris et al., 2010). The structures of the two last compounds are modulated and were refined in 5a x 5b x 5c and 4a x 4b superlattices, respectively.

Related literature top

For related structures, see: Narducci & Ibers (1998); Chan et al. (2004); Bugaris et al. (2010); Choi et al. (1998); Cody & Ibers (1996); Mizoguchi et al. (2006); Tougait et al. (1997); Krönert & Plieth (1965); Wu et al. (1997). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For standardization of structural data, see: Gelato & Parthé (1987).

Experimental top

Black needles of CsU2Te6 were obtained by direct combination of 238U (30 mg, 12.9 mmol), Te (20.9 mg, 16.4 mmol, Aldrich, 99.8%) and Cs2Te3 (24.6 mg, 37.9 mmol). Cs2Te3 was prepared by the stoichiometric reaction of Cs (Alfa Aesar, 99.8%) and Te in liquid NH3 at 194 K. U powder obtained by hydridization and decomposition of turnings (depleted, ORNL) by heating under vacuum, in a modification (Bugaris & Ibers, 2008) of a previous literature method (Haneveld & Jellinek, 1969). The starting reagents were loaded in a carbon-coated fused-silica tube under an Ar atmosphere in a glove box, then evacuated to 10 -4 Torr, and flame sealed. The tube was placed in computer-controlled furnace, heated to 1273 K in 48 h, held there for 4 h, cooled to 1223 K in 12 h and kept there for 8 d, then cooled to 293 K at 3 K/ h. Black needles were selected and analyzed by EDX and showed the formation of Cs:U:Te in a 1:2:6 ratio. The yield, based on U, was about 15% of the product.

Refinement top

The highest peak (3.9 e- Å-3) is 0.76 Å from atom Te1 and the deepest hole (1.9 e- Å-3) is 0.78 Å from atom U1. These should be compared with the height of 225 e- Å-3 of atom Te(1) in an electron density map.

Structure description top

CsU2Te6 (Figure 1) belongs to the AAn2Q6 (A= K, Rb, Cs, or Tl; An = U, Th, or Np; Q = S, Se, or Te) family. Compounds in this family crystallize in two different structures types: CsTh2Te6 (Cody & Ibers, 1996) (space group Cmcm) and KTh2Se6 (Choi et al., 1998; Wu et al., 1997) (space group Immm). Both structure types have AnQ3 layers intercalated with A atoms. The difference between the two structure types is that each successive AnQ3 layer in the Cmcm structure type is shifted by a/2, whereas each successive AnQ3 layer in the Immm structure type is shifted by (a + b)/2 (Mizoguchi et al., 2006). The AnQ3 layers are analogous to those in the structure of ZrSe3 (Krönert & Plieth, 1965). The CsTh2Te6 structure type is adopted by KTh2Te6 (Wu et al., 1997) and Tl1.12UTe6 (Tougait et al., 1997). The KTh2Se6 structure type is adopted by RbTh2Se6 (Choi et al., 1998), K0.91U1.79S6 (Mizoguchi et al., 2006), KU2Se6 (Chan et al., 2004; Mizoguchi et al., 2006), CsU2Se6 (Choi et al., 1998), CsTh2Se6, Rb0.85U1.74S6, RbU2Se6, Cs0.88(La0.68U1.32)Se6, KNp2Se6, CsNp2Se6, and TlU2Se6 (Bugaris et al., 2010). The structures of the two last compounds are modulated and were refined in 5a x 5b x 5c and 4a x 4b superlattices, respectively.

For related structures, see: Narducci & Ibers (1998); Chan et al. (2004); Bugaris et al. (2010); Choi et al. (1998); Cody & Ibers (1996); Mizoguchi et al. (2006); Tougait et al. (1997); Krönert & Plieth (1965); Wu et al. (1997). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For standardization of structural data, see: Gelato & Parthé (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Structure of CsU2Te6 viewed approximately down [100]. Displacement ellipsoids are drawn at the 95% probability level.
Caesium diuranium hexatelluride top
Crystal data top
CsU2Te6F(000) = 1102
Mr = 1374.57Dx = 7.001 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 2738 reflections
a = 4.2129 (2) Åθ = 6.4–60.9°
b = 25.6317 (11) ŵ = 40.65 mm1
c = 6.0385 (2) ÅT = 100 K
V = 652.06 (5) Å3Needle, black
Z = 20.21 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
611 independent reflections
Radiation source: fine-focus sealed tube574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 30.7°, θmin = 3.2°
Absorption correction: numerical
face-indexed (SADABS; Sheldrick, 2008a)
h = 53
Tmin = 0.043, Tmax = 0.482k = 3636
5645 measured reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.022Secondary atom site location: difference Fourier map
wR(F2) = 0.053 [1.00000]/[σ2(Fo2) + (0.0298Fo2)2]
S = 1.22(Δ/σ)max = 0.002
611 reflectionsΔρmax = 3.89 e Å3
19 parametersΔρmin = 1.87 e Å3
Crystal data top
CsU2Te6V = 652.06 (5) Å3
Mr = 1374.57Z = 2
Orthorhombic, CmcmMo Kα radiation
a = 4.2129 (2) ŵ = 40.65 mm1
b = 25.6317 (11) ÅT = 100 K
c = 6.0385 (2) Å0.21 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
611 independent reflections
Absorption correction: numerical
face-indexed (SADABS; Sheldrick, 2008a)
574 reflections with I > 2σ(I)
Tmin = 0.043, Tmax = 0.482Rint = 0.032
5645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02219 parameters
wR(F2) = 0.0530 restraints
S = 1.22Δρmax = 3.89 e Å3
611 reflectionsΔρmin = 1.87 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.00000.685078 (14)0.25000.00916 (11)
Cs10.00000.49825 (7)0.25000.0556 (7)0.50
Te10.00000.116539 (18)0.00249 (7)0.01098 (13)
Te20.00000.27322 (2)0.25000.00877 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0072 (2)0.01045 (17)0.00982 (17)0.0000.0000.000
Cs10.100 (2)0.0194 (9)0.0475 (12)0.0000.0000.000
Te10.0087 (3)0.0118 (2)0.0125 (2)0.0000.0000.00052 (15)
Te20.0079 (3)0.0090 (3)0.0095 (3)0.0000.0000.000
Geometric parameters (Å, º) top
U1—Te2i3.0890 (5)Cs1—Te1iii3.9830 (15)
U1—Te2ii3.0890 (5)Cs1—Te1ii3.9830 (15)
U1—Te1ii3.1237 (4)Cs1—Cs1xi4.2129 (2)
U1—Te1iii3.1237 (4)Cs1—Cs1xii4.2129 (2)
U1—Te1iv3.1237 (4)Te1—Te1xiii2.9892 (8)
U1—Te1i3.1237 (4)Te1—Te1xiv3.0493 (8)
U1—Te2v3.2028 (3)Te1—U1xv3.1237 (4)
U1—Te2vi3.2028 (3)Te1—U1xvi3.1237 (4)
U1—Cs14.7888 (19)Te1—Cs1vii3.9265 (14)
Cs1—Cs1v3.0206 (2)Te1—Cs1ix3.9265 (14)
Cs1—Cs1vi3.0206 (2)Te1—Cs1xvi3.9830 (15)
Cs1—Te1vii3.9266 (14)Te1—Cs1xv3.9830 (15)
Cs1—Te1viii3.9266 (14)Te2—U1xvi3.0889 (5)
Cs1—Te1ix3.9266 (14)Te2—U1xv3.0889 (5)
Cs1—Te1x3.9266 (14)Te2—U1v3.2028 (3)
Cs1—Te1iv3.9830 (15)Te2—U1vi3.2028 (3)
Cs1—Te1i3.9830 (15)
Te2i—U1—Te2ii85.989 (18)Te1ix—Cs1—Te1iii178.90 (3)
Te2i—U1—Te1ii150.600 (9)Te1x—Cs1—Te1iii135.105 (5)
Te2ii—U1—Te1ii87.220 (10)Te1iv—Cs1—Te1iii63.86 (3)
Te2i—U1—Te1iii150.600 (9)Te1i—Cs1—Te1iii80.85 (4)
Te2ii—U1—Te1iii87.220 (10)Cs1v—Cs1—Te1ii110.64 (7)
Te1ii—U1—Te1iii57.172 (15)Cs1vi—Cs1—Te1ii66.56 (5)
Te2i—U1—Te1iv87.220 (10)Te1vii—Cs1—Te1ii98.104 (9)
Te2ii—U1—Te1iv150.600 (9)Te1viii—Cs1—Te1ii115.619 (7)
Te1ii—U1—Te1iv111.555 (18)Te1ix—Cs1—Te1ii135.105 (5)
Te1iii—U1—Te1iv84.808 (13)Te1x—Cs1—Te1ii178.90 (3)
Te2i—U1—Te1i87.220 (10)Te1iv—Cs1—Te1ii80.85 (4)
Te2ii—U1—Te1i150.600 (9)Te1i—Cs1—Te1ii63.86 (3)
Te1ii—U1—Te1i84.808 (13)Te1iii—Cs1—Te1ii44.08 (2)
Te1iii—U1—Te1i111.555 (18)Cs1v—Cs1—Cs1xi90.0
Te1iv—U1—Te1i57.172 (15)Cs1vi—Cs1—Cs1xi90.0
Te2i—U1—Te2v75.873 (8)Te1vii—Cs1—Cs1xi57.556 (13)
Te2ii—U1—Te2v75.873 (8)Te1viii—Cs1—Cs1xi57.556 (13)
Te1ii—U1—Te2v129.697 (9)Te1ix—Cs1—Cs1xi122.442 (13)
Te1iii—U1—Te2v74.730 (11)Te1x—Cs1—Cs1xi122.442 (13)
Te1iv—U1—Te2v74.730 (11)Te1iv—Cs1—Cs1xi121.930 (13)
Te1i—U1—Te2v129.697 (9)Te1i—Cs1—Cs1xi121.930 (13)
Te2i—U1—Te2vi75.873 (8)Te1iii—Cs1—Cs1xi58.072 (13)
Te2ii—U1—Te2vi75.873 (8)Te1ii—Cs1—Cs1xi58.072 (13)
Te1ii—U1—Te2vi74.730 (11)Cs1v—Cs1—Cs1xii90.0
Te1iii—U1—Te2vi129.697 (9)Cs1vi—Cs1—Cs1xii90.0
Te1iv—U1—Te2vi129.697 (9)Te1vii—Cs1—Cs1xii122.442 (13)
Te1i—U1—Te2vi74.730 (11)Te1viii—Cs1—Cs1xii122.442 (13)
Te2v—U1—Te2vi141.01 (2)Te1ix—Cs1—Cs1xii57.556 (13)
Te2i—U1—Cs1137.005 (9)Te1x—Cs1—Cs1xii57.556 (13)
Te2ii—U1—Cs1137.005 (9)Te1iv—Cs1—Cs1xii58.072 (13)
Te1ii—U1—Cs155.777 (9)Te1i—Cs1—Cs1xii58.072 (13)
Te1iii—U1—Cs155.777 (9)Te1iii—Cs1—Cs1xii121.930 (13)
Te1iv—U1—Cs155.777 (9)Te1ii—Cs1—Cs1xii121.930 (13)
Te1i—U1—Cs155.777 (9)Cs1xi—Cs1—Cs1xii180.0
Te2v—U1—Cs1109.494 (12)Te1xiii—Te1—Te1xiv180.00 (3)
Te2vi—U1—Cs1109.494 (12)Te1xiii—Te1—U1xv61.414 (8)
Cs1v—Cs1—Cs1vi176.59 (14)Te1xiv—Te1—U1xv118.586 (8)
Cs1v—Cs1—Te1vii114.23 (7)Te1xiii—Te1—U1xvi61.414 (8)
Cs1vi—Cs1—Te1vii68.54 (5)Te1xiv—Te1—U1xvi118.586 (8)
Cs1v—Cs1—Te1viii68.54 (5)U1xv—Te1—U1xvi84.806 (13)
Cs1vi—Cs1—Te1viii114.23 (7)Te1xiii—Te1—Cs1vii112.848 (11)
Te1vii—Cs1—Te1viii45.70 (2)Te1xiv—Te1—Cs1vii67.152 (11)
Cs1v—Cs1—Te1ix114.23 (7)U1xv—Te1—Cs1vii165.69 (2)
Cs1vi—Cs1—Te1ix68.54 (5)U1xvi—Te1—Cs1vii104.208 (12)
Te1vii—Cs1—Te1ix64.89 (3)Te1xiii—Te1—Cs1ix112.848 (11)
Te1viii—Cs1—Te1ix82.94 (4)Te1xiv—Te1—Cs1ix67.152 (11)
Cs1v—Cs1—Te1x68.54 (5)U1xv—Te1—Cs1ix104.208 (12)
Cs1vi—Cs1—Te1x114.23 (7)U1xvi—Te1—Cs1ix165.69 (2)
Te1vii—Cs1—Te1x82.94 (4)Cs1vii—Te1—Cs1ix64.89 (3)
Te1viii—Cs1—Te1x64.89 (3)Te1xiii—Te1—Cs1xvi67.961 (10)
Te1ix—Cs1—Te1x45.70 (2)Te1xiv—Te1—Cs1xvi112.039 (10)
Cs1v—Cs1—Te1iv66.56 (5)U1xv—Te1—Cs1xvi127.246 (13)
Cs1vi—Cs1—Te1iv110.64 (7)U1xvi—Te1—Cs1xvi83.80 (2)
Te1vii—Cs1—Te1iv178.90 (3)Cs1vii—Te1—Cs1xvi44.895 (5)
Te1viii—Cs1—Te1iv135.105 (5)Cs1ix—Te1—Cs1xvi81.896 (9)
Te1ix—Cs1—Te1iv115.619 (7)Te1xiii—Te1—Cs1xv67.961 (10)
Te1x—Cs1—Te1iv98.104 (9)Te1xiv—Te1—Cs1xv112.039 (10)
Cs1v—Cs1—Te1i110.64 (7)U1xv—Te1—Cs1xv83.80 (2)
Cs1vi—Cs1—Te1i66.56 (5)U1xvi—Te1—Cs1xv127.246 (13)
Te1vii—Cs1—Te1i135.105 (5)Cs1vii—Te1—Cs1xv81.896 (9)
Te1viii—Cs1—Te1i178.90 (3)Cs1ix—Te1—Cs1xv44.895 (5)
Te1ix—Cs1—Te1i98.104 (9)Cs1xvi—Te1—Cs1xv63.86 (3)
Te1x—Cs1—Te1i115.619 (7)U1xvi—Te2—U1xv85.992 (18)
Te1iv—Cs1—Te1i44.08 (2)U1xvi—Te2—U1v104.126 (8)
Cs1v—Cs1—Te1iii66.56 (5)U1xv—Te2—U1v104.126 (8)
Cs1vi—Cs1—Te1iii110.64 (7)U1xvi—Te2—U1vi104.126 (8)
Te1vii—Cs1—Te1iii115.619 (7)U1xv—Te2—U1vi104.126 (8)
Te1viii—Cs1—Te1iii98.104 (9)U1v—Te2—U1vi141.01 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+1, z+1; (vi) x, y+1, z; (vii) x1/2, y+1/2, z; (viii) x1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z+1/2; (xi) x1, y, z; (xii) x+1, y, z; (xiii) x, y, z+1/2; (xiv) x, y, z1/2; (xv) x+1/2, y1/2, z; (xvi) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaCSU2Te6
Mr1374.57
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)100
a, b, c (Å)4.2129 (2), 25.6317 (11), 6.0385 (2)
V3)652.06 (5)
Z2
Radiation typeMo Kα
µ (mm1)40.65
Crystal size (mm)0.21 × 0.03 × 0.02
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
face-indexed (SADABS; Sheldrick, 2008a)
Tmin, Tmax0.043, 0.482
No. of measured, independent and
observed [I > 2σ(I)] reflections
5645, 611, 574
Rint0.032
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.22
No. of reflections611
No. of parameters19
Δρmax, Δρmin (e Å3)3.89, 1.87

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), CrystalMaker (Palmer, 2009).

 

Acknowledgements

The research was kindly supported at Northwestern University by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Science and Engineering Grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the Inter­national Institute of Nanotechnology (IIN).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugaris, D. E. & Ibers, J. A. (2008). J. Solid State Chem. 181, 3189-3193.  Web of Science CrossRef CAS Google Scholar
First citationBugaris, D. E., Wells, D. M., Yao, J., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. (2010). Inorg. Chem. 49, 8381–8388.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChan, B. C., Hulvey, Z., Abney, K. D. & Dorhout, P. K. (2004). Inorg. Chem. 43, 2453–2455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChoi, K.-S., Patschke, R., Billinge, S. J. L., Waner, M. J., Dantus, M. & Kanatzidis, M. G. (1998). J. Am. Chem. Soc. 120, 10706–10714.  Web of Science CrossRef CAS Google Scholar
First citationCody, J. A. & Ibers, J. A. (1996). Inorg. Chem. 35, 3836–3838.  CrossRef PubMed CAS Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHaneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123–129.  CrossRef CAS Web of Science Google Scholar
First citationKrönert, W. & Plieth, K. (1965). Z. Anorg. Allg. Chem. 336, 207–218.  Google Scholar
First citationMizoguchi, H., Gray, D., Huang, F. Q. & Ibers, J. A. (2006). Inorg. Chem. 45, 3307–3311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarducci, A. A. & Ibers, J. A. (1998). Inorg. Chem. 37, 3798–3801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTougait, O., Daoudi, A., Potel, M. & Noël, H. (1997). Mater. Res. Bull. 32, 1239–1245.  CrossRef CAS Web of Science Google Scholar
First citationWu, E. J., Pell, M. A. & Ibers, J. A. (1997). J. Alloys Compd, 255, 106–109.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds