inorganic compounds
Caesium diuranium hexatelluride
aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
*Correspondence e-mail: ibers@chem.northwestern.edu
Single crystals of CsU2Te6 were synthesized from the reaction of U, Te, and Cs2Te3 at 1273 K. CsU2Te6 crystallizes in the Cmcm in the CsTh2Te6 structure type. The comprises one U (site symmetry m2m), one Cs (m2m; half-occupancy) and two Te atoms (m.. and m2m). The structure of CsU2Te6 consists of infinite [U2Te6] layers perpendicular to [010] separated by Cs atoms. There are infinite Te—Te—Te linear chains along [001].
Related literature
For related structures, see: Narducci & Ibers (1998); Chan et al. (2004); Bugaris et al. (2010); Choi et al. (1998); Cody & Ibers (1996); Mizoguchi et al. (2006); Tougait et al. (1997); Krönert & Plieth (1965); Wu et al. (1997). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For standardization of structural data, see: Gelato & Parthé (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812038512/br2209sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038512/br2209Isup2.hkl
Black needles of CsU2Te6 were obtained by direct combination of 238U (30 mg, 12.9 mmol), Te (20.9 mg, 16.4 mmol, Aldrich, 99.8%) and Cs2Te3 (24.6 mg, 37.9 mmol). Cs2Te3 was prepared by the stoichiometric reaction of Cs (Alfa Aesar, 99.8%) and Te in liquid NH3 at 194 K. U powder obtained by hydridization and decomposition of turnings (depleted, ORNL) by heating under vacuum, in a modification (Bugaris & Ibers, 2008) of a previous literature method (Haneveld & Jellinek, 1969). The starting reagents were loaded in a carbon-coated fused-silica tube under an Ar atmosphere in a
then evacuated to 10 -4 Torr, and flame sealed. The tube was placed in computer-controlled furnace, heated to 1273 K in 48 h, held there for 4 h, cooled to 1223 K in 12 h and kept there for 8 d, then cooled to 293 K at 3 K/ h. Black needles were selected and analyzed by EDX and showed the formation of Cs:U:Te in a 1:2:6 ratio. The yield, based on U, was about 15% of the product.The highest peak (3.9 e- Å-3) is 0.76 Å from atom Te1 and the deepest hole (1.9 e- Å-3) is 0.78 Å from atom U1. These should be compared with the height of 225 e- Å-3 of atom Te(1) in an electron density map.
CsU2Te6 (Figure 1) belongs to the AAn2Q6 (A= K, Rb, Cs, or Tl; An = U, Th, or Np; Q = S, Se, or Te) family. Compounds in this family crystallize in two different structures types: CsTh2Te6 (Cody & Ibers, 1996) (space group Cmcm) and KTh2Se6 (Choi et al., 1998; Wu et al., 1997) (space group Immm). Both structure types have AnQ3 layers intercalated with A atoms. The difference between the two structure types is that each successive AnQ3 layer in the Cmcm structure type is shifted by a/2, whereas each successive AnQ3 layer in the Immm structure type is shifted by (a + b)/2 (Mizoguchi et al., 2006). The AnQ3 layers are analogous to those in the structure of ZrSe3 (Krönert & Plieth, 1965). The CsTh2Te6 structure type is adopted by KTh2Te6 (Wu et al., 1997) and Tl1.12UTe6 (Tougait et al., 1997). The KTh2Se6 structure type is adopted by RbTh2Se6 (Choi et al., 1998), K0.91U1.79S6 (Mizoguchi et al., 2006), KU2Se6 (Chan et al., 2004; Mizoguchi et al., 2006), CsU2Se6 (Choi et al., 1998), CsTh2Se6, Rb0.85U1.74S6, RbU2Se6, Cs0.88(La0.68U1.32)Se6, KNp2Se6, CsNp2Se6, and TlU2Se6 (Bugaris et al., 2010). The structures of the two last compounds are modulated and were refined in 5a x 5b x 5c and 4a x 4b superlattices, respectively.
For related structures, see: Narducci & Ibers (1998); Chan et al. (2004); Bugaris et al. (2010); Choi et al. (1998); Cody & Ibers (1996); Mizoguchi et al. (2006); Tougait et al. (1997); Krönert & Plieth (1965); Wu et al. (1997). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For standardization of structural data, see: Gelato & Parthé (1987).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).Fig. 1. Structure of CsU2Te6 viewed approximately down [100]. Displacement ellipsoids are drawn at the 95% probability level. |
CsU2Te6 | F(000) = 1102 |
Mr = 1374.57 | Dx = 7.001 Mg m−3 |
Orthorhombic, Cmcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2c 2 | Cell parameters from 2738 reflections |
a = 4.2129 (2) Å | θ = 6.4–60.9° |
b = 25.6317 (11) Å | µ = 40.65 mm−1 |
c = 6.0385 (2) Å | T = 100 K |
V = 652.06 (5) Å3 | Needle, black |
Z = 2 | 0.21 × 0.03 × 0.02 mm |
Bruker APEXII CCD diffractometer | 611 independent reflections |
Radiation source: fine-focus sealed tube | 574 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 30.7°, θmin = 3.2° |
Absorption correction: numerical face-indexed (SADABS; Sheldrick, 2008a) | h = −5→3 |
Tmin = 0.043, Tmax = 0.482 | k = −36→36 |
5645 measured reflections | l = −8→8 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.022 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.053 | [1.00000]/[σ2(Fo2) + (0.0298Fo2)2] |
S = 1.22 | (Δ/σ)max = 0.002 |
611 reflections | Δρmax = 3.89 e Å−3 |
19 parameters | Δρmin = −1.87 e Å−3 |
CsU2Te6 | V = 652.06 (5) Å3 |
Mr = 1374.57 | Z = 2 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 4.2129 (2) Å | µ = 40.65 mm−1 |
b = 25.6317 (11) Å | T = 100 K |
c = 6.0385 (2) Å | 0.21 × 0.03 × 0.02 mm |
Bruker APEXII CCD diffractometer | 611 independent reflections |
Absorption correction: numerical face-indexed (SADABS; Sheldrick, 2008a) | 574 reflections with I > 2σ(I) |
Tmin = 0.043, Tmax = 0.482 | Rint = 0.032 |
5645 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 19 parameters |
wR(F2) = 0.053 | 0 restraints |
S = 1.22 | Δρmax = 3.89 e Å−3 |
611 reflections | Δρmin = −1.87 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
U1 | 0.0000 | 0.685078 (14) | 0.2500 | 0.00916 (11) | |
Cs1 | 0.0000 | 0.49825 (7) | 0.2500 | 0.0556 (7) | 0.50 |
Te1 | 0.0000 | 0.116539 (18) | 0.00249 (7) | 0.01098 (13) | |
Te2 | 0.0000 | 0.27322 (2) | 0.2500 | 0.00877 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.0072 (2) | 0.01045 (17) | 0.00982 (17) | 0.000 | 0.000 | 0.000 |
Cs1 | 0.100 (2) | 0.0194 (9) | 0.0475 (12) | 0.000 | 0.000 | 0.000 |
Te1 | 0.0087 (3) | 0.0118 (2) | 0.0125 (2) | 0.000 | 0.000 | −0.00052 (15) |
Te2 | 0.0079 (3) | 0.0090 (3) | 0.0095 (3) | 0.000 | 0.000 | 0.000 |
U1—Te2i | 3.0890 (5) | Cs1—Te1iii | 3.9830 (15) |
U1—Te2ii | 3.0890 (5) | Cs1—Te1ii | 3.9830 (15) |
U1—Te1ii | 3.1237 (4) | Cs1—Cs1xi | 4.2129 (2) |
U1—Te1iii | 3.1237 (4) | Cs1—Cs1xii | 4.2129 (2) |
U1—Te1iv | 3.1237 (4) | Te1—Te1xiii | 2.9892 (8) |
U1—Te1i | 3.1237 (4) | Te1—Te1xiv | 3.0493 (8) |
U1—Te2v | 3.2028 (3) | Te1—U1xv | 3.1237 (4) |
U1—Te2vi | 3.2028 (3) | Te1—U1xvi | 3.1237 (4) |
U1—Cs1 | 4.7888 (19) | Te1—Cs1vii | 3.9265 (14) |
Cs1—Cs1v | 3.0206 (2) | Te1—Cs1ix | 3.9265 (14) |
Cs1—Cs1vi | 3.0206 (2) | Te1—Cs1xvi | 3.9830 (15) |
Cs1—Te1vii | 3.9266 (14) | Te1—Cs1xv | 3.9830 (15) |
Cs1—Te1viii | 3.9266 (14) | Te2—U1xvi | 3.0889 (5) |
Cs1—Te1ix | 3.9266 (14) | Te2—U1xv | 3.0889 (5) |
Cs1—Te1x | 3.9266 (14) | Te2—U1v | 3.2028 (3) |
Cs1—Te1iv | 3.9830 (15) | Te2—U1vi | 3.2028 (3) |
Cs1—Te1i | 3.9830 (15) | ||
Te2i—U1—Te2ii | 85.989 (18) | Te1ix—Cs1—Te1iii | 178.90 (3) |
Te2i—U1—Te1ii | 150.600 (9) | Te1x—Cs1—Te1iii | 135.105 (5) |
Te2ii—U1—Te1ii | 87.220 (10) | Te1iv—Cs1—Te1iii | 63.86 (3) |
Te2i—U1—Te1iii | 150.600 (9) | Te1i—Cs1—Te1iii | 80.85 (4) |
Te2ii—U1—Te1iii | 87.220 (10) | Cs1v—Cs1—Te1ii | 110.64 (7) |
Te1ii—U1—Te1iii | 57.172 (15) | Cs1vi—Cs1—Te1ii | 66.56 (5) |
Te2i—U1—Te1iv | 87.220 (10) | Te1vii—Cs1—Te1ii | 98.104 (9) |
Te2ii—U1—Te1iv | 150.600 (9) | Te1viii—Cs1—Te1ii | 115.619 (7) |
Te1ii—U1—Te1iv | 111.555 (18) | Te1ix—Cs1—Te1ii | 135.105 (5) |
Te1iii—U1—Te1iv | 84.808 (13) | Te1x—Cs1—Te1ii | 178.90 (3) |
Te2i—U1—Te1i | 87.220 (10) | Te1iv—Cs1—Te1ii | 80.85 (4) |
Te2ii—U1—Te1i | 150.600 (9) | Te1i—Cs1—Te1ii | 63.86 (3) |
Te1ii—U1—Te1i | 84.808 (13) | Te1iii—Cs1—Te1ii | 44.08 (2) |
Te1iii—U1—Te1i | 111.555 (18) | Cs1v—Cs1—Cs1xi | 90.0 |
Te1iv—U1—Te1i | 57.172 (15) | Cs1vi—Cs1—Cs1xi | 90.0 |
Te2i—U1—Te2v | 75.873 (8) | Te1vii—Cs1—Cs1xi | 57.556 (13) |
Te2ii—U1—Te2v | 75.873 (8) | Te1viii—Cs1—Cs1xi | 57.556 (13) |
Te1ii—U1—Te2v | 129.697 (9) | Te1ix—Cs1—Cs1xi | 122.442 (13) |
Te1iii—U1—Te2v | 74.730 (11) | Te1x—Cs1—Cs1xi | 122.442 (13) |
Te1iv—U1—Te2v | 74.730 (11) | Te1iv—Cs1—Cs1xi | 121.930 (13) |
Te1i—U1—Te2v | 129.697 (9) | Te1i—Cs1—Cs1xi | 121.930 (13) |
Te2i—U1—Te2vi | 75.873 (8) | Te1iii—Cs1—Cs1xi | 58.072 (13) |
Te2ii—U1—Te2vi | 75.873 (8) | Te1ii—Cs1—Cs1xi | 58.072 (13) |
Te1ii—U1—Te2vi | 74.730 (11) | Cs1v—Cs1—Cs1xii | 90.0 |
Te1iii—U1—Te2vi | 129.697 (9) | Cs1vi—Cs1—Cs1xii | 90.0 |
Te1iv—U1—Te2vi | 129.697 (9) | Te1vii—Cs1—Cs1xii | 122.442 (13) |
Te1i—U1—Te2vi | 74.730 (11) | Te1viii—Cs1—Cs1xii | 122.442 (13) |
Te2v—U1—Te2vi | 141.01 (2) | Te1ix—Cs1—Cs1xii | 57.556 (13) |
Te2i—U1—Cs1 | 137.005 (9) | Te1x—Cs1—Cs1xii | 57.556 (13) |
Te2ii—U1—Cs1 | 137.005 (9) | Te1iv—Cs1—Cs1xii | 58.072 (13) |
Te1ii—U1—Cs1 | 55.777 (9) | Te1i—Cs1—Cs1xii | 58.072 (13) |
Te1iii—U1—Cs1 | 55.777 (9) | Te1iii—Cs1—Cs1xii | 121.930 (13) |
Te1iv—U1—Cs1 | 55.777 (9) | Te1ii—Cs1—Cs1xii | 121.930 (13) |
Te1i—U1—Cs1 | 55.777 (9) | Cs1xi—Cs1—Cs1xii | 180.0 |
Te2v—U1—Cs1 | 109.494 (12) | Te1xiii—Te1—Te1xiv | 180.00 (3) |
Te2vi—U1—Cs1 | 109.494 (12) | Te1xiii—Te1—U1xv | 61.414 (8) |
Cs1v—Cs1—Cs1vi | 176.59 (14) | Te1xiv—Te1—U1xv | 118.586 (8) |
Cs1v—Cs1—Te1vii | 114.23 (7) | Te1xiii—Te1—U1xvi | 61.414 (8) |
Cs1vi—Cs1—Te1vii | 68.54 (5) | Te1xiv—Te1—U1xvi | 118.586 (8) |
Cs1v—Cs1—Te1viii | 68.54 (5) | U1xv—Te1—U1xvi | 84.806 (13) |
Cs1vi—Cs1—Te1viii | 114.23 (7) | Te1xiii—Te1—Cs1vii | 112.848 (11) |
Te1vii—Cs1—Te1viii | 45.70 (2) | Te1xiv—Te1—Cs1vii | 67.152 (11) |
Cs1v—Cs1—Te1ix | 114.23 (7) | U1xv—Te1—Cs1vii | 165.69 (2) |
Cs1vi—Cs1—Te1ix | 68.54 (5) | U1xvi—Te1—Cs1vii | 104.208 (12) |
Te1vii—Cs1—Te1ix | 64.89 (3) | Te1xiii—Te1—Cs1ix | 112.848 (11) |
Te1viii—Cs1—Te1ix | 82.94 (4) | Te1xiv—Te1—Cs1ix | 67.152 (11) |
Cs1v—Cs1—Te1x | 68.54 (5) | U1xv—Te1—Cs1ix | 104.208 (12) |
Cs1vi—Cs1—Te1x | 114.23 (7) | U1xvi—Te1—Cs1ix | 165.69 (2) |
Te1vii—Cs1—Te1x | 82.94 (4) | Cs1vii—Te1—Cs1ix | 64.89 (3) |
Te1viii—Cs1—Te1x | 64.89 (3) | Te1xiii—Te1—Cs1xvi | 67.961 (10) |
Te1ix—Cs1—Te1x | 45.70 (2) | Te1xiv—Te1—Cs1xvi | 112.039 (10) |
Cs1v—Cs1—Te1iv | 66.56 (5) | U1xv—Te1—Cs1xvi | 127.246 (13) |
Cs1vi—Cs1—Te1iv | 110.64 (7) | U1xvi—Te1—Cs1xvi | 83.80 (2) |
Te1vii—Cs1—Te1iv | 178.90 (3) | Cs1vii—Te1—Cs1xvi | 44.895 (5) |
Te1viii—Cs1—Te1iv | 135.105 (5) | Cs1ix—Te1—Cs1xvi | 81.896 (9) |
Te1ix—Cs1—Te1iv | 115.619 (7) | Te1xiii—Te1—Cs1xv | 67.961 (10) |
Te1x—Cs1—Te1iv | 98.104 (9) | Te1xiv—Te1—Cs1xv | 112.039 (10) |
Cs1v—Cs1—Te1i | 110.64 (7) | U1xv—Te1—Cs1xv | 83.80 (2) |
Cs1vi—Cs1—Te1i | 66.56 (5) | U1xvi—Te1—Cs1xv | 127.246 (13) |
Te1vii—Cs1—Te1i | 135.105 (5) | Cs1vii—Te1—Cs1xv | 81.896 (9) |
Te1viii—Cs1—Te1i | 178.90 (3) | Cs1ix—Te1—Cs1xv | 44.895 (5) |
Te1ix—Cs1—Te1i | 98.104 (9) | Cs1xvi—Te1—Cs1xv | 63.86 (3) |
Te1x—Cs1—Te1i | 115.619 (7) | U1xvi—Te2—U1xv | 85.992 (18) |
Te1iv—Cs1—Te1i | 44.08 (2) | U1xvi—Te2—U1v | 104.126 (8) |
Cs1v—Cs1—Te1iii | 66.56 (5) | U1xv—Te2—U1v | 104.126 (8) |
Cs1vi—Cs1—Te1iii | 110.64 (7) | U1xvi—Te2—U1vi | 104.126 (8) |
Te1vii—Cs1—Te1iii | 115.619 (7) | U1xv—Te2—U1vi | 104.126 (8) |
Te1viii—Cs1—Te1iii | 98.104 (9) | U1v—Te2—U1vi | 141.01 (2) |
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x−1/2, y+1/2, z; (iii) x−1/2, y+1/2, −z+1/2; (iv) x+1/2, y+1/2, −z+1/2; (v) −x, −y+1, −z+1; (vi) −x, −y+1, −z; (vii) −x−1/2, −y+1/2, −z; (viii) −x−1/2, −y+1/2, z+1/2; (ix) −x+1/2, −y+1/2, −z; (x) −x+1/2, −y+1/2, z+1/2; (xi) x−1, y, z; (xii) x+1, y, z; (xiii) x, y, −z+1/2; (xiv) x, y, −z−1/2; (xv) x+1/2, y−1/2, z; (xvi) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | CSU2Te6 |
Mr | 1374.57 |
Crystal system, space group | Orthorhombic, Cmcm |
Temperature (K) | 100 |
a, b, c (Å) | 4.2129 (2), 25.6317 (11), 6.0385 (2) |
V (Å3) | 652.06 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 40.65 |
Crystal size (mm) | 0.21 × 0.03 × 0.02 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Numerical face-indexed (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.043, 0.482 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5645, 611, 574 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.718 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.053, 1.22 |
No. of reflections | 611 |
No. of parameters | 19 |
Δρmax, Δρmin (e Å−3) | 3.89, −1.87 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), CrystalMaker (Palmer, 2009).
Acknowledgements
The research was kindly supported at Northwestern University by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Science and Engineering Grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the International Institute of Nanotechnology (IIN).
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bugaris, D. E. & Ibers, J. A. (2008). J. Solid State Chem. 181, 3189-3193. Web of Science CrossRef CAS Google Scholar
Bugaris, D. E., Wells, D. M., Yao, J., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. (2010). Inorg. Chem. 49, 8381–8388. Web of Science CrossRef CAS PubMed Google Scholar
Chan, B. C., Hulvey, Z., Abney, K. D. & Dorhout, P. K. (2004). Inorg. Chem. 43, 2453–2455. Web of Science CrossRef PubMed CAS Google Scholar
Choi, K.-S., Patschke, R., Billinge, S. J. L., Waner, M. J., Dantus, M. & Kanatzidis, M. G. (1998). J. Am. Chem. Soc. 120, 10706–10714. Web of Science CrossRef CAS Google Scholar
Cody, J. A. & Ibers, J. A. (1996). Inorg. Chem. 35, 3836–3838. CrossRef PubMed CAS Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Haneveld, A. J. K. & Jellinek, F. (1969). J. Less Common Met. 18, 123–129. CrossRef CAS Web of Science Google Scholar
Krönert, W. & Plieth, K. (1965). Z. Anorg. Allg. Chem. 336, 207–218. Google Scholar
Mizoguchi, H., Gray, D., Huang, F. Q. & Ibers, J. A. (2006). Inorg. Chem. 45, 3307–3311. Web of Science CrossRef PubMed CAS Google Scholar
Narducci, A. A. & Ibers, J. A. (1998). Inorg. Chem. 37, 3798–3801. Web of Science CrossRef PubMed CAS Google Scholar
Palmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England. Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tougait, O., Daoudi, A., Potel, M. & Noël, H. (1997). Mater. Res. Bull. 32, 1239–1245. CrossRef CAS Web of Science Google Scholar
Wu, E. J., Pell, M. A. & Ibers, J. A. (1997). J. Alloys Compd, 255, 106–109. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
CsU2Te6 (Figure 1) belongs to the AAn2Q6 (A= K, Rb, Cs, or Tl; An = U, Th, or Np; Q = S, Se, or Te) family. Compounds in this family crystallize in two different structures types: CsTh2Te6 (Cody & Ibers, 1996) (space group Cmcm) and KTh2Se6 (Choi et al., 1998; Wu et al., 1997) (space group Immm). Both structure types have AnQ3 layers intercalated with A atoms. The difference between the two structure types is that each successive AnQ3 layer in the Cmcm structure type is shifted by a/2, whereas each successive AnQ3 layer in the Immm structure type is shifted by (a + b)/2 (Mizoguchi et al., 2006). The AnQ3 layers are analogous to those in the structure of ZrSe3 (Krönert & Plieth, 1965). The CsTh2Te6 structure type is adopted by KTh2Te6 (Wu et al., 1997) and Tl1.12UTe6 (Tougait et al., 1997). The KTh2Se6 structure type is adopted by RbTh2Se6 (Choi et al., 1998), K0.91U1.79S6 (Mizoguchi et al., 2006), KU2Se6 (Chan et al., 2004; Mizoguchi et al., 2006), CsU2Se6 (Choi et al., 1998), CsTh2Se6, Rb0.85U1.74S6, RbU2Se6, Cs0.88(La0.68U1.32)Se6, KNp2Se6, CsNp2Se6, and TlU2Se6 (Bugaris et al., 2010). The structures of the two last compounds are modulated and were refined in 5a x 5b x 5c and 4a x 4b superlattices, respectively.