organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,4-Dimeth­­oxy­phen­yl)[2-(thio­phen-2-ylcarbon­yl)phen­yl]methanone

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 30 June 2012; accepted 29 August 2012; online 5 September 2012)

In the title compound, C20H16O4S, the thiophene ring makes dihedral angles of 72.9 (2) and 60.5 (2)°, respectively, with the dimethoxy benzene and phenyl rings. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a C(9) chain along the b axis. The S and C atoms of the thio­phene ring are disordered over two sets of sites [site occupancies = 0.675 (3) and 0.325 (3)]. A short inter­molecular S⋯O contact [3.084 (2) Å] is observed in the crystal structure, which also features C—H⋯π inter­actions.

Related literature

For background to thio­phene derivatives and their biological activity, see: Bonini et al. (2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6583.]); Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]); Brault et al. (2005[Brault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-760.]); Isloora et al. (2010[Isloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825-830.]); Xia et al. (2010[Xia, G.-M., Ji, M.-W., Lu, P., Sun, G.-X. & Xu, W.-F. (2010). Acta Cryst. E66, o148.]). For related structures, see: Asiri et al. (2010[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010). Acta Cryst. E66, o2358.]); Aslam et al. (2011[Aslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011). Acta Cryst. E67, o3215.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O4S

  • Mr = 352.40

  • Orthorhombic, P b c a

  • a = 15.7324 (6) Å

  • b = 10.7988 (5) Å

  • c = 20.4877 (11) Å

  • V = 3480.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.961

  • 22015 measured reflections

  • 4469 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.03

  • 4469 reflections

  • 236 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C17/C19/C20/S1′/C18′ ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.58 3.496 (2) 169
C1—H1ACg2ii 0.96 2.99 3.799 (3) 143
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiophene derivatives exhibit anti-HIVPR inhibition (Bonini et al., 2005) and antibreast cancer (Brault et al., 2005) activity. In addition, some of the benzo[b]thiophene derivatives show significant antimicrobial and anti-inflammatory activity (Isloora et al., 2010). Thiophene derivates have been viewed as significant compounds for applications in many fields (Xia et al., 2010). Schiff bases are well known ligands in coordination chemistry with a wide range of biological activities (Khan et al., 2009). Against this background, and in order to obtain detailed information on molecular the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths S1—C20 and O2—C8 are normal and comparable to the corresponding values observed in the related structure of (2E)-1-(2,5-Dimethyl-3-thienyl)-3-(2-methoxyphenyl)prop-2-en-1-one (Asiri et al., 2010). The thiophene ring system makes dihedral angles of 72.9 (2) ° and 60.5 (2) °, respectively, with the dimethoxy benzene and the phenyl ring. The atoms O1 and O2 are deviated by -0.002 (1) Å and -0.010 (1) Å from the least squares plane of the C2—C7 ring. The atoms C18 and S1 of the thiophene ring are disordered over two positions [site occupancies = 0.648 (2) and 0.352 (2)].

The atom C3 acts as a donor to the atom O4 of the neighbour molecule at (-x,-1/2 + y, -z). This hydrogen bond is involved in a motif C(9) chain along b axis. Interestingly, a short non-hydrogen intermolecular contact between S1···O2 [3.084 (2) Å] at (1/2 - x,1 - y,-1/2 + z) was observed in the crystal structure. In addition to van der Waals interactions, the crystal packing is stabilized by C—H···π interaction between one of the methyl H atom (H1A) and the centroid (Cg2) of the thiophene ring (Table 1).

Related literature top

For background to thiophene derivatives and their biological activity, see: Bonini et al. (2005); Khan et al. (2009); Brault et al. (2005); Isloora et al. (2010); Xia et al. (2010). For related structures, see: Asiri et al. (2010); Aslam et al. (2011).

Experimental top

To a stirred suspension of benzoic (1 g, 3.44 mmol) in dry THF (20 ml) lead tetra acetate (1.5 g, 3.42 mmol) was added and refluxed at 50 °C for half an hour. The reaction mixture was then poured into water (200 ml) and extracted with ethyl acetate (2x20 ml), washed with brine solution and dried (Na2SO4). The removal of solvent in vacuo afforded the crude product upon crystallization from methanol furnished the title compound as a color less solid.

Refinement top

The S and C atoms of the thiophene ring are disordered over two positions (C18/C18' and S1/S1') with refined occupancies of 0.675 (3) and 0.325 (3). Equivalent C-C and C-S distances involving the disordered atoms were restrained to be equal with an effective e.s.d. of 0.01Å. The disordered C atoms were only isotropically refined. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Structure description top

Thiophene derivatives exhibit anti-HIVPR inhibition (Bonini et al., 2005) and antibreast cancer (Brault et al., 2005) activity. In addition, some of the benzo[b]thiophene derivatives show significant antimicrobial and anti-inflammatory activity (Isloora et al., 2010). Thiophene derivates have been viewed as significant compounds for applications in many fields (Xia et al., 2010). Schiff bases are well known ligands in coordination chemistry with a wide range of biological activities (Khan et al., 2009). Against this background, and in order to obtain detailed information on molecular the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths S1—C20 and O2—C8 are normal and comparable to the corresponding values observed in the related structure of (2E)-1-(2,5-Dimethyl-3-thienyl)-3-(2-methoxyphenyl)prop-2-en-1-one (Asiri et al., 2010). The thiophene ring system makes dihedral angles of 72.9 (2) ° and 60.5 (2) °, respectively, with the dimethoxy benzene and the phenyl ring. The atoms O1 and O2 are deviated by -0.002 (1) Å and -0.010 (1) Å from the least squares plane of the C2—C7 ring. The atoms C18 and S1 of the thiophene ring are disordered over two positions [site occupancies = 0.648 (2) and 0.352 (2)].

The atom C3 acts as a donor to the atom O4 of the neighbour molecule at (-x,-1/2 + y, -z). This hydrogen bond is involved in a motif C(9) chain along b axis. Interestingly, a short non-hydrogen intermolecular contact between S1···O2 [3.084 (2) Å] at (1/2 - x,1 - y,-1/2 + z) was observed in the crystal structure. In addition to van der Waals interactions, the crystal packing is stabilized by C—H···π interaction between one of the methyl H atom (H1A) and the centroid (Cg2) of the thiophene ring (Table 1).

For background to thiophene derivatives and their biological activity, see: Bonini et al. (2005); Khan et al. (2009); Brault et al. (2005); Isloora et al. (2010); Xia et al. (2010). For related structures, see: Asiri et al. (2010); Aslam et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular structure showing the major and minor occupied site of the disordered atoms.
(3,4-Dimethoxyphenyl)[2-(thiophen-2-ylcarbonyl)phenyl]methanone top
Crystal data top
C20H16O4SF(000) = 1472
Mr = 352.40Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4469 reflections
a = 15.7324 (6) Åθ = 2.4–28.6°
b = 10.7988 (5) ŵ = 0.21 mm1
c = 20.4877 (11) ÅT = 293 K
V = 3480.7 (3) Å3Block, white crystalline
Z = 80.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4469 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 28.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2112
Tmin = 0.950, Tmax = 0.961k = 1413
22015 measured reflectionsl = 2627
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.6807P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4469 reflectionsΔρmax = 0.19 e Å3
236 parametersΔρmin = 0.20 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0032 (4)
Crystal data top
C20H16O4SV = 3480.7 (3) Å3
Mr = 352.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.7324 (6) ŵ = 0.21 mm1
b = 10.7988 (5) ÅT = 293 K
c = 20.4877 (11) Å0.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4469 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2968 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.961Rint = 0.029
22015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
4469 reflectionsΔρmin = 0.20 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.07420 (12)0.29212 (17)0.52465 (9)0.0702 (5)
H1A0.09270.27500.56840.105*
H1B0.09390.22780.49600.105*
H1C0.01320.29530.52350.105*
C20.08842 (9)0.44770 (14)0.44314 (7)0.0447 (3)
C30.03902 (9)0.38431 (14)0.39886 (7)0.0487 (4)
H30.01650.30750.40990.058*
C40.02285 (9)0.43475 (14)0.33805 (7)0.0471 (3)
H40.01100.39170.30860.056*
C50.05654 (8)0.54875 (13)0.32047 (7)0.0419 (3)
C60.10764 (8)0.61269 (13)0.36538 (7)0.0432 (3)
H60.13130.68850.35390.052*
C70.12280 (9)0.56397 (14)0.42603 (7)0.0448 (3)
C80.20416 (12)0.73733 (16)0.46082 (9)0.0669 (5)
H8A0.23640.76490.49790.100*
H8B0.15840.79420.45280.100*
H8C0.24040.73370.42320.100*
C100.02731 (9)0.55919 (13)0.21288 (7)0.0432 (3)
C110.10859 (9)0.55142 (16)0.23926 (9)0.0567 (4)
H110.11640.56290.28380.068*
C120.17778 (10)0.52680 (18)0.19982 (10)0.0672 (5)
H120.23200.52290.21780.081*
C130.16671 (11)0.50815 (17)0.13424 (10)0.0664 (5)
H130.21340.49120.10790.080*
C140.08662 (10)0.51440 (15)0.10716 (8)0.0567 (4)
H140.07960.50110.06260.068*
C150.01622 (9)0.54042 (13)0.14591 (7)0.0443 (3)
C160.06748 (10)0.54873 (14)0.11162 (7)0.0496 (4)
C170.13814 (9)0.47030 (14)0.13224 (7)0.0464 (3)
C90.04505 (9)0.60239 (13)0.25482 (7)0.0436 (3)
O10.10795 (7)0.40790 (11)0.50401 (5)0.0615 (3)
O20.17058 (8)0.61823 (10)0.47356 (5)0.0634 (3)
O30.09238 (7)0.68272 (10)0.23367 (5)0.0606 (3)
O40.07382 (8)0.61470 (13)0.06358 (6)0.0795 (4)
C190.22592 (12)0.31667 (19)0.17820 (10)0.0741 (5)
H190.24190.25110.20500.089*
C200.27476 (11)0.37328 (19)0.13340 (10)0.0747 (6)
H200.33090.35010.12630.090*
S10.22947 (5)0.48657 (9)0.09150 (7)0.0691 (3)0.675 (3)
C180.1412 (3)0.3789 (4)0.1768 (2)0.0592 (17)*0.675 (3)
H180.09590.35710.20360.071*0.675 (3)
S1'0.13250 (13)0.3528 (2)0.18931 (11)0.0487 (5)0.325 (3)
C18'0.2189 (6)0.4727 (13)0.1078 (7)0.160 (9)*0.325 (3)
H18'0.23730.53160.07780.192*0.325 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0799 (12)0.0676 (11)0.0631 (11)0.0014 (9)0.0013 (9)0.0211 (9)
C20.0434 (7)0.0473 (8)0.0434 (8)0.0063 (6)0.0002 (6)0.0017 (6)
C30.0491 (8)0.0439 (8)0.0530 (9)0.0046 (6)0.0002 (7)0.0035 (7)
C40.0457 (8)0.0474 (8)0.0481 (8)0.0060 (6)0.0023 (6)0.0029 (7)
C50.0387 (7)0.0450 (8)0.0420 (7)0.0002 (6)0.0029 (6)0.0017 (6)
C60.0409 (7)0.0412 (7)0.0475 (8)0.0024 (6)0.0012 (6)0.0024 (6)
C70.0410 (7)0.0457 (8)0.0477 (8)0.0011 (6)0.0031 (6)0.0060 (7)
C80.0731 (11)0.0563 (10)0.0713 (11)0.0111 (9)0.0122 (9)0.0112 (9)
C100.0414 (7)0.0428 (8)0.0455 (8)0.0021 (6)0.0003 (6)0.0048 (6)
C110.0468 (8)0.0665 (10)0.0567 (9)0.0039 (7)0.0043 (7)0.0047 (8)
C120.0392 (9)0.0766 (12)0.0860 (13)0.0023 (8)0.0010 (8)0.0088 (10)
C130.0522 (10)0.0669 (11)0.0801 (13)0.0023 (8)0.0214 (9)0.0003 (10)
C140.0617 (10)0.0565 (10)0.0520 (9)0.0055 (8)0.0131 (8)0.0006 (8)
C150.0479 (8)0.0403 (7)0.0448 (8)0.0039 (6)0.0027 (6)0.0035 (6)
C160.0590 (9)0.0486 (8)0.0411 (8)0.0023 (7)0.0036 (7)0.0010 (7)
C170.0464 (8)0.0490 (8)0.0438 (8)0.0003 (6)0.0065 (6)0.0059 (7)
C90.0436 (7)0.0431 (7)0.0441 (8)0.0003 (6)0.0049 (6)0.0030 (6)
O10.0726 (7)0.0614 (7)0.0506 (6)0.0004 (6)0.0104 (5)0.0102 (5)
O20.0760 (8)0.0576 (7)0.0565 (7)0.0122 (6)0.0208 (6)0.0018 (5)
O30.0676 (7)0.0615 (7)0.0527 (6)0.0207 (6)0.0014 (5)0.0064 (5)
O40.0883 (9)0.0898 (9)0.0605 (7)0.0172 (7)0.0181 (7)0.0303 (7)
C190.0794 (13)0.0703 (12)0.0724 (12)0.0139 (10)0.0122 (10)0.0096 (10)
C200.0453 (9)0.0834 (13)0.0954 (15)0.0117 (9)0.0010 (10)0.0217 (12)
S10.0501 (4)0.0695 (5)0.0876 (6)0.0022 (3)0.0239 (4)0.0130 (4)
S1'0.0502 (9)0.0473 (9)0.0485 (9)0.0120 (7)0.0026 (7)0.0027 (8)
Geometric parameters (Å, º) top
C1—O11.423 (2)C11—H110.9300
C1—H1A0.9600C12—C131.370 (3)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—C141.378 (2)
C2—O11.3544 (17)C13—H130.9300
C2—C31.377 (2)C14—C151.391 (2)
C2—C71.411 (2)C14—H140.9300
C3—C41.383 (2)C15—C161.495 (2)
C3—H30.9300C16—O41.2191 (18)
C4—C51.388 (2)C16—C171.460 (2)
C4—H40.9300C17—C181.345 (4)
C5—C61.4034 (19)C17—C18'1.366 (9)
C5—C91.4756 (19)C17—S11.6709 (17)
C6—C71.370 (2)C17—S1'1.728 (3)
C6—H60.9300C9—O31.2225 (16)
C7—O21.3625 (17)C19—C201.344 (3)
C8—O21.415 (2)C19—C181.493 (5)
C8—H8A0.9600C19—S1'1.538 (3)
C8—H8B0.9600C19—H190.9300
C8—H8C0.9600C20—C18'1.483 (10)
C10—C111.391 (2)C20—S11.656 (2)
C10—C151.3979 (19)C20—H200.9300
C10—C91.501 (2)C18—H180.9300
C11—C121.382 (2)C18'—H18'0.9300
O1—C1—H1A109.5C13—C14—H14119.7
O1—C1—H1B109.5C15—C14—H14119.7
H1A—C1—H1B109.5C14—C15—C10119.35 (14)
O1—C1—H1C109.5C14—C15—C16116.43 (13)
H1A—C1—H1C109.5C10—C15—C16124.22 (13)
H1B—C1—H1C109.5O4—C16—C17120.68 (14)
O1—C2—C3125.24 (14)O4—C16—C15119.11 (14)
O1—C2—C7115.09 (13)C17—C16—C15119.99 (13)
C3—C2—C7119.67 (13)C18—C17—C18'103.3 (6)
C2—C3—C4120.10 (14)C18—C17—C16130.5 (2)
C2—C3—H3120.0C18'—C17—C16126.3 (5)
C4—C3—H3120.0C18—C17—S1112.7 (2)
C3—C4—C5120.85 (13)C18'—C17—S110.0 (5)
C3—C4—H4119.6C16—C17—S1116.69 (11)
C5—C4—H4119.6C18—C17—S1'5.0 (3)
C4—C5—C6119.02 (13)C18'—C17—S1'108.0 (5)
C4—C5—C9122.54 (13)C16—C17—S1'125.64 (12)
C6—C5—C9118.33 (12)S1—C17—S1'117.35 (12)
C7—C6—C5120.35 (13)O3—C9—C5121.81 (13)
C7—C6—H6119.8O3—C9—C10118.66 (13)
C5—C6—H6119.8C5—C9—C10119.52 (12)
O2—C7—C6125.38 (13)C2—O1—C1117.90 (13)
O2—C7—C2114.62 (13)C7—O2—C8117.72 (12)
C6—C7—C2120.00 (13)C20—C19—C18107.0 (2)
O2—C8—H8A109.5C20—C19—S1'122.1 (2)
O2—C8—H8B109.5C18—C19—S1'15.25 (19)
H8A—C8—H8B109.5C20—C19—H19126.5
O2—C8—H8C109.5C18—C19—H19126.5
H8A—C8—H8C109.5S1'—C19—H19111.3
H8B—C8—H8C109.5C19—C20—C18'103.4 (4)
C11—C10—C15119.17 (14)C19—C20—S1116.37 (14)
C11—C10—C9119.58 (13)C18'—C20—S113.3 (4)
C15—C10—C9120.83 (13)C19—C20—H20121.8
C12—C11—C10120.58 (16)C18'—C20—H20134.6
C12—C11—H11119.7S1—C20—H20121.8
C10—C11—H11119.7C20—S1—C1791.91 (11)
C13—C12—C11120.11 (16)C17—C18—C19112.0 (3)
C13—C12—H12119.9C17—C18—H18124.0
C11—C12—H12119.9C19—C18—H18124.0
C12—C13—C14120.26 (16)C19—S1'—C1792.13 (16)
C12—C13—H13119.9C17—C18'—C20114.1 (8)
C14—C13—H13119.9C17—C18'—H18'123.0
C13—C14—C15120.52 (16)C20—C18'—H18'123.0
O1—C2—C3—C4179.55 (13)C4—C5—C9—C1021.6 (2)
C7—C2—C3—C40.3 (2)C6—C5—C9—C10162.15 (12)
C2—C3—C4—C50.6 (2)C11—C10—C9—O3131.30 (15)
C3—C4—C5—C60.1 (2)C15—C10—C9—O341.2 (2)
C3—C4—C5—C9176.30 (13)C11—C10—C9—C547.76 (19)
C4—C5—C6—C71.1 (2)C15—C10—C9—C5139.72 (14)
C9—C5—C6—C7177.44 (12)C3—C2—O1—C10.8 (2)
C5—C6—C7—O2179.37 (13)C7—C2—O1—C1179.09 (14)
C5—C6—C7—C21.3 (2)C6—C7—O2—C83.2 (2)
O1—C2—C7—O20.10 (18)C2—C7—O2—C8177.42 (14)
C3—C2—C7—O2179.99 (13)C18—C19—C20—C18'2.3 (7)
O1—C2—C7—C6179.46 (12)S1'—C19—C20—C18'4.5 (7)
C3—C2—C7—C60.6 (2)C18—C19—C20—S11.0 (3)
C15—C10—C11—C120.7 (2)S1'—C19—C20—S11.2 (3)
C9—C10—C11—C12171.96 (15)C19—C20—S1—C171.00 (17)
C10—C11—C12—C130.9 (3)C18'—C20—S1—C1713 (3)
C11—C12—C13—C140.3 (3)C18—C17—S1—C200.7 (3)
C12—C13—C14—C150.4 (3)C18'—C17—S1—C2019 (4)
C13—C14—C15—C100.5 (2)C16—C17—S1—C20176.59 (13)
C13—C14—C15—C16178.31 (15)S1'—C17—S1—C202.63 (14)
C11—C10—C15—C140.0 (2)C18'—C17—C18—C193.2 (8)
C9—C10—C15—C14172.56 (13)C16—C17—C18—C19175.46 (19)
C11—C10—C15—C16178.76 (14)S1—C17—C18—C190.3 (4)
C9—C10—C15—C166.2 (2)S1'—C17—C18—C19160 (3)
C14—C15—C16—O450.8 (2)C20—C19—C18—C170.4 (4)
C10—C15—C16—O4127.95 (17)S1'—C19—C18—C17172.7 (12)
C14—C15—C16—C17123.81 (15)C20—C19—S1'—C172.5 (2)
C10—C15—C16—C1757.4 (2)C18—C19—S1'—C175.3 (9)
O4—C16—C17—C18169.2 (3)C18—C17—S1'—C1918 (3)
C15—C16—C17—C185.4 (4)C18'—C17—S1'—C190.7 (8)
O4—C16—C17—C18'9.2 (9)C16—C17—S1'—C19176.50 (15)
C15—C16—C17—C18'176.3 (9)S1—C17—S1'—C193.15 (16)
O4—C16—C17—S15.9 (2)C18—C17—C18'—C204.8 (13)
C15—C16—C17—S1179.57 (11)C16—C17—C18'—C20173.9 (6)
O4—C16—C17—S1'167.53 (16)S1—C17—C18'—C20157 (5)
C15—C16—C17—S1'7.0 (2)S1'—C17—C18'—C203.3 (13)
C4—C5—C9—O3159.37 (14)C19—C20—C18'—C174.7 (13)
C6—C5—C9—O316.9 (2)S1—C20—C18'—C17162 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C17/C19/C20/S1'/C18' ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.583.496 (2)169
C1—H1A···Cg2ii0.962.993.799 (3)143
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H16O4S
Mr352.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.7324 (6), 10.7988 (5), 20.4877 (11)
V3)3480.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
22015, 4469, 2968
Rint0.029
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.03
No. of reflections4469
No. of parameters236
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C17/C19/C20/S1'/C18' ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.583.496 (2)169.0
C1—H1A···Cg2ii0.962.993.799 (3)143
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010). Acta Cryst. E66, o2358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011). Acta Cryst. E67, o3215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6583.  Web of Science CrossRef CAS Google Scholar
First citationBrault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIsloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science PubMed Google Scholar
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, G.-M., Ji, M.-W., Lu, P., Sun, G.-X. & Xu, W.-F. (2010). Acta Cryst. E66, o148.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds