metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η6-Benzene)­(benzyl­di­phenyl­phos­phane)di­chloridoruthenium(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: daviswl24@yahoo.com

(Received 16 August 2012; accepted 28 August 2012; online 1 September 2012)

In the title compound, [RuCl2(C6H6)(C19H17P)], the RuII atom has a distorted pseudo-octa­hedral coordination environment with the metrical parameters around the metallic core as Ru—centroid(η6-benzene) = 1.6894 (11) Å, Ru—P = 2.3466 (6), Ru—Cl(avg.) = 2.4127 (7) Å; Cl—Ru—Cl = 88.07 (2) and Cl—Ru—P = 82.77 (2), 87.65 (2)°. The effective cone angle for the benzyl­diphenyl­phosphane was calculated to be 143°. In the crystal C—H⋯Cl and C—H⋯π inter­actions are observed.

Related literature

For catalytic activity studies on RuII–arene complexes, see: Chen et al. (2002[Chen, Y., Valentini, M., Pregosin, P. S. & Albinati, A. (2002). Inorg. Chim. Acta, 327, 4-14.]); De Clercq & Verpoort (2002[De Clercq, B. & Verpoort, F. (2002). J. Mol. Catal. A, 180, 67-76.]); Wang et al. (2011[Wang, L., Yang, Q., Fu, H.-Y., Chen, H., Yuan, M.-L. & Li, R.-X. (2011). Appl. Organomet. Chem. 25, 626-631.]); Aydemir et al. (2011[Aydemir, M., Baysal, A., Meric, N., Kayan, C., Gümgüm, B., Özkar, S. & Şahin, E. (2011). Inorg. Chim. Acta 356, 114-120.]). For background to ring-opening metathesis polymerization with Ru–arene complexes, see: Stumpf et al. (1995[Stumpf, A. W., Saive, E., Demonceau, A. & Noels, A. F. (1995). J. Chem. Soc. Chem. Commun. pp. 1127-1128.]). For background to cone angles, see: Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]); Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C6H6)(C19H17P)]

  • Mr = 526.37

  • Orthorhombic, P b c a

  • a = 16.8415 (9) Å

  • b = 14.1497 (7) Å

  • c = 18.6919 (8) Å

  • V = 4454.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 100 K

  • 0.09 × 0.03 × 0.01 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.429, Tmax = 0.629

  • 34735 measured reflections

  • 5544 independent reflections

  • 4056 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 1.01

  • 5544 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl2i 0.95 2.85 3.568 (3) 133
C16—H16⋯Cl1ii 0.95 2.8 3.716 (3) 163
C2—H2⋯Cl2iii 0.95 2.87 3.733 (3) 151
C24—H24⋯Cl2iv 0.95 2.78 3.685 (3) 161
C21—H21⋯Cg1v 0.95 2.89 3.673 (3) 140
C4—H4⋯Cg2vi 0.95 3.00 3.789 (3) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) -x, -y+1, -z+2; (v) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The activity of the half-sandwich Ru(II)-arene complexes are well known in the catalytic transfer hydrogenation of carbonyl compounds (Chen et al., 2002; De Clercq & Verpoort, 2002; Wang et al., 2011; Aydemir et al., 2011) and for ring-opening metathesis polymerization (Stumpf et al., 1995). Reported here is the η6-Ru compound containing benzyldiphenylphosphane as part of our ongoing investigation into these type of complexes.

Molecules of the title compound packs in the orthorhombic space group Pbca (Z = 8), and reveals the typical piano-stool geometry for these complexes. The coordination sphere of the ruthenium is occupied by a benzene, benzyldiphenylphosphane and two chloride atoms (see Fig. 1). The distance between Ru and the centroid of the π-bonded η6-benzene ligand is 1.6894 (11) Å and the mean Ru—C bond distance is 2.198 (3) Å. The coordination of the remaining ligands to the Ru atom shows deviation from the typical octahedral geometry with Cl—Ru—Cl = 88.02 (2) and Cl—Ru—P = 82.77 (2), 87.65 (2)°. The bond distances of Ru—P = 2.346 (6) and Ru—Cl(avg.) = 2.412 (6) Å are within normal ranges (Allen, 2002).

To describe the steric demand of phosphane ligands the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained from the title compound (and adjusting the Ru—P bond distance to 2.28 Å) we calculated an effective cone angle (Otto, 2001) of 143°. The small value for the cone angle can be ascribed to the orientation of the benzylic group of the phosphane ligand, pointing away from the metal core. This orientation is fairly rare as a CSD search shows 5 out of 28 hits with this conformation (Allen, 2002; search conducted on all transition metals with this phosphane ligand). The preferred orientation of the benzyldiphenylphosphane ligand could be linked to the number of C–H···Cl and C–H···π interactions associated with it (see Figure 2, Table 1).

Related literature top

For catalytic activity studies on RuII–arene complexes, see: Chen et al. (2002); De Clercq & Verpoort (2002); Wang et al. (2011); Aydemir et al. (2011). For background to ring-opening metathesis polymerization with Ru–arene complexes, see: Stumpf et al. (1995). For background to cone angles, see: Otto (2001); Tolman (1977). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

[(C6H6)RuCl2]2 (50.0 mg, 0.10 mmol) and benzyldiphenylphosphane (60.4 mg, 0.22 mmol) in benzene (25 ml) were refluxed under argon for 4 h. The resulting red solution was filtered, the filtrate concentrated under reduced pressure to ca 5 ml whereby a sample suitable for single-crystal X-ray diffraction was obtained as red plates. Analytical data: 31P {H} NMR (CDCl3, 161.99 MHz): δ (p.p.m.) 30.34 (s). 1H NMR (CDCl3, 400 MHz): δ (p.p.m.) 2.15 (s, 2H, CH2); 5.30 (s, 6H, C6H6); 6.43 (d, 2H, Ar—H of C7H7); 6.85 (t, 2H, Ar—H of C7H7); 6.97 (t, 1H, Ar—H of C7H7); 7.35 (d, 4H, Ar—H of C6H5); 7.44 (t, 2H, Ar—H of C6H5); 7.67 (t, 4H, Ar—H of C6H5).

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95–0.99) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

The activity of the half-sandwich Ru(II)-arene complexes are well known in the catalytic transfer hydrogenation of carbonyl compounds (Chen et al., 2002; De Clercq & Verpoort, 2002; Wang et al., 2011; Aydemir et al., 2011) and for ring-opening metathesis polymerization (Stumpf et al., 1995). Reported here is the η6-Ru compound containing benzyldiphenylphosphane as part of our ongoing investigation into these type of complexes.

Molecules of the title compound packs in the orthorhombic space group Pbca (Z = 8), and reveals the typical piano-stool geometry for these complexes. The coordination sphere of the ruthenium is occupied by a benzene, benzyldiphenylphosphane and two chloride atoms (see Fig. 1). The distance between Ru and the centroid of the π-bonded η6-benzene ligand is 1.6894 (11) Å and the mean Ru—C bond distance is 2.198 (3) Å. The coordination of the remaining ligands to the Ru atom shows deviation from the typical octahedral geometry with Cl—Ru—Cl = 88.02 (2) and Cl—Ru—P = 82.77 (2), 87.65 (2)°. The bond distances of Ru—P = 2.346 (6) and Ru—Cl(avg.) = 2.412 (6) Å are within normal ranges (Allen, 2002).

To describe the steric demand of phosphane ligands the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained from the title compound (and adjusting the Ru—P bond distance to 2.28 Å) we calculated an effective cone angle (Otto, 2001) of 143°. The small value for the cone angle can be ascribed to the orientation of the benzylic group of the phosphane ligand, pointing away from the metal core. This orientation is fairly rare as a CSD search shows 5 out of 28 hits with this conformation (Allen, 2002; search conducted on all transition metals with this phosphane ligand). The preferred orientation of the benzyldiphenylphosphane ligand could be linked to the number of C–H···Cl and C–H···π interactions associated with it (see Figure 2, Table 1).

For catalytic activity studies on RuII–arene complexes, see: Chen et al. (2002); De Clercq & Verpoort (2002); Wang et al. (2011); Aydemir et al. (2011). For background to ring-opening metathesis polymerization with Ru–arene complexes, see: Stumpf et al. (1995). For background to cone angles, see: Otto (2001); Tolman (1977). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title complex, (I) showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I) showing the C–H···Cl and C–H···π interactions (indicated by red dashed lines).
(η6-Benzene)(benzyldiphenylphosphane)dichloridoruthenium(II) top
Crystal data top
[RuCl2(C6H6)(C19H17P)]F(000) = 2128
Mr = 526.37Dx = 1.57 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5707 reflections
a = 16.8415 (9) Åθ = 2.2–28.1°
b = 14.1497 (7) ŵ = 1.03 mm1
c = 18.6919 (8) ÅT = 100 K
V = 4454.3 (4) Å3Plate, red
Z = 80.09 × 0.03 × 0.01 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
5544 independent reflections
Radiation source: sealed tube4056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.2°
φ and ω scansh = 1022
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1818
Tmin = 0.429, Tmax = 0.629l = 2424
34735 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.024P)2 + 3.1419P]
where P = (Fo2 + 2Fc2)/3
5544 reflections(Δ/σ)max = 0.005
262 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[RuCl2(C6H6)(C19H17P)]V = 4454.3 (4) Å3
Mr = 526.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.8415 (9) ŵ = 1.03 mm1
b = 14.1497 (7) ÅT = 100 K
c = 18.6919 (8) Å0.09 × 0.03 × 0.01 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
5544 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4056 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.629Rint = 0.063
34735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
5544 reflectionsΔρmin = 0.58 e Å3
262 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 40 s/frame. A total of 972 frames were collected with a frame width of 0.5° covering up to θ = 28.3° with 100% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.192720 (13)0.729519 (13)1.097642 (10)0.01308 (6)
Cl10.31341 (4)0.65099 (4)1.13353 (3)0.01973 (14)
Cl20.12848 (4)0.57711 (4)1.09754 (3)0.01605 (13)
P10.22367 (4)0.68784 (4)0.97937 (3)0.01223 (14)
C10.1603 (2)0.86916 (17)1.06111 (14)0.0241 (7)
H10.16360.8941.0140.029*
C20.22515 (19)0.87954 (18)1.10820 (14)0.0240 (7)
H20.27140.91281.09350.029*
C30.22054 (19)0.84011 (18)1.17715 (14)0.0224 (6)
H30.26490.84441.20830.027*
C40.15104 (19)0.79438 (18)1.20056 (14)0.0232 (7)
H40.14740.77051.24790.028*
C50.08725 (19)0.78461 (19)1.15297 (15)0.0260 (7)
H50.04080.7521.16790.031*
C60.0910 (2)0.82252 (19)1.08314 (15)0.0264 (7)
H60.04710.81651.05150.032*
C70.26500 (17)0.56772 (16)0.97117 (12)0.0151 (6)
H7A0.30140.55711.0120.018*
H7B0.22080.5220.97590.018*
C80.30938 (17)0.54528 (16)0.90309 (12)0.0151 (5)
C90.26901 (17)0.51027 (16)0.84315 (13)0.0169 (6)
H90.21310.50170.84490.02*
C100.31070 (19)0.48790 (17)0.78088 (13)0.0205 (6)
H100.28330.46330.74050.025*
C110.3918 (2)0.50152 (18)0.77798 (14)0.0231 (7)
H110.41990.48710.73530.028*
C120.43254 (19)0.53603 (19)0.83694 (15)0.0255 (7)
H120.48840.5450.83480.031*
C130.39101 (18)0.55751 (18)0.89933 (14)0.0210 (6)
H130.41890.58080.93980.025*
C140.29770 (16)0.76094 (16)0.93506 (12)0.0131 (5)
C150.29935 (17)0.76972 (17)0.86005 (12)0.0169 (6)
H150.25870.74130.83210.02*
C160.35968 (17)0.81950 (17)0.82660 (13)0.0166 (6)
H160.36010.82570.7760.02*
C170.41946 (17)0.86018 (17)0.86719 (14)0.0180 (6)
H170.46050.89490.84430.022*
C180.41973 (17)0.85044 (17)0.94114 (13)0.0173 (6)
H180.46150.87740.96860.021*
C190.35912 (17)0.80140 (17)0.97485 (13)0.0170 (6)
H190.35940.79521.02550.02*
C200.13550 (17)0.69210 (17)0.92313 (12)0.0140 (5)
C210.10851 (17)0.77773 (17)0.89283 (13)0.0168 (6)
H210.14020.83310.89660.02*
C220.03634 (18)0.78158 (19)0.85764 (13)0.0203 (6)
H220.01860.83980.83810.024*
C230.01037 (18)0.70135 (19)0.85061 (13)0.0198 (6)
H230.05970.70440.82610.024*
C240.01564 (17)0.61655 (18)0.87968 (13)0.0180 (6)
H240.01580.56120.87460.022*
C250.08700 (17)0.61219 (17)0.91598 (12)0.0154 (6)
H250.10350.5540.93650.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01380 (12)0.01403 (9)0.01141 (9)0.00318 (9)0.00057 (9)0.00071 (7)
Cl10.0162 (4)0.0272 (3)0.0158 (3)0.0018 (3)0.0033 (3)0.0008 (2)
Cl20.0149 (4)0.0154 (3)0.0178 (3)0.0033 (2)0.0016 (3)0.0020 (2)
P10.0122 (4)0.0123 (3)0.0122 (3)0.0016 (3)0.0003 (3)0.0001 (2)
C10.040 (2)0.0133 (12)0.0190 (13)0.0028 (12)0.0008 (13)0.0013 (10)
C20.0279 (19)0.0167 (12)0.0275 (14)0.0081 (12)0.0095 (13)0.0051 (10)
C30.0247 (19)0.0203 (12)0.0221 (13)0.0020 (12)0.0030 (12)0.0091 (10)
C40.031 (2)0.0229 (13)0.0159 (12)0.0034 (12)0.0079 (12)0.0042 (10)
C50.0194 (18)0.0239 (14)0.0348 (15)0.0010 (13)0.0085 (13)0.0097 (12)
C60.028 (2)0.0224 (14)0.0291 (15)0.0073 (13)0.0067 (13)0.0119 (11)
C70.0163 (17)0.0157 (11)0.0131 (11)0.0017 (10)0.0016 (11)0.0004 (9)
C80.0186 (16)0.0118 (10)0.0151 (10)0.0005 (11)0.0002 (12)0.0009 (9)
C90.0155 (17)0.0139 (11)0.0212 (12)0.0005 (11)0.0021 (11)0.0003 (9)
C100.0289 (19)0.0163 (12)0.0164 (11)0.0036 (12)0.0048 (13)0.0018 (9)
C110.031 (2)0.0178 (12)0.0207 (13)0.0012 (12)0.0110 (13)0.0011 (10)
C120.0176 (18)0.0255 (14)0.0335 (15)0.0042 (13)0.0115 (14)0.0064 (12)
C130.0176 (17)0.0218 (13)0.0234 (13)0.0026 (11)0.0003 (13)0.0066 (11)
C140.0121 (16)0.0135 (10)0.0137 (10)0.0012 (10)0.0003 (10)0.0007 (9)
C150.0182 (17)0.0170 (11)0.0156 (11)0.0012 (11)0.0015 (11)0.0012 (9)
C160.0161 (17)0.0188 (12)0.0151 (11)0.0038 (11)0.0032 (11)0.0040 (10)
C170.0124 (16)0.0166 (12)0.0248 (13)0.0017 (11)0.0060 (12)0.0040 (10)
C180.0132 (16)0.0175 (12)0.0211 (12)0.0015 (11)0.0037 (12)0.0013 (10)
C190.0158 (17)0.0199 (12)0.0154 (11)0.0006 (11)0.0013 (11)0.0004 (9)
C200.0141 (16)0.0168 (11)0.0111 (10)0.0025 (11)0.0018 (10)0.0023 (9)
C210.0157 (16)0.0151 (11)0.0196 (12)0.0020 (11)0.0001 (11)0.0007 (10)
C220.0184 (17)0.0208 (13)0.0216 (12)0.0044 (12)0.0030 (12)0.0014 (10)
C230.0089 (16)0.0291 (14)0.0213 (13)0.0005 (12)0.0033 (11)0.0032 (10)
C240.0143 (17)0.0211 (12)0.0186 (12)0.0035 (11)0.0015 (12)0.0035 (10)
C250.0151 (16)0.0156 (11)0.0154 (11)0.0022 (11)0.0011 (11)0.0007 (9)
Geometric parameters (Å, º) top
Ru1—C12.161 (3)C9—H90.95
Ru1—C62.177 (3)C10—C111.380 (4)
Ru1—C52.198 (3)C10—H100.95
Ru1—C22.201 (3)C11—C121.387 (4)
Ru1—C32.208 (2)C11—H110.95
Ru1—C42.244 (3)C12—C131.393 (4)
Ru1—P12.3466 (6)C12—H120.95
Ru1—Cl12.4116 (7)C13—H130.95
Ru1—Cl22.4127 (6)C14—C191.397 (4)
P1—C141.819 (3)C14—C151.408 (3)
P1—C201.820 (3)C15—C161.385 (4)
P1—C71.843 (2)C15—H150.95
C1—C61.403 (4)C16—C171.386 (4)
C1—C21.410 (4)C16—H160.95
C1—H10.95C17—C181.389 (3)
C2—C31.406 (4)C17—H170.95
C2—H20.95C18—C191.386 (4)
C3—C41.407 (4)C18—H180.95
C3—H30.95C19—H190.95
C4—C51.402 (4)C20—C251.401 (4)
C4—H40.95C20—C211.413 (3)
C5—C61.413 (4)C21—C221.383 (4)
C5—H50.95C21—H210.95
C6—H60.95C22—C231.387 (4)
C7—C81.510 (3)C22—H220.95
C7—H7A0.99C23—C241.388 (4)
C7—H7B0.99C23—H230.95
C8—C131.387 (4)C24—C251.382 (4)
C8—C91.401 (3)C24—H240.95
C9—C101.396 (4)C25—H250.95
C1—Ru1—C637.73 (11)C4—C5—H5119.5
C1—Ru1—C567.68 (11)C6—C5—H5119.5
C6—Ru1—C537.66 (10)Ru1—C5—H5129.1
C1—Ru1—C237.72 (11)C1—C6—C5119.1 (3)
C6—Ru1—C267.88 (12)C1—C6—Ru170.48 (17)
C5—Ru1—C279.41 (11)C5—C6—Ru171.96 (17)
C1—Ru1—C367.56 (10)C1—C6—H6120.4
C6—Ru1—C379.78 (11)C5—C6—H6120.4
C5—Ru1—C366.65 (11)Ru1—C6—H6129.4
C2—Ru1—C337.20 (9)C8—C7—P1116.81 (16)
C1—Ru1—C479.51 (10)C8—C7—H7A108.1
C6—Ru1—C467.26 (11)P1—C7—H7A108.1
C5—Ru1—C436.77 (11)C8—C7—H7B108.1
C2—Ru1—C466.81 (10)P1—C7—H7B108.1
C3—Ru1—C436.84 (10)H7A—C7—H7B107.3
C1—Ru1—P189.32 (7)C13—C8—C9119.0 (2)
C6—Ru1—P1102.09 (7)C13—C8—C7120.5 (2)
C5—Ru1—P1135.38 (8)C9—C8—C7120.5 (3)
C2—Ru1—P1105.77 (7)C10—C9—C8120.2 (3)
C3—Ru1—P1139.90 (8)C10—C9—H9119.9
C4—Ru1—P1168.48 (8)C8—C9—H9119.9
C1—Ru1—Cl1136.24 (9)C11—C10—C9119.9 (2)
C6—Ru1—Cl1167.51 (7)C11—C10—H10120
C5—Ru1—Cl1135.53 (8)C9—C10—H10120
C2—Ru1—Cl1102.14 (9)C10—C11—C12120.5 (2)
C3—Ru1—Cl187.73 (8)C10—C11—H11119.7
C4—Ru1—Cl1102.33 (8)C12—C11—H11119.7
P1—Ru1—Cl187.65 (2)C11—C12—C13119.5 (3)
C1—Ru1—Cl2134.73 (9)C11—C12—H12120.2
C6—Ru1—Cl2100.79 (8)C13—C12—H12120.2
C5—Ru1—Cl287.42 (8)C8—C13—C12120.8 (3)
C2—Ru1—Cl2166.78 (8)C8—C13—H13119.6
C3—Ru1—Cl2136.81 (7)C12—C13—H13119.6
C4—Ru1—Cl2103.06 (7)C19—C14—C15118.6 (2)
P1—Ru1—Cl282.77 (2)C19—C14—P1119.88 (18)
Cl1—Ru1—Cl288.07 (2)C15—C14—P1121.1 (2)
C14—P1—C20106.10 (11)C16—C15—C14120.6 (3)
C14—P1—C7103.15 (12)C16—C15—H15119.7
C20—P1—C7106.90 (12)C14—C15—H15119.7
C14—P1—Ru1115.99 (8)C15—C16—C17119.8 (2)
C20—P1—Ru1110.77 (8)C15—C16—H16120.1
C7—P1—Ru1113.20 (8)C17—C16—H16120.1
C6—C1—C2120.7 (3)C16—C17—C18120.4 (3)
C6—C1—Ru171.78 (16)C16—C17—H17119.8
C2—C1—Ru172.68 (15)C18—C17—H17119.8
C6—C1—H1119.7C19—C18—C17120.0 (3)
C2—C1—H1119.7C19—C18—H18120
Ru1—C1—H1128.1C17—C18—H18120
C3—C2—C1119.2 (3)C18—C19—C14120.6 (2)
C3—C2—Ru171.69 (15)C18—C19—H19119.7
C1—C2—Ru169.60 (15)C14—C19—H19119.7
C3—C2—H2120.4C25—C20—C21117.8 (2)
C1—C2—H2120.4C25—C20—P1120.25 (19)
Ru1—C2—H2130.9C21—C20—P1121.50 (19)
C2—C3—C4120.9 (3)C22—C21—C20120.5 (2)
C2—C3—Ru171.11 (15)C22—C21—H21119.8
C4—C3—Ru172.96 (15)C20—C21—H21119.8
C2—C3—H3119.6C21—C22—C23120.7 (2)
C4—C3—H3119.6C21—C22—H22119.6
Ru1—C3—H3128.7C23—C22—H22119.6
C5—C4—C3119.0 (3)C22—C23—C24119.4 (3)
C5—C4—Ru169.83 (15)C22—C23—H23120.3
C3—C4—Ru170.20 (14)C24—C23—H23120.3
C5—C4—H4120.5C25—C24—C23120.4 (2)
C3—C4—H4120.5C25—C24—H24119.8
Ru1—C4—H4132.4C23—C24—H24119.8
C4—C5—C6121.0 (3)C24—C25—C20121.2 (2)
C4—C5—Ru173.40 (18)C24—C25—H25119.4
C6—C5—Ru170.37 (17)C20—C25—H25119.4
C1—Ru1—P1—C1457.32 (13)C5—Ru1—C4—C3133.0 (3)
C6—Ru1—P1—C1493.09 (12)C2—Ru1—C4—C329.14 (17)
C5—Ru1—P1—C14113.77 (14)P1—Ru1—C4—C380.7 (5)
C2—Ru1—P1—C1422.94 (13)Cl1—Ru1—C4—C368.93 (17)
C3—Ru1—P1—C144.66 (16)Cl2—Ru1—C4—C3159.82 (16)
C4—Ru1—P1—C1471.4 (4)C3—C4—C5—C62.1 (4)
Cl1—Ru1—P1—C1479.02 (9)Ru1—C4—C5—C654.0 (2)
Cl2—Ru1—P1—C14167.37 (10)C3—C4—C5—Ru151.9 (2)
C1—Ru1—P1—C2063.67 (12)C1—Ru1—C5—C4102.74 (18)
C6—Ru1—P1—C2027.90 (12)C6—Ru1—C5—C4132.6 (2)
C5—Ru1—P1—C207.22 (14)C2—Ru1—C5—C465.22 (17)
C2—Ru1—P1—C2098.05 (12)C3—Ru1—C5—C428.53 (16)
C3—Ru1—P1—C20116.32 (15)P1—Ru1—C5—C4167.01 (12)
C4—Ru1—P1—C2049.6 (4)Cl1—Ru1—C5—C431.4 (2)
Cl1—Ru1—P1—C20160.00 (9)Cl2—Ru1—C5—C4115.99 (15)
Cl2—Ru1—P1—C2071.65 (9)C1—Ru1—C5—C629.85 (16)
C1—Ru1—P1—C7176.28 (13)C2—Ru1—C5—C667.37 (17)
C6—Ru1—P1—C7147.95 (13)C3—Ru1—C5—C6104.06 (18)
C5—Ru1—P1—C7127.27 (15)C4—Ru1—C5—C6132.6 (2)
C2—Ru1—P1—C7141.91 (13)P1—Ru1—C5—C634.4 (2)
C3—Ru1—P1—C7123.63 (16)Cl1—Ru1—C5—C6163.98 (13)
C4—Ru1—P1—C7169.6 (4)Cl2—Ru1—C5—C6111.41 (16)
Cl1—Ru1—P1—C739.95 (10)C2—C1—C6—C51.0 (4)
Cl2—Ru1—P1—C748.40 (10)Ru1—C1—C6—C555.0 (2)
C5—Ru1—C1—C629.80 (15)C2—C1—C6—Ru156.0 (2)
C2—Ru1—C1—C6131.7 (2)C4—C5—C6—C11.1 (4)
C3—Ru1—C1—C6102.70 (17)Ru1—C5—C6—C154.3 (2)
C4—Ru1—C1—C666.23 (16)C4—C5—C6—Ru155.4 (2)
P1—Ru1—C1—C6110.94 (15)C5—Ru1—C6—C1131.2 (2)
Cl1—Ru1—C1—C6163.16 (12)C2—Ru1—C6—C129.54 (15)
Cl2—Ru1—C1—C631.82 (19)C3—Ru1—C6—C166.38 (16)
C6—Ru1—C1—C2131.7 (2)C4—Ru1—C6—C1102.65 (17)
C5—Ru1—C1—C2101.90 (18)P1—Ru1—C6—C172.76 (15)
C3—Ru1—C1—C229.00 (16)Cl1—Ru1—C6—C167.9 (4)
C4—Ru1—C1—C265.47 (17)Cl2—Ru1—C6—C1157.58 (14)
P1—Ru1—C1—C2117.36 (16)C1—Ru1—C6—C5131.2 (2)
Cl1—Ru1—C1—C231.5 (2)C2—Ru1—C6—C5101.65 (18)
Cl2—Ru1—C1—C2163.52 (13)C3—Ru1—C6—C564.82 (17)
C6—C1—C2—C31.8 (4)C4—Ru1—C6—C528.54 (16)
Ru1—C1—C2—C353.7 (2)P1—Ru1—C6—C5156.05 (15)
C6—C1—C2—Ru155.5 (2)Cl1—Ru1—C6—C563.3 (5)
C1—Ru1—C2—C3132.2 (3)Cl2—Ru1—C6—C571.22 (16)
C6—Ru1—C2—C3102.62 (19)C14—P1—C7—C835.7 (2)
C5—Ru1—C2—C365.12 (19)C20—P1—C7—C876.0 (2)
C4—Ru1—C2—C328.88 (18)Ru1—P1—C7—C8161.80 (17)
P1—Ru1—C2—C3160.48 (16)P1—C7—C8—C1392.6 (3)
Cl1—Ru1—C2—C369.50 (18)P1—C7—C8—C988.5 (3)
Cl2—Ru1—C2—C370.4 (4)C13—C8—C9—C100.2 (3)
C6—Ru1—C2—C129.55 (17)C7—C8—C9—C10178.7 (2)
C5—Ru1—C2—C167.05 (18)C8—C9—C10—C110.9 (4)
C3—Ru1—C2—C1132.2 (3)C9—C10—C11—C121.0 (4)
C4—Ru1—C2—C1103.30 (19)C10—C11—C12—C130.4 (4)
P1—Ru1—C2—C167.34 (17)C9—C8—C13—C120.4 (4)
Cl1—Ru1—C2—C1158.33 (16)C7—C8—C13—C12179.3 (2)
Cl2—Ru1—C2—C161.8 (4)C11—C12—C13—C80.3 (4)
C1—C2—C3—C42.8 (4)C20—P1—C14—C19155.8 (2)
Ru1—C2—C3—C455.6 (2)C7—P1—C14—C1992.0 (2)
C1—C2—C3—Ru152.7 (2)Ru1—P1—C14—C1932.4 (2)
C1—Ru1—C3—C229.38 (19)C20—P1—C14—C1530.9 (2)
C6—Ru1—C3—C266.73 (19)C7—P1—C14—C1581.3 (2)
C5—Ru1—C3—C2103.8 (2)Ru1—P1—C14—C15154.40 (18)
C4—Ru1—C3—C2132.2 (3)C19—C14—C15—C161.6 (4)
P1—Ru1—C3—C229.9 (2)P1—C14—C15—C16174.9 (2)
Cl1—Ru1—C3—C2113.59 (18)C14—C15—C16—C170.7 (4)
Cl2—Ru1—C3—C2161.65 (15)C15—C16—C17—C180.7 (4)
C1—Ru1—C3—C4102.9 (2)C16—C17—C18—C191.3 (4)
C6—Ru1—C3—C465.51 (18)C17—C18—C19—C140.4 (4)
C5—Ru1—C3—C428.48 (17)C15—C14—C19—C181.0 (4)
C2—Ru1—C3—C4132.2 (3)P1—C14—C19—C18174.4 (2)
P1—Ru1—C3—C4162.18 (13)C14—P1—C20—C25144.4 (2)
Cl1—Ru1—C3—C4114.17 (17)C7—P1—C20—C2534.8 (2)
Cl2—Ru1—C3—C429.4 (2)Ru1—P1—C20—C2588.9 (2)
C2—C3—C4—C53.0 (4)C14—P1—C20—C2143.5 (2)
Ru1—C3—C4—C551.8 (2)C7—P1—C20—C21153.1 (2)
C2—C3—C4—Ru154.7 (2)Ru1—P1—C20—C2183.2 (2)
C1—Ru1—C4—C566.59 (18)C25—C20—C21—C220.2 (4)
C6—Ru1—C4—C529.19 (17)P1—C20—C21—C22172.1 (2)
C2—Ru1—C4—C5103.85 (19)C20—C21—C22—C230.9 (4)
C3—Ru1—C4—C5133.0 (3)C21—C22—C23—C240.4 (4)
P1—Ru1—C4—C552.3 (5)C22—C23—C24—C250.7 (4)
Cl1—Ru1—C4—C5158.07 (15)C23—C24—C25—C201.3 (4)
Cl2—Ru1—C4—C567.19 (16)C21—C20—C25—C240.9 (4)
C1—Ru1—C4—C366.41 (18)P1—C20—C25—C24173.2 (2)
C6—Ru1—C4—C3103.80 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl2i0.952.853.568 (3)133
C16—H16···Cl1ii0.952.83.716 (3)163
C2—H2···Cl2iii0.952.873.733 (3)151
C24—H24···Cl2iv0.952.783.685 (3)161
C21—H21···Cg1v0.952.893.673 (3)140
C4—H4···Cg2vi0.953.003.789 (3)141
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+3/2, z1/2; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z+2; (v) x, y3/2, z1/2; (vi) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[RuCl2(C6H6)(C19H17P)]
Mr526.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)16.8415 (9), 14.1497 (7), 18.6919 (8)
V3)4454.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.09 × 0.03 × 0.01
Data collection
DiffractometerBruker APEX DUO 4K-CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.429, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
34735, 5544, 4056
Rint0.063
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.01
No. of reflections5544
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.58

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl2i0.952.853.568 (3)133.2
C16—H16···Cl1ii0.952.83.716 (3)163.2
C2—H2···Cl2iii0.952.873.733 (3)150.9
C24—H24···Cl2iv0.952.783.685 (3)160.7
C21—H21···Cg1v0.952.893.673 (3)140
C4—H4···Cg2vi0.953.003.789 (3)141
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x, y+3/2, z1/2; (iii) x+1/2, y+1/2, z; (iv) x, y+1, z+2; (v) x, y3/2, z1/2; (vi) x1/2, y, z1/2.
 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAydemir, M., Baysal, A., Meric, N., Kayan, C., Gümgüm, B., Özkar, S. & Şahin, E. (2011). Inorg. Chim. Acta 356, 114–120.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Valentini, M., Pregosin, P. S. & Albinati, A. (2002). Inorg. Chim. Acta, 327, 4–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, B. & Verpoort, F. (2002). J. Mol. Catal. A, 180, 67–76.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStumpf, A. W., Saive, E., Demonceau, A. & Noels, A. F. (1995). J. Chem. Soc. Chem. Commun. pp. 1127–1128.  CrossRef Web of Science Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWang, L., Yang, Q., Fu, H.-Y., Chen, H., Yuan, M.-L. & Li, R.-X. (2011). Appl. Organomet. Chem. 25, 626–631.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds