metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Ferrocen-1-ylcarbon­yl)-1-methyl-4-(4-methyl­phen­yl)spiro­[pyrrolidine-2,11′-indeno­[1,2-b]quinoxaline]

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai (Guindy) Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 20 August 2012; accepted 27 August 2012; online 15 September 2012)

In the title compound, [Fe(C5H5)(C32H26N3O)], the pyrrolidine ring adopts a twist conformation. The indeno–quinoxaline ring system [86.44 (5)°], the methyl­phenyl ring [86.06 (7)°] and the ferrocene rings [82.00 (7) and 83.95 (9)°] are almost perpendicular to the pyrrolidine ring. The two cyclopentadienyl rings adopt an eclipsed conformation. The crystal structure features C—H⋯N inter­actions.

Related literature

For the biological activity of ferrocene derivatives, see: Jaouen et al. (2004[Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505-2517.]); Biot et al. (2004[Biot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678-4682.]); Fouda et al. (2007[Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613-625.]). For related structures, see: Satis Kumar et al.(2007[Satis Kumar, B. K., Gayathri, D., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2007). Acta Cryst. E63, m1287-m1289.]); Kamala et al. (2009[Kamala, E. T. S., Nirmala, S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, m687-m688.]); Gunasekaran et al. (2010[Gunasekaran, B., Kathiravan, S., Raghunathan, R. & Manivannan, V. (2010). Acta Cryst. E66, m1543.]); For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C32H26N3O)]

  • Mr = 589.50

  • Monoclinic, P 21 /n

  • a = 11.5966 (3) Å

  • b = 11.8658 (3) Å

  • c = 20.9383 (6) Å

  • β = 90.616 (2)°

  • V = 2881.01 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 26509 measured reflections

  • 7145 independent reflections

  • 5247 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.02

  • 7145 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯N3i 0.93 2.49 3.416 (2) 176
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ferrocene attached compounds have prominent biological activities like antitumor (Jaouen et al., 2004), antimalarial and antifungal (Biot et al., 2004), and antibacterial (Fouda et al., 2007) and find applications in medicinal chemistry. In this background, X-ray study of the title compound was carried out to obtain the information of molecular conformations and crystal packing in the solid state.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles of titled compound agree with those observed in other ferrocene derivative 4'-Ferrocenyl-3'- 4-methoxybenzoyl)-1'-methylspiro[1H-indole-3(2H), 2'-pyrrolidin]-2-one (Satis Kumar et al., 2007). The dihedral angle between indeno-quinoxaline ring system and the pyrrolidine ring is 87.84 (7)° and the dihedral angle between pyrrolidine ring and the phenyl ring is 86.06 (9) °. The dihedral angle between pyrrolidine ring and the ferrocene rings are 81.00 (10)° and 83.94 (12)°. This clearly shows that the indeno-quinoxaline ring system, the phenyl and ferrocene rings are almost perpendicular to the pyrrolidine ring.

The pyrrolidine ring adopts a twisted conformation with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, δ, (Nardelli, 1983) as follows: q2 = 0.3858 (16) Å, φ = 343.1 (3)° and Δ2 (C16) = 2.13 (15)°. In the ferrocene, Cg3 and Cg4 are the centroids of the C27—C31 and C32—C36 rings, respectively. Fe1—Cg3 and Fe1—Cg4 distances are 1.6430 (8) and 1.6495 (10) Å, respectively and the Cg3—Fe1—Cg4 angle is 177.74 (6)°. In addition to the van der Waals interactions, the crystal packing is stabilized by C—H···N interaction (Table. 1 & Fig. 2).

Related literature top

For the biological activity of ferrocene derivatives, see: Jaouen et al. (2004); Biot et al. (2004); Fouda et al. (2007). For related structures, see: Satis Kumar et al.(2007); Kamala et al. (2009); Gunasekaran et al. (2010); For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

Ninhydrin (1 mM) and 1, 2-phenylenediamine (1 mM) were mixed and stirred with 10mL of methanol for 10 min. To this mixture 1 mM of Sarcosine and 1 mM of ferrocene derived dipolarophile were added and was refluxed up to the end of the reaction as observed by TLC. The solvent content from the mixture was removed under reduced pressure and the crude product was obtained. Using column chromatography the crude extract was purified by 4:1 ratio of petroleum ether and ethyl acetate. Finally, single crystals suitable for the X-ray diffraction were obtained by slow evaporation at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H ranging from = 0.93Å to 0.98Å and refined using the riding model approximation with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl).

Structure description top

Ferrocene attached compounds have prominent biological activities like antitumor (Jaouen et al., 2004), antimalarial and antifungal (Biot et al., 2004), and antibacterial (Fouda et al., 2007) and find applications in medicinal chemistry. In this background, X-ray study of the title compound was carried out to obtain the information of molecular conformations and crystal packing in the solid state.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles of titled compound agree with those observed in other ferrocene derivative 4'-Ferrocenyl-3'- 4-methoxybenzoyl)-1'-methylspiro[1H-indole-3(2H), 2'-pyrrolidin]-2-one (Satis Kumar et al., 2007). The dihedral angle between indeno-quinoxaline ring system and the pyrrolidine ring is 87.84 (7)° and the dihedral angle between pyrrolidine ring and the phenyl ring is 86.06 (9) °. The dihedral angle between pyrrolidine ring and the ferrocene rings are 81.00 (10)° and 83.94 (12)°. This clearly shows that the indeno-quinoxaline ring system, the phenyl and ferrocene rings are almost perpendicular to the pyrrolidine ring.

The pyrrolidine ring adopts a twisted conformation with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, δ, (Nardelli, 1983) as follows: q2 = 0.3858 (16) Å, φ = 343.1 (3)° and Δ2 (C16) = 2.13 (15)°. In the ferrocene, Cg3 and Cg4 are the centroids of the C27—C31 and C32—C36 rings, respectively. Fe1—Cg3 and Fe1—Cg4 distances are 1.6430 (8) and 1.6495 (10) Å, respectively and the Cg3—Fe1—Cg4 angle is 177.74 (6)°. In addition to the van der Waals interactions, the crystal packing is stabilized by C—H···N interaction (Table. 1 & Fig. 2).

For the biological activity of ferrocene derivatives, see: Jaouen et al. (2004); Biot et al. (2004); Fouda et al. (2007). For related structures, see: Satis Kumar et al.(2007); Kamala et al. (2009); Gunasekaran et al. (2010); For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the a axis. Dashed lines shows the intermolecular C–H···N hydrogen bonds.
3-(Ferrocen-1-ylcarbonyl)-1-methyl-4-(4-methylphenyl)spiro[pyrrolidine-2,11'- indeno[1,2-b]quinoxaline] top
Crystal data top
[Fe(C5H5)(C32H26N3O)]F(000) = 1232
Mr = 589.50Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7145 reflections
a = 11.5966 (3) Åθ = 2.0–28.3°
b = 11.8658 (3) ŵ = 0.56 mm1
c = 20.9383 (6) ÅT = 293 K
β = 90.616 (2)°Block, brown
V = 2881.01 (13) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5247 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
ω and φ scansh = 1415
26509 measured reflectionsk = 1514
7145 independent reflectionsl = 2725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.5923P]
where P = (Fo2 + 2Fc2)/3
7145 reflections(Δ/σ)max = 0.023
381 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe(C5H5)(C32H26N3O)]V = 2881.01 (13) Å3
Mr = 589.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5966 (3) ŵ = 0.56 mm1
b = 11.8658 (3) ÅT = 293 K
c = 20.9383 (6) Å0.2 × 0.2 × 0.2 mm
β = 90.616 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5247 reflections with I > 2σ(I)
26509 measured reflectionsRint = 0.026
7145 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
7145 reflectionsΔρmin = 0.31 e Å3
381 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29739 (19)0.35976 (18)0.10411 (9)0.0570 (5)
H10.23310.40500.09760.068*
C20.3437 (2)0.3508 (2)0.16349 (10)0.0716 (7)
H20.31100.39040.19750.086*
C30.4399 (2)0.2825 (2)0.17355 (11)0.0776 (8)
H30.47190.27890.21410.093*
C40.4876 (2)0.2215 (2)0.12547 (11)0.0718 (7)
H40.55020.17470.13330.086*
C50.44203 (16)0.22899 (17)0.06319 (9)0.0527 (5)
C60.34719 (15)0.30038 (15)0.05269 (8)0.0461 (4)
C70.35581 (13)0.26030 (14)0.05261 (8)0.0378 (3)
C80.45054 (14)0.18715 (15)0.04184 (9)0.0447 (4)
C90.49029 (15)0.14277 (15)0.10323 (9)0.0473 (4)
C100.42069 (14)0.18700 (14)0.15109 (8)0.0412 (4)
C110.32625 (13)0.26329 (13)0.12383 (7)0.0357 (3)
C120.44572 (16)0.16378 (16)0.21433 (9)0.0524 (4)
H120.40150.19470.24670.063*
C130.53779 (19)0.09358 (19)0.22876 (12)0.0669 (6)
H130.55440.07640.27120.080*
C140.6054 (2)0.0487 (2)0.18112 (13)0.0735 (7)
H140.66660.00160.19190.088*
C150.58319 (18)0.07298 (18)0.11806 (12)0.0659 (6)
H150.62920.04350.08600.079*
C160.19757 (12)0.22576 (13)0.13323 (7)0.0335 (3)
H160.16610.20270.09160.040*
C170.13242 (14)0.33248 (14)0.15504 (8)0.0384 (4)
H170.11920.32680.20110.046*
C180.21749 (15)0.42714 (14)0.14355 (8)0.0414 (4)
H18A0.21110.45520.10010.050*
H18B0.20530.48900.17300.050*
C190.42792 (17)0.44471 (16)0.14190 (10)0.0530 (5)
H19A0.42620.46740.09790.080*
H19B0.49740.40320.15050.080*
H19C0.42570.51030.16870.080*
C200.01671 (14)0.34623 (14)0.12153 (8)0.0395 (4)
C210.08575 (16)0.34224 (17)0.15446 (9)0.0530 (5)
H210.08410.33380.19860.064*
C220.19103 (16)0.35058 (18)0.12277 (11)0.0594 (5)
H220.25870.34570.14610.071*
C230.19783 (15)0.36583 (15)0.05778 (10)0.0501 (4)
C240.09542 (16)0.37090 (16)0.02483 (9)0.0500 (4)
H240.09740.38110.01920.060*
C250.01009 (15)0.36115 (15)0.05584 (8)0.0457 (4)
H250.07760.36470.03230.055*
C260.18900 (13)0.12623 (14)0.17858 (7)0.0352 (3)
C270.20428 (13)0.01427 (14)0.15034 (7)0.0357 (3)
C280.20015 (15)0.08985 (14)0.18424 (9)0.0429 (4)
H280.19630.09820.22830.051*
C290.20304 (17)0.17801 (16)0.13901 (10)0.0535 (5)
H290.20130.25470.14820.064*
C300.20898 (17)0.13008 (16)0.07734 (9)0.0527 (5)
H300.21150.16990.03910.063*
C310.21043 (14)0.01244 (14)0.08348 (8)0.0408 (4)
H310.21460.03920.05020.049*
C320.07832 (18)0.0154 (3)0.14632 (14)0.0808 (8)
H320.07820.08580.16590.097*
C330.07821 (18)0.0055 (2)0.08054 (12)0.0733 (7)
H330.07790.04870.04850.088*
C340.0786 (2)0.1200 (3)0.07176 (14)0.0866 (8)
H340.07910.15670.03250.104*
C350.0781 (2)0.1716 (3)0.1306 (2)0.0998 (11)
H350.07750.24900.13780.120*
C360.0786 (2)0.0890 (4)0.17706 (14)0.0946 (10)
H360.07900.10080.22100.114*
C370.31185 (17)0.3780 (2)0.02292 (12)0.0678 (6)
H37A0.37130.34180.04700.102*
H37B0.30680.34330.01840.102*
H37C0.32990.45650.01790.102*
N10.30156 (12)0.31494 (12)0.00747 (6)0.0426 (3)
N20.49441 (14)0.16877 (15)0.01466 (8)0.0561 (4)
N30.32874 (11)0.37402 (11)0.15487 (6)0.0384 (3)
O10.17339 (11)0.13915 (11)0.23535 (5)0.0502 (3)
Fe10.06387 (2)0.07469 (2)0.123016 (11)0.04181 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0695 (13)0.0608 (12)0.0408 (10)0.0229 (10)0.0043 (9)0.0020 (9)
C20.0903 (17)0.0848 (17)0.0399 (11)0.0422 (14)0.0044 (10)0.0026 (11)
C30.0872 (17)0.103 (2)0.0433 (12)0.0423 (15)0.0236 (11)0.0244 (13)
C40.0661 (14)0.0919 (18)0.0579 (14)0.0252 (13)0.0249 (11)0.0307 (13)
C50.0510 (11)0.0600 (12)0.0476 (10)0.0217 (9)0.0151 (8)0.0189 (9)
C60.0517 (10)0.0489 (10)0.0380 (9)0.0218 (8)0.0080 (7)0.0086 (7)
C70.0373 (8)0.0370 (8)0.0393 (9)0.0097 (7)0.0073 (6)0.0064 (7)
C80.0378 (9)0.0427 (9)0.0537 (10)0.0075 (7)0.0089 (7)0.0114 (8)
C90.0369 (9)0.0424 (10)0.0628 (12)0.0022 (7)0.0026 (8)0.0088 (8)
C100.0355 (8)0.0385 (9)0.0496 (10)0.0034 (7)0.0016 (7)0.0036 (7)
C110.0356 (8)0.0368 (8)0.0348 (8)0.0032 (6)0.0010 (6)0.0023 (6)
C120.0497 (10)0.0536 (11)0.0538 (11)0.0018 (8)0.0090 (8)0.0014 (9)
C130.0622 (13)0.0615 (13)0.0765 (15)0.0061 (10)0.0222 (11)0.0043 (11)
C140.0544 (13)0.0641 (14)0.1016 (19)0.0161 (11)0.0182 (12)0.0036 (13)
C150.0484 (11)0.0575 (13)0.0917 (18)0.0102 (9)0.0034 (11)0.0122 (11)
C160.0339 (8)0.0361 (8)0.0305 (8)0.0021 (6)0.0011 (6)0.0018 (6)
C170.0409 (9)0.0408 (9)0.0335 (8)0.0033 (7)0.0032 (6)0.0011 (7)
C180.0475 (9)0.0357 (9)0.0410 (9)0.0025 (7)0.0014 (7)0.0051 (7)
C190.0515 (11)0.0469 (10)0.0606 (12)0.0133 (8)0.0008 (9)0.0063 (9)
C200.0394 (8)0.0360 (8)0.0432 (9)0.0020 (7)0.0048 (7)0.0002 (7)
C210.0468 (10)0.0617 (12)0.0506 (11)0.0095 (9)0.0104 (8)0.0096 (9)
C220.0385 (10)0.0653 (13)0.0747 (14)0.0055 (9)0.0139 (9)0.0093 (11)
C230.0394 (9)0.0400 (10)0.0709 (13)0.0003 (7)0.0035 (8)0.0021 (9)
C240.0492 (10)0.0511 (11)0.0497 (10)0.0014 (8)0.0039 (8)0.0026 (8)
C250.0383 (9)0.0532 (11)0.0456 (10)0.0015 (8)0.0033 (7)0.0006 (8)
C260.0337 (8)0.0400 (9)0.0318 (8)0.0031 (6)0.0002 (6)0.0008 (6)
C270.0333 (8)0.0392 (9)0.0347 (8)0.0015 (6)0.0013 (6)0.0011 (6)
C280.0423 (9)0.0427 (9)0.0436 (9)0.0008 (7)0.0034 (7)0.0065 (7)
C290.0602 (12)0.0362 (10)0.0641 (12)0.0060 (8)0.0006 (9)0.0032 (8)
C300.0615 (12)0.0460 (11)0.0508 (11)0.0047 (9)0.0035 (9)0.0112 (8)
C310.0436 (9)0.0427 (9)0.0362 (8)0.0006 (7)0.0044 (7)0.0006 (7)
C320.0390 (11)0.099 (2)0.105 (2)0.0058 (12)0.0031 (12)0.0299 (17)
C330.0480 (12)0.0911 (18)0.0804 (16)0.0039 (11)0.0125 (11)0.0230 (14)
C340.0658 (15)0.100 (2)0.093 (2)0.0099 (14)0.0330 (14)0.0246 (17)
C350.0642 (16)0.0845 (19)0.150 (3)0.0357 (14)0.0271 (18)0.036 (2)
C360.0426 (12)0.167 (3)0.0742 (17)0.0171 (16)0.0051 (11)0.032 (2)
C370.0438 (11)0.0635 (13)0.0959 (17)0.0014 (10)0.0121 (10)0.0107 (12)
N10.0465 (8)0.0462 (8)0.0352 (7)0.0094 (6)0.0064 (6)0.0033 (6)
N20.0477 (9)0.0622 (10)0.0588 (10)0.0089 (8)0.0153 (7)0.0201 (8)
N30.0403 (7)0.0357 (7)0.0392 (7)0.0039 (6)0.0005 (6)0.0054 (6)
O10.0692 (8)0.0498 (7)0.0319 (6)0.0028 (6)0.0060 (5)0.0001 (5)
Fe10.04165 (15)0.04181 (15)0.04185 (15)0.00598 (10)0.00464 (10)0.00020 (10)
Geometric parameters (Å, º) top
C1—C21.364 (3)C20—C251.388 (2)
C1—C61.406 (3)C21—C221.387 (3)
C1—H10.9300C21—H210.9300
C2—C31.398 (4)C22—C231.374 (3)
C2—H20.9300C22—H220.9300
C3—C41.353 (4)C23—C241.381 (3)
C3—H30.9300C23—C371.510 (3)
C4—C51.415 (3)C24—C251.384 (2)
C4—H40.9300C24—H240.9300
C5—N21.378 (3)C25—H250.9300
C5—C61.407 (3)C26—O11.2140 (19)
C6—N11.382 (2)C26—C271.466 (2)
C7—N11.303 (2)C27—C281.426 (2)
C7—C81.420 (2)C27—C311.438 (2)
C7—C111.534 (2)C27—Fe12.0181 (15)
C8—N21.311 (2)C28—C291.412 (3)
C8—C91.459 (3)C28—Fe12.0321 (17)
C9—C151.391 (3)C28—H280.9300
C9—C101.396 (2)C29—C301.413 (3)
C10—C121.380 (2)C29—Fe12.0513 (19)
C10—C111.527 (2)C29—H290.9300
C11—N31.466 (2)C30—C311.402 (3)
C11—C161.572 (2)C30—Fe12.053 (2)
C12—C131.385 (3)C30—H300.9300
C12—H120.9300C31—Fe12.0372 (17)
C13—C141.382 (3)C31—H310.9300
C13—H130.9300C32—C331.400 (3)
C14—C151.373 (3)C32—C361.396 (4)
C14—H140.9300C32—Fe12.029 (2)
C15—H150.9300C32—H320.9300
C16—C261.519 (2)C33—C341.371 (4)
C16—C171.546 (2)C33—Fe12.037 (2)
C16—H160.9800C33—H330.9300
C17—C181.516 (2)C34—C351.375 (4)
C17—C201.516 (2)C34—Fe12.033 (2)
C17—H170.9800C34—H340.9300
C18—N31.453 (2)C35—C361.382 (5)
C18—H18A0.9700C35—Fe12.016 (2)
C18—H18B0.9700C35—H350.9300
C19—N31.452 (2)C36—Fe12.019 (2)
C19—H19A0.9600C36—H360.9300
C19—H19B0.9600C37—H37A0.9600
C19—H19C0.9600C37—H37B0.9600
C20—C211.381 (2)C37—H37C0.9600
C2—C1—C6119.8 (2)C30—C29—C28108.45 (16)
C2—C1—H1120.1C30—C29—Fe169.90 (11)
C6—C1—H1120.1C28—C29—Fe169.05 (10)
C1—C2—C3120.3 (2)C30—C29—H29125.8
C1—C2—H2119.8C28—C29—H29125.8
C3—C2—H2119.8Fe1—C29—H29126.9
C4—C3—C2121.2 (2)C31—C30—C29108.52 (16)
C4—C3—H3119.4C31—C30—Fe169.37 (10)
C2—C3—H3119.4C29—C30—Fe169.81 (11)
C3—C4—C5119.9 (2)C31—C30—H30125.7
C3—C4—H4120.0C29—C30—H30125.7
C5—C4—H4120.0Fe1—C30—H30126.7
N2—C5—C6122.42 (16)C30—C31—C27107.94 (15)
N2—C5—C4118.8 (2)C30—C31—Fe170.55 (11)
C6—C5—C4118.8 (2)C27—C31—Fe168.52 (9)
N1—C6—C1118.50 (18)C30—C31—H31126.0
N1—C6—C5121.66 (17)C27—C31—H31126.0
C1—C6—C5119.84 (17)Fe1—C31—H31126.5
N1—C7—C8123.88 (15)C33—C32—C36107.2 (3)
N1—C7—C11125.63 (15)C33—C32—Fe170.14 (13)
C8—C7—C11110.48 (15)C36—C32—Fe169.44 (15)
N2—C8—C7123.60 (18)C33—C32—H32126.4
N2—C8—C9127.79 (17)C36—C32—H32126.4
C7—C8—C9108.56 (15)Fe1—C32—H32125.6
C15—C9—C10121.06 (19)C34—C33—C32107.9 (2)
C15—C9—C8130.39 (19)C34—C33—Fe170.17 (13)
C10—C9—C8108.48 (15)C32—C33—Fe169.59 (13)
C12—C10—C9119.76 (17)C34—C33—H33126.0
C12—C10—C11128.28 (16)C32—C33—H33126.0
C9—C10—C11111.88 (15)Fe1—C33—H33125.8
N3—C11—C10110.80 (12)C33—C34—C35108.7 (3)
N3—C11—C7116.62 (13)C33—C34—Fe170.45 (13)
C10—C11—C7100.53 (13)C35—C34—Fe169.48 (14)
N3—C11—C16102.27 (12)C33—C34—H34125.6
C10—C11—C16117.61 (13)C35—C34—H34125.6
C7—C11—C16109.73 (12)Fe1—C34—H34126.0
C10—C12—C13118.9 (2)C34—C35—C36108.3 (3)
C10—C12—H12120.6C34—C35—Fe170.82 (15)
C13—C12—H12120.6C36—C35—Fe170.11 (14)
C14—C13—C12121.1 (2)C34—C35—H35125.8
C14—C13—H13119.5C36—C35—H35125.8
C12—C13—H13119.5Fe1—C35—H35124.8
C15—C14—C13120.8 (2)C35—C36—C32107.8 (3)
C15—C14—H14119.6C35—C36—Fe169.84 (16)
C13—C14—H14119.6C32—C36—Fe170.21 (14)
C14—C15—C9118.4 (2)C35—C36—H36126.1
C14—C15—H15120.8C32—C36—H36126.1
C9—C15—H15120.8Fe1—C36—H36125.4
C26—C16—C17114.62 (12)C23—C37—H37A109.5
C26—C16—C11111.53 (12)C23—C37—H37B109.5
C17—C16—C11105.82 (12)H37A—C37—H37B109.5
C26—C16—H16108.2C23—C37—H37C109.5
C17—C16—H16108.2H37A—C37—H37C109.5
C11—C16—H16108.2H37B—C37—H37C109.5
C18—C17—C20114.90 (14)C7—N1—C6114.35 (15)
C18—C17—C16103.84 (12)C8—N2—C5114.00 (17)
C20—C17—C16112.60 (13)C19—N3—C18115.01 (14)
C18—C17—H17108.4C19—N3—C11116.54 (13)
C20—C17—H17108.4C18—N3—C11107.65 (12)
C16—C17—H17108.4C35—Fe1—C27158.95 (12)
N3—C18—C17103.35 (13)C35—Fe1—C3640.05 (13)
N3—C18—H18A111.1C27—Fe1—C36123.19 (11)
C17—C18—H18A111.1C35—Fe1—C3267.39 (13)
N3—C18—H18B111.1C27—Fe1—C32108.14 (9)
C17—C18—H18B111.1C36—Fe1—C3240.35 (12)
H18A—C18—H18B109.1C35—Fe1—C3439.71 (12)
N3—C19—H19A109.5C27—Fe1—C34159.51 (11)
N3—C19—H19B109.5C36—Fe1—C3466.96 (12)
H19A—C19—H19B109.5C32—Fe1—C3466.95 (11)
N3—C19—H19C109.5C35—Fe1—C28122.02 (11)
H19A—C19—H19C109.5C27—Fe1—C2841.22 (6)
H19B—C19—H19C109.5C36—Fe1—C28105.92 (10)
C21—C20—C25117.41 (16)C32—Fe1—C28121.56 (9)
C21—C20—C17121.82 (15)C34—Fe1—C28158.70 (11)
C25—C20—C17120.75 (15)C35—Fe1—C3366.84 (11)
C20—C21—C22121.10 (18)C27—Fe1—C33124.02 (9)
C20—C21—H21119.5C36—Fe1—C3367.40 (11)
C22—C21—H21119.5C32—Fe1—C3340.27 (10)
C23—C22—C21121.60 (18)C34—Fe1—C3339.38 (11)
C23—C22—H22119.2C28—Fe1—C33158.62 (10)
C21—C22—H22119.2C35—Fe1—C31157.57 (13)
C22—C23—C24117.38 (17)C27—Fe1—C3141.54 (6)
C22—C23—C37122.12 (18)C36—Fe1—C31161.66 (13)
C24—C23—C37120.50 (19)C32—Fe1—C31126.18 (10)
C23—C24—C25121.52 (18)C34—Fe1—C31123.94 (11)
C23—C24—H24119.2C28—Fe1—C3169.01 (7)
C25—C24—H24119.2C33—Fe1—C31110.55 (9)
C24—C25—C20120.98 (17)C35—Fe1—C29106.73 (11)
C24—C25—H25119.5C27—Fe1—C2968.61 (7)
C20—C25—H25119.5C36—Fe1—C29120.34 (11)
O1—C26—C27121.96 (15)C32—Fe1—C29156.28 (11)
O1—C26—C16121.68 (14)C34—Fe1—C29124.16 (10)
C27—C26—C16116.33 (13)C28—Fe1—C2940.44 (7)
C28—C27—C31107.21 (14)C33—Fe1—C29160.65 (10)
C28—C27—C26125.44 (14)C31—Fe1—C2967.96 (7)
C31—C27—C26126.87 (14)C35—Fe1—C30121.88 (13)
C28—C27—Fe169.92 (9)C27—Fe1—C3068.69 (7)
C31—C27—Fe169.94 (9)C36—Fe1—C30156.05 (13)
C26—C27—Fe1119.20 (10)C32—Fe1—C30162.39 (11)
C29—C28—C27107.88 (16)C34—Fe1—C30109.57 (10)
C29—C28—Fe170.51 (10)C28—Fe1—C3068.26 (8)
C27—C28—Fe168.86 (9)C33—Fe1—C30126.09 (10)
C29—C28—H28126.1C31—Fe1—C3040.09 (7)
C27—C28—H28126.1C29—Fe1—C3040.29 (8)
Fe1—C28—H28126.1
C6—C1—C2—C30.3 (3)C26—C27—Fe1—C3644.61 (18)
C1—C2—C3—C41.8 (3)C28—C27—Fe1—C32117.50 (13)
C2—C3—C4—C52.0 (3)C31—C27—Fe1—C32124.53 (13)
C3—C4—C5—N2177.95 (19)C26—C27—Fe1—C322.69 (16)
C3—C4—C5—C60.1 (3)C28—C27—Fe1—C34170.0 (3)
C2—C1—C6—N1177.18 (17)C31—C27—Fe1—C3452.0 (3)
C2—C1—C6—C52.2 (3)C26—C27—Fe1—C3469.9 (3)
N2—C5—C6—N10.6 (3)C31—C27—Fe1—C28117.96 (14)
C4—C5—C6—N1177.38 (16)C26—C27—Fe1—C28120.19 (16)
N2—C5—C6—C1179.95 (16)C28—C27—Fe1—C33159.12 (12)
C4—C5—C6—C12.0 (3)C31—C27—Fe1—C3382.91 (13)
N1—C7—C8—N21.3 (3)C26—C27—Fe1—C3338.93 (16)
C11—C7—C8—N2179.79 (15)C28—C27—Fe1—C31117.96 (14)
N1—C7—C8—C9178.99 (15)C26—C27—Fe1—C31121.85 (16)
C11—C7—C8—C92.10 (18)C28—C27—Fe1—C2937.51 (11)
N2—C8—C9—C151.2 (3)C31—C27—Fe1—C2980.46 (11)
C7—C8—C9—C15176.42 (19)C26—C27—Fe1—C29157.70 (14)
N2—C8—C9—C10178.05 (17)C28—C27—Fe1—C3080.91 (11)
C7—C8—C9—C100.48 (19)C31—C27—Fe1—C3037.05 (10)
C15—C9—C10—C121.7 (3)C26—C27—Fe1—C30158.90 (14)
C8—C9—C10—C12175.58 (16)C32—C36—Fe1—C35118.5 (2)
C15—C9—C10—C11178.59 (16)C35—C36—Fe1—C27162.74 (16)
C8—C9—C10—C111.34 (19)C32—C36—Fe1—C2778.74 (17)
C12—C10—C11—N350.2 (2)C35—C36—Fe1—C32118.5 (2)
C9—C10—C11—N3126.35 (15)C35—C36—Fe1—C3437.51 (18)
C12—C10—C11—C7174.18 (17)C32—C36—Fe1—C3481.01 (18)
C9—C10—C11—C72.42 (17)C35—C36—Fe1—C28121.17 (17)
C12—C10—C11—C1666.8 (2)C32—C36—Fe1—C28120.32 (16)
C9—C10—C11—C16116.57 (16)C35—C36—Fe1—C3380.39 (19)
N1—C7—C11—N358.6 (2)C32—C36—Fe1—C3338.13 (16)
C8—C7—C11—N3122.49 (15)C35—C36—Fe1—C31167.7 (2)
N1—C7—C11—C10178.43 (15)C32—C36—Fe1—C3149.2 (4)
C8—C7—C11—C102.68 (16)C35—C36—Fe1—C2979.76 (19)
N1—C7—C11—C1657.0 (2)C32—C36—Fe1—C29161.73 (14)
C8—C7—C11—C16121.89 (14)C35—C36—Fe1—C3049.0 (3)
C9—C10—C12—C132.1 (3)C32—C36—Fe1—C30167.52 (19)
C11—C10—C12—C13178.46 (18)C33—C32—Fe1—C3580.36 (18)
C10—C12—C13—C141.2 (3)C36—C32—Fe1—C3537.77 (17)
C12—C13—C14—C150.2 (4)C33—C32—Fe1—C27121.61 (15)
C13—C14—C15—C90.7 (3)C36—C32—Fe1—C27120.26 (17)
C10—C9—C15—C140.2 (3)C33—C32—Fe1—C36118.1 (2)
C8—C9—C15—C14176.3 (2)C33—C32—Fe1—C3437.11 (16)
N3—C11—C16—C26112.15 (13)C36—C32—Fe1—C3481.01 (19)
C10—C11—C16—C269.44 (19)C33—C32—Fe1—C28164.92 (14)
C7—C11—C16—C26123.43 (14)C36—C32—Fe1—C2876.96 (19)
N3—C11—C16—C1713.11 (15)C36—C32—Fe1—C33118.1 (2)
C10—C11—C16—C17134.70 (14)C33—C32—Fe1—C3179.02 (17)
C7—C11—C16—C17111.31 (14)C36—C32—Fe1—C31162.85 (16)
C26—C16—C17—C18134.85 (13)C33—C32—Fe1—C29160.4 (2)
C11—C16—C17—C1811.52 (15)C36—C32—Fe1—C2942.3 (3)
C26—C16—C17—C20100.24 (15)C33—C32—Fe1—C3045.0 (4)
C11—C16—C17—C20136.43 (13)C36—C32—Fe1—C30163.1 (3)
C20—C17—C18—N3155.76 (13)C33—C34—Fe1—C35119.8 (3)
C16—C17—C18—N332.34 (16)C33—C34—Fe1—C2742.2 (4)
C18—C17—C20—C21125.50 (18)C35—C34—Fe1—C27162.0 (3)
C16—C17—C20—C21115.89 (18)C33—C34—Fe1—C3682.0 (2)
C18—C17—C20—C2555.8 (2)C35—C34—Fe1—C3637.8 (2)
C16—C17—C20—C2562.8 (2)C33—C34—Fe1—C3237.94 (17)
C25—C20—C21—C221.3 (3)C35—C34—Fe1—C3281.8 (2)
C17—C20—C21—C22177.46 (18)C33—C34—Fe1—C28156.3 (2)
C20—C21—C22—C231.6 (3)C35—C34—Fe1—C2836.5 (4)
C21—C22—C23—C240.9 (3)C35—C34—Fe1—C33119.8 (3)
C21—C22—C23—C37178.43 (19)C33—C34—Fe1—C3181.20 (18)
C22—C23—C24—C250.1 (3)C35—C34—Fe1—C31159.02 (19)
C37—C23—C24—C25179.34 (18)C33—C34—Fe1—C29166.04 (14)
C23—C24—C25—C200.2 (3)C35—C34—Fe1—C2974.2 (2)
C21—C20—C25—C240.4 (3)C33—C34—Fe1—C30123.52 (16)
C17—C20—C25—C24178.36 (16)C35—C34—Fe1—C30116.7 (2)
C17—C16—C26—O126.9 (2)C29—C28—Fe1—C3577.86 (18)
C11—C16—C26—O193.32 (17)C27—C28—Fe1—C35163.05 (16)
C17—C16—C26—C27154.99 (13)C29—C28—Fe1—C27119.08 (15)
C11—C16—C26—C2784.80 (15)C29—C28—Fe1—C36118.36 (16)
O1—C26—C27—C281.6 (2)C27—C28—Fe1—C36122.55 (15)
C16—C26—C27—C28179.68 (14)C29—C28—Fe1—C32159.35 (14)
O1—C26—C27—C31172.55 (16)C27—C28—Fe1—C3281.57 (15)
C16—C26—C27—C319.3 (2)C29—C28—Fe1—C3451.2 (3)
O1—C26—C27—Fe186.68 (17)C27—C28—Fe1—C34170.3 (3)
C16—C26—C27—Fe195.21 (14)C29—C28—Fe1—C33173.2 (2)
C31—C27—C28—C290.34 (19)C27—C28—Fe1—C3354.1 (3)
C26—C27—C28—C29172.13 (15)C29—C28—Fe1—C3180.23 (12)
Fe1—C27—C28—C2959.96 (13)C27—C28—Fe1—C3138.85 (10)
C31—C27—C28—Fe160.29 (11)C27—C28—Fe1—C29119.08 (15)
C26—C27—C28—Fe1112.17 (15)C29—C28—Fe1—C3037.05 (11)
C27—C28—C29—C300.0 (2)C27—C28—Fe1—C3082.03 (11)
Fe1—C28—C29—C3058.96 (14)C34—C33—Fe1—C3537.09 (19)
C27—C28—C29—Fe158.93 (12)C32—C33—Fe1—C3581.8 (2)
C28—C29—C30—C310.3 (2)C34—C33—Fe1—C27163.53 (16)
Fe1—C29—C30—C3158.72 (13)C32—C33—Fe1—C2777.54 (17)
C28—C29—C30—Fe158.43 (13)C34—C33—Fe1—C3680.7 (2)
C29—C30—C31—C270.5 (2)C32—C33—Fe1—C3638.20 (18)
Fe1—C30—C31—C2758.50 (11)C34—C33—Fe1—C32118.9 (2)
C29—C30—C31—Fe159.00 (14)C32—C33—Fe1—C34118.9 (2)
C28—C27—C31—C300.51 (19)C34—C33—Fe1—C28156.4 (2)
C26—C27—C31—C30171.81 (15)C32—C33—Fe1—C2837.4 (3)
Fe1—C27—C31—C3059.76 (12)C34—C33—Fe1—C31118.88 (17)
C28—C27—C31—Fe160.28 (11)C32—C33—Fe1—C31122.19 (16)
C26—C27—C31—Fe1112.05 (15)C34—C33—Fe1—C2937.1 (4)
C36—C32—C33—C340.1 (3)C32—C33—Fe1—C29156.0 (3)
Fe1—C32—C33—C3459.93 (17)C34—C33—Fe1—C3076.43 (19)
C36—C32—C33—Fe159.82 (16)C32—C33—Fe1—C30164.64 (15)
C32—C33—C34—C350.4 (3)C30—C31—Fe1—C3543.2 (3)
Fe1—C33—C34—C3559.12 (18)C27—C31—Fe1—C35162.6 (2)
C32—C33—C34—Fe159.57 (15)C30—C31—Fe1—C27119.34 (15)
C33—C34—C35—C360.6 (3)C30—C31—Fe1—C36157.9 (3)
Fe1—C34—C35—C3660.33 (18)C27—C31—Fe1—C3638.5 (3)
C33—C34—C35—Fe159.72 (18)C30—C31—Fe1—C32164.77 (13)
C34—C35—C36—C320.5 (3)C27—C31—Fe1—C3275.89 (13)
Fe1—C35—C36—C3260.25 (17)C30—C31—Fe1—C3480.07 (15)
C34—C35—C36—Fe160.78 (19)C27—C31—Fe1—C34160.58 (13)
C33—C32—C36—C350.3 (3)C30—C31—Fe1—C2880.78 (12)
Fe1—C32—C36—C3560.01 (18)C27—C31—Fe1—C2838.56 (9)
C33—C32—C36—Fe160.27 (15)C30—C31—Fe1—C33122.11 (13)
C8—C7—N1—C62.9 (2)C27—C31—Fe1—C33118.55 (12)
C11—C7—N1—C6178.34 (14)C30—C31—Fe1—C2937.17 (11)
C1—C6—N1—C7177.38 (15)C27—C31—Fe1—C2982.17 (11)
C5—C6—N1—C72.0 (2)C27—C31—Fe1—C30119.34 (15)
C7—C8—N2—C51.4 (2)C30—C29—Fe1—C35119.88 (16)
C9—C8—N2—C5175.84 (16)C28—C29—Fe1—C35120.06 (16)
C6—C5—N2—C82.2 (2)C30—C29—Fe1—C2781.86 (12)
C4—C5—N2—C8175.73 (17)C28—C29—Fe1—C2738.20 (10)
C17—C18—N3—C19175.16 (14)C30—C29—Fe1—C36161.28 (16)
C17—C18—N3—C1143.41 (16)C28—C29—Fe1—C3678.66 (17)
C10—C11—N3—C1968.04 (18)C30—C29—Fe1—C32168.4 (2)
C7—C11—N3—C1946.10 (19)C28—C29—Fe1—C3248.4 (3)
C16—C11—N3—C19165.80 (14)C30—C29—Fe1—C3479.95 (16)
C10—C11—N3—C18161.05 (13)C28—C29—Fe1—C34159.99 (14)
C7—C11—N3—C1884.81 (16)C30—C29—Fe1—C28120.06 (16)
C16—C11—N3—C1834.89 (15)C30—C29—Fe1—C3352.4 (3)
C34—C35—Fe1—C27162.4 (2)C28—C29—Fe1—C33172.5 (2)
C36—C35—Fe1—C2743.7 (4)C30—C29—Fe1—C3136.99 (11)
C34—C35—Fe1—C36118.7 (3)C28—C29—Fe1—C3183.07 (11)
C34—C35—Fe1—C3280.7 (2)C28—C29—Fe1—C30120.06 (16)
C36—C35—Fe1—C3238.04 (17)C31—C30—Fe1—C35162.08 (14)
C36—C35—Fe1—C34118.7 (3)C29—C30—Fe1—C3577.92 (17)
C34—C35—Fe1—C28165.24 (16)C31—C30—Fe1—C2738.35 (10)
C36—C35—Fe1—C2876.0 (2)C29—C30—Fe1—C2781.65 (12)
C34—C35—Fe1—C3336.79 (18)C31—C30—Fe1—C36163.0 (2)
C36—C35—Fe1—C3381.92 (19)C29—C30—Fe1—C3643.0 (3)
C34—C35—Fe1—C3151.2 (4)C31—C30—Fe1—C3244.5 (3)
C36—C35—Fe1—C31169.9 (2)C29—C30—Fe1—C32164.5 (3)
C34—C35—Fe1—C29123.77 (19)C31—C30—Fe1—C34119.85 (14)
C36—C35—Fe1—C29117.52 (18)C29—C30—Fe1—C34120.15 (14)
C34—C35—Fe1—C3082.4 (2)C31—C30—Fe1—C2882.81 (11)
C36—C35—Fe1—C30158.85 (17)C29—C30—Fe1—C2837.19 (11)
C28—C27—Fe1—C3543.5 (3)C31—C30—Fe1—C3378.96 (15)
C31—C27—Fe1—C35161.4 (3)C29—C30—Fe1—C33161.03 (13)
C26—C27—Fe1—C3576.7 (3)C29—C30—Fe1—C31120.00 (16)
C28—C27—Fe1—C3675.58 (16)C31—C30—Fe1—C29120.00 (16)
C31—C27—Fe1—C36166.46 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N3i0.932.493.416 (2)176
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C32H26N3O)]
Mr589.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.5966 (3), 11.8658 (3), 20.9383 (6)
β (°) 90.616 (2)
V3)2881.01 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26509, 7145, 5247
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.02
No. of reflections7145
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28···N3i0.932.493.416 (2)176
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. BV thanks the University Grant Commission (UGC), Government of India, New Delhi, for a Meritorious Fellowship.

References

First citationBiot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678–4682.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationGunasekaran, B., Kathiravan, S., Raghunathan, R. & Manivannan, V. (2010). Acta Cryst. E66, m1543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamala, E. T. S., Nirmala, S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, m687–m688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSatis Kumar, B. K., Gayathri, D., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2007). Acta Cryst. E63, m1287–m1289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds