metal-organic compounds
Di-μ-chlorido-bis[(2-amino-4-methylpyridine-κN)chloridomercury(II)]
aDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: tajarodi@iust.ac.ir
In the centrosymmetric dinuclear title compound, [Hg2Cl4(C6H8N2)2], the HgII ion is four-coordinated by one pyridine N atom from a 2-amino-4-methylpyridine ligand, one terminal Cl atom and two bridging Cl atoms. A distorted tetrahedral geometry is formed around each HgII ion. The crystal packing is stabilized by intra- and intermolecular N—H⋯Cl hydrogen bonding. There are also π–π stacking interactions in the structure, with centroid-to-centroid distances of 3.594 (6) Å.
Related literature
For a coordination compound of 2-amino-4-methylpyridine, see: Arab Ahmadi et al. (2011). For proton-transfer compounds of 2-amino-4-methylpyridine, see: Gharbia et al. (2008); Choudhury et al. (2009); Das et al. (2010); Hemamalini & Fun (2010); Aghabozorg et al. (2011); Eshtiagh-Hosseini et al. (2010). For mixed-ligand complexes of 2-amino-4-methylpyridine, see: Zhang et al. (2008); Castillo et al. (2001); Yenikaya et al. (2011). For similar structures, see: Baul et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812039803/bt6826sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812039803/bt6826Isup2.hkl
A solution of 2-amino-4-methylpyridine (1 mmol) in methanol was added to a methanolic solution of HgCl2 (1 mmol) and stirred for 20 min at 50°C. Slow evaporation of the resulting solution gave colorless crystals suitable for X-ray analysis.
H atoms attached to N atoms were found in difference Fourier map. They were refined with distance restraints of N—H 0.87 (2). H atoms attached to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH), with C—H = 0.96 Å (CH3), and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).
To the best of our knowledge, coordination chemistry of 2-amino-4-methylpyridine has not been explored sufficiently. It has the potential to coordinate to metals through the N atom of the pyridyl group (Arab Ahmadi et al., 2011).
Contrary to other derivatives of aminopicolines, less work has been done on the synthesis of the complexes merely containing 2-amino-4-methylpyridine and most of the work is focused on its mixed ligand complexes (Zhang et al., 2008; Castillo et al., 2001; Yenikaya et al., 2011) or proton transfer compounds (Gharbia et al., 2008; Choudhury et al., 2009; Das et al., 2010; Hemamalini & Fun, 2010; Aghabozorg et al., 2011; Eshtiagh-Hosseini et al., 2010).
Herein, we report the synthesis and π–π stacking in the structure of title compound with centroid–centroid distance of 3.594 (6) Å (Fig. 2).
of the title compound, [Hg2(C6H8N2)2Cl4], which is a dimeric complex. The centrosymmetric structure is made up of two Hg atoms, each coordinated by a terminal chloride atom and a nitrogen pyridyl ligand and bridged by chloride atoms. A distorted tetrahedral geometry is formed around each metal center (Fig. 1). The contains one-half of a molecule since the whole molecule lies across a crystallographic inversion center. Bridging chloride atoms along with amino groups take part in intra- and intermolecular N—H··· Cl hydrogen bonds (Fig. 2 and Table 1). There is alsoFor a coordination compound of 2-amino-4-methylpyridine, see: Arab Ahmadi et al. (2011). For proton-transfer compounds of 2-amino-4-methylpyridine, see: Gharbia et al. (2008); Choudhury et al. (2009); Das et al. (2010); Hemamalini & Fun (2010); Aghabozorg et al. (2011); Eshtiagh-Hosseini et al. (2010). For mixed-ligand complexes of 2-amino-4-methylpyridine, see: Zhang et al. (2008); Castillo et al. (2001); Yenikaya et al. (2011). For similar structures, see: Baul et al. (2004).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H16Cl4Hg2N4 | F(000) = 688 |
Mr = 759.27 | Dx = 2.693 Mg m−3 |
Monoclinic, P2/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yac | Cell parameters from 2507 reflections |
a = 7.1777 (14) Å | θ = 2.6–29.1° |
b = 9.1672 (18) Å | µ = 16.94 mm−1 |
c = 14.546 (3) Å | T = 120 K |
β = 101.92 (3)° | Block, colorless |
V = 936.5 (3) Å3 | 0.25 × 0.25 × 0.20 mm |
Z = 2 |
Stoe IPDS 2T diffractometer | 2507 independent reflections |
Radiation source: fine-focus sealed tube | 2019 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.090 |
Detector resolution: 0.15 mm pixels mm-1 | θmax = 29.1°, θmin = 2.6° |
rotation method scans | h = −9→9 |
Absorption correction: numerical shape of crystal determined optically | k = −12→10 |
Tmin = 0.101, Tmax = 0.133 | l = −19→19 |
6495 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0604P)2] where P = (Fo2 + 2Fc2)/3 |
2507 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 2.35 e Å−3 |
2 restraints | Δρmin = −2.80 e Å−3 |
C12H16Cl4Hg2N4 | V = 936.5 (3) Å3 |
Mr = 759.27 | Z = 2 |
Monoclinic, P2/n | Mo Kα radiation |
a = 7.1777 (14) Å | µ = 16.94 mm−1 |
b = 9.1672 (18) Å | T = 120 K |
c = 14.546 (3) Å | 0.25 × 0.25 × 0.20 mm |
β = 101.92 (3)° |
Stoe IPDS 2T diffractometer | 2507 independent reflections |
Absorption correction: numerical shape of crystal determined optically | 2019 reflections with I > 2σ(I) |
Tmin = 0.101, Tmax = 0.133 | Rint = 0.090 |
6495 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 2 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 2.35 e Å−3 |
2507 reflections | Δρmin = −2.80 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.21238 (5) | 0.47797 (4) | 0.94011 (2) | 0.02164 (12) | |
Cl1 | 0.3952 (3) | 0.6882 (3) | 0.98493 (15) | 0.0237 (4) | |
Cl2 | 0.1382 (3) | 0.3856 (2) | 1.10331 (13) | 0.0205 (4) | |
N1 | 0.1135 (11) | 0.2841 (9) | 0.8633 (5) | 0.0210 (15) | |
N2 | 0.0000 (13) | 0.4145 (10) | 0.7272 (5) | 0.0278 (18) | |
C1 | 0.0312 (12) | 0.2842 (11) | 0.7714 (6) | 0.0221 (18) | |
C2 | −0.0152 (13) | 0.1524 (12) | 0.7224 (6) | 0.025 (2) | |
H2 | −0.0709 | 0.1541 | 0.6572 | 0.030* | |
C3 | 0.0199 (16) | 0.0208 (12) | 0.7685 (7) | 0.031 (2) | |
C4 | −0.022 (2) | −0.1198 (14) | 0.7162 (8) | 0.046 (3) | |
H4A | −0.1242 | −0.1048 | 0.6610 | 0.068* | |
H4B | −0.0612 | −0.1931 | 0.7573 | 0.068* | |
H4C | 0.0930 | −0.1536 | 0.6959 | 0.068* | |
C5 | 0.0993 (15) | 0.0221 (12) | 0.8661 (7) | 0.028 (2) | |
H5 | 0.1206 | −0.0662 | 0.9009 | 0.034* | |
C6 | 0.1444 (14) | 0.1542 (11) | 0.9089 (6) | 0.0241 (18) | |
H6 | 0.2003 | 0.1550 | 0.9741 | 0.029* | |
H2A | −0.080 (14) | 0.429 (19) | 0.675 (5) | 0.06 (4)* | |
H2B | −0.028 (19) | 0.495 (7) | 0.753 (9) | 0.03 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.02222 (18) | 0.0215 (2) | 0.01994 (17) | −0.00052 (14) | 0.00134 (11) | −0.00125 (13) |
Cl1 | 0.0237 (10) | 0.0218 (12) | 0.0245 (10) | −0.0020 (8) | 0.0025 (8) | 0.0015 (8) |
Cl2 | 0.0194 (9) | 0.0248 (11) | 0.0177 (8) | 0.0030 (8) | 0.0047 (7) | 0.0008 (7) |
N1 | 0.021 (4) | 0.020 (4) | 0.022 (3) | −0.003 (3) | 0.005 (3) | −0.001 (3) |
N2 | 0.040 (5) | 0.026 (5) | 0.016 (3) | 0.010 (4) | 0.001 (3) | −0.001 (3) |
C1 | 0.010 (4) | 0.033 (5) | 0.024 (4) | 0.001 (3) | 0.005 (3) | 0.003 (3) |
C2 | 0.020 (4) | 0.038 (6) | 0.017 (4) | −0.004 (4) | 0.006 (3) | −0.010 (4) |
C3 | 0.038 (6) | 0.033 (6) | 0.026 (4) | −0.015 (4) | 0.017 (4) | −0.012 (4) |
C4 | 0.073 (9) | 0.036 (7) | 0.033 (5) | −0.030 (6) | 0.023 (6) | −0.022 (5) |
C5 | 0.033 (5) | 0.023 (5) | 0.031 (5) | 0.003 (4) | 0.014 (4) | 0.002 (4) |
C6 | 0.025 (5) | 0.026 (5) | 0.019 (4) | 0.001 (4) | 0.002 (3) | 0.002 (3) |
Hg1—N1 | 2.141 (8) | C2—C3 | 1.377 (16) |
Hg1—Cl1 | 2.347 (2) | C2—H2 | 0.9500 |
Hg1—Cl2 | 2.6755 (19) | C3—C5 | 1.417 (16) |
Hg1—Cl2i | 2.763 (2) | C3—C4 | 1.496 (14) |
Cl2—Hg1i | 2.763 (2) | C4—H4A | 0.9800 |
N1—C1 | 1.345 (12) | C4—H4B | 0.9800 |
N1—C6 | 1.359 (13) | C4—H4C | 0.9800 |
N2—C1 | 1.353 (13) | C5—C6 | 1.369 (15) |
N2—H2A | 0.87 (2) | C5—H5 | 0.9500 |
N2—H2B | 0.87 (2) | C6—H6 | 0.9500 |
C1—C2 | 1.407 (14) | ||
N1—Hg1—Cl1 | 158.87 (19) | C3—C2—H2 | 119.8 |
N1—Hg1—Cl2 | 95.45 (19) | C1—C2—H2 | 119.8 |
Cl1—Hg1—Cl2 | 102.46 (7) | C2—C3—C5 | 118.4 (9) |
N1—Hg1—Cl2i | 93.9 (2) | C2—C3—C4 | 120.6 (10) |
Cl1—Hg1—Cl2i | 97.04 (8) | C5—C3—C4 | 120.9 (11) |
Cl2—Hg1—Cl2i | 90.41 (7) | C3—C4—H4A | 109.5 |
Hg1—Cl2—Hg1i | 89.59 (7) | C3—C4—H4B | 109.5 |
C1—N1—C6 | 118.7 (9) | H4A—C4—H4B | 109.5 |
C1—N1—Hg1 | 123.2 (7) | C3—C4—H4C | 109.5 |
C6—N1—Hg1 | 118.0 (6) | H4A—C4—H4C | 109.5 |
C1—N2—H2A | 125 (10) | H4B—C4—H4C | 109.5 |
C1—N2—H2B | 125 (9) | C6—C5—C3 | 118.1 (10) |
H2A—N2—H2B | 94 (10) | C6—C5—H5 | 121.0 |
N1—C1—N2 | 117.9 (9) | C3—C5—H5 | 121.0 |
N1—C1—C2 | 120.8 (9) | N1—C6—C5 | 123.6 (9) |
N2—C1—C2 | 121.3 (8) | N1—C6—H6 | 118.2 |
C3—C2—C1 | 120.3 (8) | C5—C6—H6 | 118.2 |
N1—Hg1—Cl2—Hg1i | −94.0 (2) | C6—N1—C1—C2 | −2.5 (12) |
Cl1—Hg1—Cl2—Hg1i | 97.30 (8) | Hg1—N1—C1—C2 | 174.1 (6) |
Cl2i—Hg1—Cl2—Hg1i | 0.0 | N1—C1—C2—C3 | 1.2 (12) |
Cl1—Hg1—N1—C1 | −64.4 (10) | N2—C1—C2—C3 | 179.2 (9) |
Cl2—Hg1—N1—C1 | 147.6 (6) | C1—C2—C3—C5 | 1.4 (14) |
Cl2i—Hg1—N1—C1 | 56.8 (6) | C1—C2—C3—C4 | −177.6 (9) |
Cl1—Hg1—N1—C6 | 112.2 (7) | C2—C3—C5—C6 | −2.6 (15) |
Cl2—Hg1—N1—C6 | −35.8 (6) | C4—C3—C5—C6 | 176.3 (9) |
Cl2i—Hg1—N1—C6 | −126.6 (6) | C1—N1—C6—C5 | 1.2 (13) |
C6—N1—C1—N2 | 179.4 (8) | Hg1—N1—C6—C5 | −175.6 (7) |
Hg1—N1—C1—N2 | −4.0 (11) | C3—C5—C6—N1 | 1.4 (15) |
Symmetry code: (i) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···Cl2i | 0.87 (2) | 2.62 (7) | 3.380 (8) | 146 (11) |
N2—H2A···Cl2ii | 0.87 (2) | 2.68 (11) | 3.379 (9) | 139 (13) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H16Cl4Hg2N4 |
Mr | 759.27 |
Crystal system, space group | Monoclinic, P2/n |
Temperature (K) | 120 |
a, b, c (Å) | 7.1777 (14), 9.1672 (18), 14.546 (3) |
β (°) | 101.92 (3) |
V (Å3) | 936.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 16.94 |
Crystal size (mm) | 0.25 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Stoe IPDS 2T |
Absorption correction | Numerical shape of crystal determined optically |
Tmin, Tmax | 0.101, 0.133 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6495, 2507, 2019 |
Rint | 0.090 |
(sin θ/λ)max (Å−1) | 0.685 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.111, 1.00 |
No. of reflections | 2507 |
No. of parameters | 109 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.35, −2.80 |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···Cl2i | 0.87 (2) | 2.62 (7) | 3.380 (8) | 146 (11) |
N2—H2A···Cl2ii | 0.87 (2) | 2.68 (11) | 3.379 (9) | 139 (13) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1/2, −y+1, z−1/2. |
Acknowledgements
The authors acknowledge the Iran University of Science and Technology (IUST) for financial support.
References
Aghabozorg, H., Mofidi Rouchi, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, o54. Web of Science CrossRef IUCr Journals Google Scholar
Arab Ahmadi, R., Safari, N., Khavasi, H. R. & Amani, S. (2011). J. Coord. Chem. 64, 2056–2065. Google Scholar
Baul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323–2329. Google Scholar
Castillo, O., Luque, A., Julve, M., Lloret, F. & Roman, P. (2001). Inorg. Chim. Acta, 315, 9–17. Web of Science CSD CrossRef CAS Google Scholar
Choudhury, S. R., Dey, B., Das, S., Robertazzi, A., Jana, A. D., Chen, C. Y., Lee, H. M., Gameze, P. & Mukhopadhyay, S. (2009). Dalton Trans. pp. 7617–7624. Web of Science CSD CrossRef Google Scholar
Das, A., Choudhury, S. R., Dey, B., Yalamanchili, S. K., Helliwell, M., Gamez, P., Mukhopadhyay, S., Estarellas, C. & Frontera, A. (2010). J. Phys. Chem. B, 114, 4998–5009. Web of Science CSD CrossRef CAS PubMed Google Scholar
Eshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y. G., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 180–189. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gharbia, I. B., Kefi, R., Nasr, C. B. & Durif, A. (2008). Rev. Roum. Chim. 53, 169–175. Google Scholar
Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2151–o2152. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yenikaya, C., Büyükkidany, N., Sariz, M., Keşli, R., Ilkimeny, H., Bülbüly, M. & Büyükgüngor, O. (2011). J. Coord. Chem. 64, 3353–3365. Web of Science CSD CrossRef CAS Google Scholar
Zhang, L., You, Z. & Jiao, Q. (2008). Transition Met. Chem. 33, 573–577. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
To the best of our knowledge, coordination chemistry of 2-amino-4-methylpyridine has not been explored sufficiently. It has the potential to coordinate to metals through the N atom of the pyridyl group (Arab Ahmadi et al., 2011).
Contrary to other derivatives of aminopicolines, less work has been done on the synthesis of the complexes merely containing 2-amino-4-methylpyridine and most of the work is focused on its mixed ligand complexes (Zhang et al., 2008; Castillo et al., 2001; Yenikaya et al., 2011) or proton transfer compounds (Gharbia et al., 2008; Choudhury et al., 2009; Das et al., 2010; Hemamalini & Fun, 2010; Aghabozorg et al., 2011; Eshtiagh-Hosseini et al., 2010).
Herein, we report the synthesis and crystal structure of the title compound, [Hg2(C6H8N2)2Cl4], which is a dimeric complex. The centrosymmetric structure is made up of two Hg atoms, each coordinated by a terminal chloride atom and a nitrogen pyridyl ligand and bridged by chloride atoms. A distorted tetrahedral geometry is formed around each metal center (Fig. 1). The asymmetric unit contains one-half of a molecule since the whole molecule lies across a crystallographic inversion center. Bridging chloride atoms along with amino groups take part in intra- and intermolecular N—H··· Cl hydrogen bonds (Fig. 2 and Table 1). There is also π–π stacking in the structure of title compound with centroid–centroid distance of 3.594 (6) Å (Fig. 2).