organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­bromo-4-formyl­phenyl 3-phenyl­prop-2-enoate

aAsthagiri Herbal Research Foundation, Perungudi, Chennai 600 096, India, and bDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 24 August 2012; accepted 30 August 2012; online 8 September 2012)

Mol­ecules of the title compound, C16H10Br2O3, adopt an E conformation about the C=C double bond. The dihedral angle between the two aromatic rings is 78.0 (7)°. In the crystal, mol­ecules are linked through weak C—H⋯O hydrogen bonds.

Related literature

For the biological activity of cinnamoyl derivatives, see: De et al. (2011[De, P., Baltas, M. & Bedos-Belval, F. (2011). Curr. Med. Chem. 18, 1672-1703.]); Obioran et al. (1986[Obioran, O., Cremlyn, R. J. & Singh, G. (1986). Indian J. Chem. Sect. B, 25, 559-561.]); Cremlyn et al. (1984[Cremlyn, R. J., Thandi, K. & Wilson, R. (1984). Indian J. Chem. Sect. B, 23, 94-96.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10Br2O3

  • Mr = 410.06

  • Triclinic, [P \overline 1]

  • a = 8.0846 (3) Å

  • b = 9.0149 (4) Å

  • c = 11.8995 (5) Å

  • α = 77.429 (2)°

  • β = 73.918 (2)°

  • γ = 70.236 (2)°

  • V = 776.83 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.22 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 15811 measured reflections

  • 3764 independent reflections

  • 2282 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 0.98

  • 3764 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.48 3.221 (6) 136
Symmetry code: (i) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cinnamoyl derivatives exhibit a variety of pharmacological properties, e.g anticancer, antitumor and antimicrobial activities (De et al., 2011; Obioran et al., 1986; Cremlyn et al., 1984). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein. The molecular structure of the title compound is shown in Fig. 1. In the molecule, the configuration about the CC double bond is E. The dihedral angle between the two aromatic rings is 78.0 (7)°. In the crystal packing, molecules are linked through weak C—H···O hydrogen bonds (Fig. 2).

Related literature top

For the biological activity of cinnamoyl derivatives, see: De et al. (2011); Obioran et al. (1986); Cremlyn et al. (1984).

Experimental top

To a solution of 3,5-dibromo benzaldehyde (0.03 mol) in chloroform (100 ml) cinnamoyl chloride (0.03 mol) was added followed by addition of triethyl amine (0.03 mol). Then the reaction was stirred at room temperature for 3 h. The reaction mixture was quenched with water and the chloroform layer was separated. The combined chloroform layers were washed with 5% NaOH solution followed by water wash and dried with sodium sulfate. Then the mixture was concentrated under reduced pressure. The obtained solid was crystallized in a mixture of methanol:chloroform.

Refinement top

H atoms were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H = 0.93 Å.

Structure description top

Cinnamoyl derivatives exhibit a variety of pharmacological properties, e.g anticancer, antitumor and antimicrobial activities (De et al., 2011; Obioran et al., 1986; Cremlyn et al., 1984). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein. The molecular structure of the title compound is shown in Fig. 1. In the molecule, the configuration about the CC double bond is E. The dihedral angle between the two aromatic rings is 78.0 (7)°. In the crystal packing, molecules are linked through weak C—H···O hydrogen bonds (Fig. 2).

For the biological activity of cinnamoyl derivatives, see: De et al. (2011); Obioran et al. (1986); Cremlyn et al. (1984).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing diagram. H atoms not involved in intermolecular hydrogen bonding (dashed lines) have been omitted for clarity.
2,6-Dibromo-4-formylphenyl 3-phenylprop-2-enoate top
Crystal data top
C16H10Br2O3Z = 2
Mr = 410.06F(000) = 400
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0846 (3) ÅCell parameters from 8834 reflections
b = 9.0149 (4) Åθ = 2.1–31.2°
c = 11.8995 (5) ŵ = 5.22 mm1
α = 77.429 (2)°T = 293 K
β = 73.918 (2)°Block, colourless
γ = 70.236 (2)°0.25 × 0.20 × 0.20 mm
V = 776.83 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3764 independent reflections
Radiation source: fine-focus sealed tube2282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 1010
Tmin = 0.979, Tmax = 0.983k = 1111
15811 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.7467P]
where P = (Fo2 + 2Fc2)/3
3764 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C16H10Br2O3γ = 70.236 (2)°
Mr = 410.06V = 776.83 (6) Å3
Triclinic, P1Z = 2
a = 8.0846 (3) ÅMo Kα radiation
b = 9.0149 (4) ŵ = 5.22 mm1
c = 11.8995 (5) ÅT = 293 K
α = 77.429 (2)°0.25 × 0.20 × 0.20 mm
β = 73.918 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3764 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
2282 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.029
15811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.98Δρmax = 0.63 e Å3
3764 reflectionsΔρmin = 0.52 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.5056 (3)0.8407 (3)0.3049 (2)0.0643 (7)
Br20.28505 (7)0.69030 (5)0.52006 (4)0.07858 (18)
Br10.54158 (7)1.17400 (6)0.21211 (4)0.08435 (18)
C100.3929 (4)0.9517 (4)0.3796 (3)0.0499 (8)
C150.3931 (5)1.1088 (4)0.3529 (3)0.0555 (9)
C120.1796 (5)1.0109 (4)0.5601 (3)0.0562 (9)
H120.10600.97860.62970.067*
C10.8079 (5)0.4509 (4)0.1110 (4)0.0612 (10)
C160.0729 (6)1.2807 (6)0.6205 (4)0.0745 (12)
H160.00781.24650.68490.089*
C130.1840 (5)1.1664 (4)0.5332 (3)0.0559 (9)
C51.0667 (7)0.2245 (5)0.1043 (5)0.0881 (14)
H51.16580.16100.13510.106*
O30.0815 (5)1.4077 (4)0.6125 (3)0.0920 (10)
C110.2853 (5)0.9037 (4)0.4828 (3)0.0517 (8)
C20.7771 (6)0.4158 (6)0.0153 (4)0.0796 (13)
H20.68030.48210.01680.096*
C90.4246 (7)0.8097 (5)0.2269 (4)0.0657 (11)
C70.6899 (6)0.5893 (5)0.1768 (4)0.0704 (11)
H70.73060.60790.23680.085*
C140.2892 (5)1.2157 (4)0.4296 (3)0.0573 (9)
H140.29011.32120.41140.069*
C80.5420 (7)0.6811 (6)0.1574 (4)0.0830 (13)
H80.50370.66710.09460.100*
C60.9537 (6)0.3553 (5)0.1536 (4)0.0721 (11)
H60.97700.38010.21840.087*
O10.2767 (5)0.8782 (4)0.2205 (3)0.0886 (9)
C41.0338 (8)0.1871 (6)0.0099 (6)0.0954 (18)
H41.11010.09700.02370.114*
C30.8902 (8)0.2802 (7)0.0361 (5)0.0943 (17)
H30.86730.25430.10060.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0470 (14)0.0607 (15)0.0710 (17)0.0052 (12)0.0006 (13)0.0138 (13)
Br20.1027 (4)0.0525 (2)0.0777 (3)0.0311 (2)0.0149 (2)0.00322 (19)
Br10.0860 (3)0.0953 (3)0.0707 (3)0.0500 (3)0.0005 (2)0.0062 (2)
C100.0397 (19)0.0526 (19)0.056 (2)0.0126 (15)0.0095 (16)0.0082 (17)
C150.050 (2)0.063 (2)0.056 (2)0.0249 (17)0.0117 (17)0.0009 (18)
C120.053 (2)0.066 (2)0.051 (2)0.0247 (18)0.0061 (17)0.0090 (18)
C10.064 (3)0.052 (2)0.062 (2)0.0278 (19)0.0140 (19)0.0159 (18)
C160.072 (3)0.090 (3)0.074 (3)0.031 (2)0.016 (2)0.025 (2)
C130.052 (2)0.059 (2)0.063 (2)0.0162 (17)0.0154 (18)0.0196 (18)
C50.077 (3)0.055 (2)0.121 (4)0.017 (2)0.003 (3)0.016 (3)
O30.110 (3)0.076 (2)0.098 (2)0.0113 (19)0.037 (2)0.0376 (19)
C110.051 (2)0.0473 (18)0.060 (2)0.0200 (16)0.0151 (17)0.0012 (16)
C20.067 (3)0.084 (3)0.086 (3)0.033 (2)0.005 (2)0.018 (3)
C90.079 (3)0.057 (2)0.060 (2)0.020 (2)0.002 (2)0.0219 (19)
C70.064 (3)0.073 (3)0.073 (3)0.034 (2)0.007 (2)0.006 (2)
C140.061 (2)0.052 (2)0.067 (2)0.0254 (18)0.0200 (19)0.0054 (18)
C80.085 (3)0.089 (3)0.084 (3)0.029 (3)0.025 (3)0.017 (3)
C60.071 (3)0.058 (2)0.080 (3)0.022 (2)0.001 (2)0.009 (2)
O10.090 (2)0.087 (2)0.092 (2)0.0086 (19)0.0341 (19)0.0304 (18)
C40.083 (4)0.067 (3)0.131 (5)0.037 (3)0.029 (3)0.047 (3)
C30.102 (4)0.118 (4)0.085 (3)0.069 (4)0.015 (3)0.045 (3)
Geometric parameters (Å, º) top
O2—C91.393 (5)C13—C141.370 (5)
O2—C101.394 (4)C5—C41.355 (8)
Br2—C111.878 (3)C5—C61.358 (6)
Br1—C151.878 (4)C5—H50.9300
C10—C111.373 (5)C2—C31.401 (7)
C10—C151.383 (5)C2—H20.9300
C15—C141.371 (5)C9—O11.161 (5)
C12—C131.379 (5)C9—C81.473 (6)
C12—C111.379 (5)C7—C81.252 (6)
C12—H120.9300C7—H70.9300
C1—C21.352 (6)C14—H140.9300
C1—C61.357 (6)C8—H80.9300
C1—C71.512 (6)C6—H60.9300
C16—O31.152 (5)C4—C31.358 (8)
C16—C131.507 (6)C4—H40.9300
C16—H160.9300C3—H30.9300
C9—O2—C10115.2 (3)C1—C2—C3120.4 (5)
C11—C10—C15119.6 (3)C1—C2—H2119.8
C11—C10—O2119.8 (3)C3—C2—H2119.8
C15—C10—O2120.6 (3)O1—C9—O2122.1 (3)
C14—C15—C10120.5 (3)O1—C9—C8124.1 (4)
C14—C15—Br1120.0 (3)O2—C9—C8113.8 (4)
C10—C15—Br1119.5 (3)C8—C7—C1125.6 (5)
C13—C12—C11119.5 (3)C8—C7—H7117.2
C13—C12—H12120.3C1—C7—H7117.2
C11—C12—H12120.3C15—C14—C13119.6 (3)
C2—C1—C6118.6 (4)C15—C14—H14120.2
C2—C1—C7124.8 (4)C13—C14—H14120.2
C6—C1—C7116.5 (4)C7—C8—C9124.6 (5)
O3—C16—C13124.2 (5)C7—C8—H8117.7
O3—C16—H16117.9C9—C8—H8117.7
C13—C16—H16117.9C1—C6—C5122.0 (5)
C14—C13—C12120.6 (3)C1—C6—H6119.0
C14—C13—C16120.5 (4)C5—C6—H6119.0
C12—C13—C16118.8 (4)C3—C4—C5120.5 (5)
C4—C5—C6119.5 (5)C3—C4—H4119.8
C4—C5—H5120.3C5—C4—H4119.8
C6—C5—H5120.3C4—C3—C2119.0 (5)
C10—C11—C12120.3 (3)C4—C3—H3120.5
C10—C11—Br2119.8 (3)C2—C3—H3120.5
C12—C11—Br2119.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.483.221 (6)136
C7—H7···O20.932.392.764 (3)104
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H10Br2O3
Mr410.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0846 (3), 9.0149 (4), 11.8995 (5)
α, β, γ (°)77.429 (2), 73.918 (2), 70.236 (2)
V3)776.83 (6)
Z2
Radiation typeMo Kα
µ (mm1)5.22
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
15811, 3764, 2282
Rint0.029
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 0.98
No. of reflections3764
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.52

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.483.221 (6)136
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremlyn, R. J., Thandi, K. & Wilson, R. (1984). Indian J. Chem. Sect. B, 23, 94–96.  Google Scholar
First citationDe, P., Baltas, M. & Bedos-Belval, F. (2011). Curr. Med. Chem. 18, 1672–1703.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationObioran, O., Cremlyn, R. J. & Singh, G. (1986). Indian J. Chem. Sect. B, 25, 559–561.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds